1
|
Kajszczak D, Sosnowska D, Frąszczak B, Podsędek A. Composition, Anti-Diabetic, and Antioxidant Potential of Raphanus sativus Leaves. Molecules 2024; 29:5689. [PMID: 39683848 DOI: 10.3390/molecules29235689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Limiting and/or slowing down the starch digestion process and consequently the release of glucose can be an important strategy for the prevention of type 2 diabetes (T2D). The aim of the current in vitro study was to assess the anti-diabetic and antioxidant potential of red radish leaves of the Carmen, Jutrzenka, Saxa, and Warta cultivars. In the context of anti-diabetic activity, the effect of leaves on potato starch digestion and free glucose binding, as well as inhibitory effects of leaf extracts against α-amylase and α-glucosidase and non-enzymatic glycation (AGEs) were determined. The basic chemical composition, quantitative composition of phenolic compounds, and antioxidant activity of leaves were also estimated. This study showed that all radish leaves inhibited the breakdown of potato starch and showed their ability to bind glucose. This activity was correlated with the content of hydroxycinnamic acids, protein and dietary fiber while flavones was probably responsible for glucose binding. Leaf extracts inhibited α-glucosidase activity and formation of AGEs but were practically inactive towards α-amylase. Inhibition of α-glucosidase activity was related to the content of proanthocyanidins and inhibition of AGEs formation to flavonols. These results point to radish leaves, especially the Warta and Jutrzenka cultivars, as a potential natural remedy for treating T2D.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| |
Collapse
|
2
|
da Silva JMG, de Almeida RF, Zeraik ML. Comparative Metabolite Profiling of Three Savannic Species of Banisteriopsis (Malpighiaceae) via UPLC-MS/MS and Chemometric Tools. Chem Biodivers 2024; 21:e202400679. [PMID: 38822223 DOI: 10.1002/cbdv.202400679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Banisteriopsis (Malpighiaceae) is an important genus of neotropical savannas with related biological and medicinal activities but under-explored metabolomic profiles. We present a chemometric analysis for discriminating secondary metabolites of three species of Banisteriopsis (B. laevifolia, B. malifolia, and B. stellaris) leaves. Initially, each species was separately extracted with ethanol:water (4 : 1, v/v) and analysed by Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS/MS). The chromatographic profiles were subjected to Global Natural Product Social (GNPS) and Partial Least Squares Discriminant Analysis (PLS-DA). Eighty-nine compounds (cosine≥0.90) were annotated, including flavonoids, phenolics, and acids. The chemometric analysis (VIP Score) showed each species' relative concentration of the more relevant compounds. In addition, four compounds that discriminate the metabolomic profiles of B. laevifolia, B. malifolia, and B. stellaris were identified by PLS-DA.
Collapse
Affiliation(s)
| | - Rafael Felipe de Almeida
- Department of Biology, State University of Goiás, 75860-000, Quirinópolis, GO, Brazil
- Accelerated Taxonomy, Royal Botanic Gardens Kew, TW9 3AE, London, Surrey, United Kingdom
| | - Maria Luiza Zeraik
- Laboratory of Phytochemistry and Biomolecules, Department of Chemistry, State University of Londrina (UEL), 86051-990, Londrina, PR, Brazil
| |
Collapse
|
3
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Anigboro AA, Avwioroko OJ, Oborirhovo O, Akeghware O, Durugbo EU, Apiamu A, Olaoye VI, Ezealigo US, Tonukari NJ. Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment. Appl Biochem Biotechnol 2024; 196:6864-6892. [PMID: 38416335 DOI: 10.1007/s12010-024-04865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski's rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ - 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Omoerere Oborirhovo
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Onoriode Akeghware
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
- Department of Chemical Sciences, Faculty of Science, Edwin Clark University, Kiagbodo, Delta State, Nigeria
| | - Ernest U Durugbo
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Victor I Olaoye
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Uchechukwu S Ezealigo
- Department of Material Science Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| |
Collapse
|
5
|
Dai J, Liu Z, Ma L, Yang C, Bai L, Han D, Song Q, Yan H, Wang Z. Identification of procyanidins as α-glucosidase inhibitors, pancreatic lipase inhibitors, and antioxidants from the bark of Cinnamomum cassia by multi-bioactivity-labeled molecular networking. Food Res Int 2024; 192:114833. [PMID: 39147522 DOI: 10.1016/j.foodres.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.
