1
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
2
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
3
|
Desai NC, Jadeja DJ, Jethawa AM, Ahmad I, Patel H, Dave BP. Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition. Mol Divers 2024; 28:693-709. [PMID: 36750538 DOI: 10.1007/s11030-023-10612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Due to multidrug resistance, microbial infections have become significant on a global level. As infections caused by several resistant bacteria and fungi severely harm mankind, scientists have developed new antibiotics to combat these infections. In order to develop novel antimicrobial agents, a series of 4-thiazolidinone-based 5-arylidene hybrids (5a-o) have been designed and synthesized to evaluate their antibacterial and antifungal activities. For the determination of the structure of a novel synthesized hybrid, various spectral techniques, e.g., IR, 1H NMR, 13C NMR, and Mass spectroscopy, were used. Two bacterial gram-negative (Escherichia coli and Pseudomonas aeruginosa), two gram-positive strains (Staphylococcus aureus and Streptococcus pyogenes), and one fungal strain (Candida albicans) were used to evaluate antimicrobial activity. Compounds 5c, 5g, and 5i were effective due to their MIC values of 62.5 μg/mL against tested bacterial strains (S. pyogenes (5c), P. aeruginosa (5g), and E. coli (5i), respectively.) and 250 μg/mL against C. albicans fungal strains, respectively. Additionally, molecular docking and 100 ns molecular dynamic simulations were carried out to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.
Collapse
Affiliation(s)
- Nisheeth C Desai
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India.
| | - Dharmpalsinh J Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Aratiba M Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - B P Dave
- School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382740, India
| |
Collapse
|
4
|
Raghu MS, Yogesh Kumar K, Shamala T, Alharti FA, Prashanth MK, Jeon BH. Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis. J Biomol Struct Dyn 2024; 42:3307-3317. [PMID: 37261798 DOI: 10.1080/07391102.2023.2217928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
The promising quinazolinone-based pyridine derivatives (4a-j) were synthesized and subsequently tested for their antimycobacterial activities against the various drug-sensitive and drug-resistant Mycobacterium tuberculosis (Mtb) strains to combat infectious diseases and address growing concerns about the devastating effects of tuberculosis (TB). Utilizing 1H NMR, 13C NMR, and mass spectra, the structural and molecular confirmation of the synthesized compounds were deciphered. With minimum inhibitory concentration (MIC) values ranging from 0.31 to 19.13 μM, the results showed that compounds 4e and 4f showed promise anti-TB action against both drug-sensitive and drug-resistant TB strains. To study the cytotoxicity of synthesized molecules, normal Vero and mouse macrophage (RAW264.7) cell lines were utilized. Remarkably, it was revealed that at the highest concentration tested, none of the newly synthesized molecules were toxic to the Vero cell line. The binding patterns of the potent compounds 4b, 4e and 4f in the active site of the mycobacterial membrane protein Large 3 (MmpL3) protein are also revealed by molecular docking studies, which has contributed to the development of a structural rationale for Mtb inhibition. The physicochemical characteristics of the compounds were then predicted using theoretical calculations. Overall, the molecular docking results, physiochemical properties, and observed antimycobacterial activity all point to compound 4e with trifluoromethyl and compound 4f with nitro moiety as potential quinazolinone linked pyridine-based MmpL3 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - T Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Khetmalis YM, Sangeetha GP, Chandu A, Swati, Murugesan S, Sharma V, Kumar MM, Kondapalli VG. Design, synthesis and biological evaluation of novel oxindole analogs as antitubercular agents. Future Med Chem 2023; 15:1323-1342. [PMID: 37610851 DOI: 10.4155/fmc-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To design, synthesize and evaluate oxindole derivatives for antitubercular activity. Methodology: We synthesized the derivatives, confirmed their structures by 1H/13C NMR and mass spectrometry, and evaluated them for antitubercular activity against Mycobacterium tuberculosis H37Rv strain using the microplate alamarBlue™ assay. Results: Among all the synthesized derivatives, OXN-1, -3 and -7 exhibited excellent antitubercular activity (minimum inhibitory concentration [MIC]: 0.78 μg/ml). Compounds with a MIC ≤1.56 were tested for cytotoxicity against human embryonic kidney cells and were found to be relatively nontoxic. Molecular docking analysis of OXN-1, -3 and -7 was performed to determine their binding patterns at the active site of DNA topoisomerase II (PDB-5BS8). In drug combination studies, OXN-1, 3 and 7 showed synergism with isoniazid. Conclusion: The obtained results reveal that oxindole derivatives exhibit potent antitubercular activity.
Collapse
Affiliation(s)
- Yogesh M Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Guruvelli Pv Sangeetha
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Ala Chandu
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Muthyala Mk Kumar
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Venkata Gcs Kondapalli
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
6
|
Al-Zaydi KM, Saleh TS, Alqahtani NF, Bagazi MS. Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules 2023; 28:molecules28052355. [PMID: 36903598 PMCID: PMC10005632 DOI: 10.3390/molecules28052355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
We reported herein efficient economic high-pressure synthesis procedures for the synthesis of bis(azoles) and bis(azines) by utilizing the bis(enaminone) intermediate. Bis(enaminone) reacted with hydrazine hydrate, hydroxylamine hydrochloride, guanidine hydrochloride, urea, thiourea, and malononitrile to form the desired bis azines and bis azoles. A combination of elemental analyses and spectral data was used to confirm the structures of the products. Compared with conventional heating, the high-pressure Q-Tube method promotes reactions in a short period of time and provides high yields.
Collapse
Affiliation(s)
- Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Correspondence: (K.M.A.-Z.); (T.S.S.)
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Green Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
- Correspondence: (K.M.A.-Z.); (T.S.S.)
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Meaad S. Bagazi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Ziembicka D, Gobis K, Szczesio M, Olczak A, Augustynowicz-Kopeć E, Głogowska A, Korona-Głowniak I, Bojanowski K. Synthesis and Structure-Activity Relationship of 2,6-Disubstituted Thiosemicarbazone Derivatives of Pyridine as Potential Antituberculosis Agents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16010448. [PMID: 36614785 PMCID: PMC9822072 DOI: 10.3390/ma16010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
In this study, six new 2,6-disubstituted thiosemicarbazone derivatives of pyridine were synthesized (4−9), and their tuberculostatic activity was evaluated. All of them showed two- to eightfold higher activity (minimum inhibitory concentration (MIC) 0.5−4 µg/mL) against the resistant strain compared with the reference drug. Compounds 5 and 7, which contained the most basic substituents—pyrrolidine and piperidine—in their structure, strongly inhibited the growth of the standard strain (MIC 2 µg/mL). Furthermore, the same derivatives exhibited activity comparable to that of the reference drugs against some types of Gram-positive bacteria (MIC 0.49 µg/mL) and showed no cytotoxicity (IC50 > 50 µg/mL) in HaCaT cells. The zwitterionic structure of each compound was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion analyses showed that all compounds are good drug candidates. Thus, compounds 5 and 7 were identified as leading structures for further research on antituberculosis drugs with extended effects.
Collapse
Affiliation(s)
- Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave, 80-416 Gdansk, Poland
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave, 80-416 Gdansk, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St, 90-924 Lodz, Poland
| | - Andrzej Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St, 90-924 Lodz, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka St, 01-138 Warsaw, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka St, 01-138 Warsaw, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki St, 20-093 Lublin, Poland
| | | |
Collapse
|
8
|
Jagatap VR, Ahmad I, Patel HM. Recent updates in natural terpenoids as potential anti-mycobacterial agents. Indian J Tuberc 2022; 69:282-304. [PMID: 35760478 DOI: 10.1016/j.ijtb.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/15/2023]
Abstract
Tuberculosis is considered as a leading health issue globally. Even though, the todays first line anti-mycobacterial treatments used in the hospital have low deaths, multidrug-resistance forms of the ailment have now spread globally and become a major issue. The wide-ranging biodiversity of medicinal plants, ocean animals have gained considerable attention for drug discovery in previous spans, and the emergence of TB drug resistance has inspired interest in judging natural products (NPs) to cure this disease. Till now, several compounds have been isolated from natural sources with anti-mycobacterial activity, few of which demonstrate significant activity and have the potential for further development. Worldwide huge natural flora and fauna are existing, this flora and fauna must be investigated for new potent lead against infectious TB. This review systematically surveys various classes of terpenoid molecules obtained from different medicinal plants, fungi, sponges, and sea plumes with anti-TB activity, which could be useful for further optimization and development in this field.
Collapse
Affiliation(s)
- Vilas R Jagatap
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Iqrar Ahmad
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Harun M Patel
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India.
| |
Collapse
|
9
|
Ahmad I, Pawara RH, Girase RT, Pathan AY, Jagatap VR, Desai N, Ayipo YO, Surana SJ, Patel H. Synthesis, Molecular Modeling Study, and Quantum-Chemical-Based Investigations of Isoindoline-1,3-diones as Antimycobacterial Agents. ACS OMEGA 2022; 7:21820-21844. [PMID: 35785272 PMCID: PMC9244950 DOI: 10.1021/acsomega.2c01981] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 05/25/2023]
Abstract
The condensation of phthalic anhydride afforded structurally modified isoindoline-1,3-dione derivatives with selected amino-containing compounds. The title compounds (2-30) have been characterized by thin-layer chromatography (TLC), infrared spectroscopy, 1H and 13C NMR spectroscopy, and mass spectroscopy. All of the compounds were assessed for their antimycobacterial activity toward the H37Rv strain by a dual read-out assay method. Among the synthesized compounds, compound 27 possessed a significant IC50 of 18 μM, making it the most potent compound of the series. The InhA inhibitory (IC50) activity of compound 27 was 8.65 μM in comparison to Triclosan (1.32 μM). Computational studies like density functional theory (DFT) study, molecular docking, and dynamic simulation studies illustrated the reactivity and stability of the synthesized compounds as InhA inhibitors. A quantum-mechanics-based DFT study was carried out to investigate the molecular and electronic properties, reactivities, and nature of bonding present in the synthesized compounds and theoretical vibrational (IR) and isotropic value (1H and 13C NMR) calculations.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Rahul H. Pawara
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Rukaiyya T. Girase
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Asama Y. Pathan
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Vilas R. Jagatap
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Nisheeth Desai
- Division
of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar 364002, India
| | - Yusuf Oloruntoyin Ayipo
- Centre
for Drug Research, Universiti Sains Malaysia,
USM, 11800 Gelugor, Pulau Pinang, Malaysia
| | - Sanjay J. Surana
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| | - Harun Patel
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Dhule, Maharashtra, India
| |
Collapse
|
10
|
Lagu SB, Yejella RP, Nissankararao S, Bhandare RR, Golla VS, Subrahmanya Lokesh BV, Rahman MM, Shaik AB. Antitubercular activity assessment of fluorinated chalcones, 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives: In vitro, molecular docking and in-silico drug likeliness studies. PLoS One 2022; 17:e0265068. [PMID: 35709194 PMCID: PMC9202851 DOI: 10.1371/journal.pone.0265068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
A series of newer previously synthesized fluorinated chalcones and their 2-amino-pyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives were screened for their in vitro antitubercular activity and in silico methods. Compound 40 (MIC~ 8 μM) was the most potent among all 60 compounds, whose potency is comparable with broad spectrum antibiotics like ciprofloxacin and streptomycin and three times more potent than pyrazinamide. Additionally, compound 40 was also less selective and hence non-toxic towards the human live cell lines-LO2 in its MTT assay. Compounds 30, 27, 50, 41, 51, and 60 have exhibited streptomycin like activity (MIC~16–18 μM). Fluorinated chalcones, pyridine and pyran derivatives were found to occupy prime position in thymidylate kinase enzymatic pockets in molecular docking studies. The molecule 40 being most potent had shown a binding energy of -9.67 Kcal/mol, while docking against thymidylate kinase, which was compared with its in vitro MIC value (~8 μM). These findings suggest that 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives are prospective lead molecules for the development of novel antitubercular drugs.
Collapse
Affiliation(s)
- Surendra Babu Lagu
- Pharmaceutical Chemistry Division, Adikavi Nannaya University College of Pharmaceutical Sciences, Adikavi Nannaya University, Tadepalligudem, Andhra Pradesh, India
- * E-mail: (ABS); (RRB); (SBL)
| | - Rajendra Prasad Yejella
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | | | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- * E-mail: (ABS); (RRB); (SBL)
| | - Venu Sampath Golla
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | | | - M. Mukhlesur Rahman
- Medicines Research Group, School of Health, Sports and Bioscience, University of East London, London, United Kingdom
| | - Afzal Basha Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, Andhra Pradesh, India
- * E-mail: (ABS); (RRB); (SBL)
| |
Collapse
|
11
|
De S, Kumar S K A, Shah SK, Kazi S, Sarkar N, Banerjee S, Dey S. Pyridine: the scaffolds with significant clinical diversity. RSC Adv 2022; 12:15385-15406. [PMID: 35693235 PMCID: PMC9121228 DOI: 10.1039/d2ra01571d] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research. This privileged scaffold has been consistently incorporated in a diverse range of drug candidates approved by the FDA (Food and Drug Administration). This moiety has attracted increasing attention from several disease states owing to its ease of parallelization and testing potential pertaining to the chemical space. In the next few years, a larger share of novel pyridine-based drug candidates is expected. This review unifies the current advances in novel pyridine-based molecular frameworks and their unique clinical relevance as reported over the last two decades. It highlights an inclination to the use of pyridine-based molecules in drug crafting and the subsequent emergence of several potent and eligible candidates against a range of diversified diseases. The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research.![]()
Collapse
Affiliation(s)
- Sourav De
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, India
| | - Suraj Kumar Shah
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Sabnaz Kazi
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Nandan Sarkar
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol-713301, West Bengal, India
| | - Sanjay Dey
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| |
Collapse
|
12
|
Johansen MD, Shalini, Kumar S, Raynaud C, Quan DH, Britton WJ, Hansbro PM, Kumar V, Kremer L. Biological and Biochemical Evaluation of Isatin-Isoniazid Hybrids as Bactericidal Candidates against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0001121. [PMID: 33972252 PMCID: PMC8284457 DOI: 10.1128/aac.00011-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis remains a leading cause of mortality among infectious diseases worldwide, prompting the need to discover new drugs to fight this disease. We report here the design, synthesis, and antimycobacterial activity of isatin-mono/bis-isoniazid hybrids. Most of the compounds exhibited very high activity against Mycobacterium tuberculosis, with MICs in the range of 0.195 to 0.39 μg/ml, and exerted a more potent bactericidal effect than the standard antitubercular drug isoniazid (INH). Importantly, these compounds were found to be well tolerated at high doses (>200 μg/ml) on Vero kidney cells, leading to high selectivity indices. Two of the most promising hybrids were evaluated for activity in THP-1 macrophages infected with M. tuberculosis, among which compound 11e was found to be slightly more effective than INH. Overexpression of InhA along with cross-resistance determination of the most potent compounds, selection of resistant mutants, and biochemical analysis, allowed us to decipher their mode of action. These compounds effectively inhibited mycolic acid biosynthesis and required KatG to exert their biological effects. Collectively, this suggests that the synthesized isatin-INH hybrids are promising antitubercular molecules for further evaluation in preclinical settings.
Collapse
Affiliation(s)
- Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Clément Raynaud
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Diana H. Quan
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|