Collapse
Affiliation(s)
- Jun Dai
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zihan Liu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qi Song
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Cardullo N, Calcagno D, Pulvirenti L, Sciacca C, Pittalà MGG, Maccarronello AE, Thevenard F, Muccilli V. Flavonoids with lipase inhibitory activity from lemon squeezing waste: isolation, multispectroscopic and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7639-7648. [PMID: 38775623 DOI: 10.1002/jsfa.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Obesity is recognized as a lifestyle-related disease and the main risk factor for a series of pathological conditions, including cardiovascular diseases, hypertension and type 2 diabetes. Citrus limon is an important medicinal plant, and its fruits are rich in flavonoids investigated for their potential in managing obesity. In the present work, a green extraction applied to lemon squeezing waste (LSW) was optimized to recover pancreatic lipase (PL) inhibitors. RESULTS The microwave-assisted procedure yielded an extract with higher lipase inhibitory activity than those obtained by maceration and ultrasound. The main compounds present in the extract were identified by high-performance liquid chromatographic-mass spectrometric analysis, and hesperidin, eriocitrin and 4'-methyllucenin II were isolated. The three compounds were evaluated for in vitro PL inhibitory activity, and 4'-methyllucenin II resulted in the most promising inhibitor (IC50 = 12.1 μmol L-1; Ki = 62.2 μmol L-1). Multispectroscopic approaches suggested the three flavonoids act as competitive inhibitors and the binding studies indicated a greater interaction between PL and 4'-methyllucenin II. Docking analysis indicated the significant interactions of the three flavonoids with the PL catalytic site. CONCLUSION The present work highlights flavonoid glycosides as promising PL inhibitors and proposes LSW as a safe ingredient for the preparation of food supplements for managing obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche - Istituto di Chimica Biomolecolare, Catania, Italy
| | - Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | | | - Fernanda Thevenard
- Centre of Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo Andre, São Paulo, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
de Lima DM, Santos ALO, de Melo MRS, Tavares DC, Martins CHG, Sousa RMF. Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2011. [PMID: 39124129 PMCID: PMC11314560 DOI: 10.3390/plants13152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
The study evaluated the preservative potential of Lafoensia replicata Pohl. leaf extracts in cosmetics, highlighting their antioxidant, antimicrobial, and in vitro cytotoxic activities for ethanolic extract prepared by the maceration and tincture method. Total phenol content showed a higher phenol concentration in ethanolic extract and tinctures, and by LC-MS/MS-ESI-QTOF analysis, flavonoids, hydrolyzed tannins, and phenolic acids were identified. The ethanolic extract and tincture showed high antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans (MIC < 50 µg mL-1), high antioxidant activity (EC50 < 50 µg mL-1 in the DPPH method, and results > 450 µmol trolox equivalent in the ABTS and FRAP method), and low cytotoxicity in human keratinocytes (IC50 > 350 µg mL-1). The results suggest these extracts could be an alternative to synthetic preservatives in the cosmetic industry.
Collapse
Affiliation(s)
- Débora Machado de Lima
- Chemistry Instituto, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil
| | - Anna Lívia Oliveira Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil
| | | | - Denise Crispim Tavares
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, Franca 14404-600, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil
| | - Raquel Maria Ferreira Sousa
- Chemistry Instituto, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
8
|
Sehnem GS, Silva JA, da C Silva T, Prado DG, Santiago MB, O Santos AL, Martins MM, Cunha LCS, Sousa RMF, Romero R, Bittar VP, Borges ALS, Martins CHG, Espindola FS, de Oliveira A. Chemical Composition of Extracts and Fractions from Miconia Ibaguensis (Melastomataceae) Leaves and Evaluation of Biological Activities. Chem Biodivers 2024; 21:e202400680. [PMID: 38748618 DOI: 10.1002/cbdv.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
The study aimed to assess the chemical composition of Miconia ibaguensis leaves extracts and fractions obtained from the ethanolic extract (EE), along with evaluating their antifungal, antibacterial, antidiabetic, and antioxidant activities. The ethyl acetate fraction (EAF) exhibited potent antifungal activity against Candida spp (1.95-3.90 μg mL-1) and potent antioxidant activity in the DPPH (1.74±0.07 μg mL-1), FRAP (654.01±42.09 μmol ETrolox/gsample), and ORAC (3698.88±37.28 μmol ETrolox/gsample) methods. The EE displayed inhibition against the α-amylase enzyme (8.42±0.05 μg mL-1). Flavonoids, hydrolysable tannins, triterpenoids, and phenolic acids, identified in the EE and fractions via (-)-HPLC-ESI-MS/MS analysis, were found to contribute to the species' biological activity potentially. These findings suggest promising avenues for further research and potential applications in pharmacology and natural products, offering new possibilities in the fight against global health issues.
Collapse
Affiliation(s)
- Gabriela S Sehnem
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Julia A Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Tiara da C Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Diego G Prado
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Mariana B Santiago
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Anna Lívia O Santos
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Mário M Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Luis C S Cunha
- Bioprospecting Center for Natural Products, Chemistry Department, Federal Institute of Triângulo Mineiro -, MG, Uberaba, Brazil
| | - Raquel M F Sousa
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Rosana Romero
- Institute of Biology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Vinicius P Bittar
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Ana Luiza S Borges
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Carlos H G Martins
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Foued S Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| |
Collapse
|
9
|
Nieto Camacho A, Baca Ibarra II, Huerta-Reyes M. Antioxidant and Anti-Inflammatory Profiles of Two Mexican Heteropterys Species and Their Relevance for the Treatment of Mental Diseases: H. brachiata (L.) DC. and H. cotinifolia A. Juss. (Malpighiaceae). Molecules 2024; 29:3053. [PMID: 38999004 PMCID: PMC11243223 DOI: 10.3390/molecules29133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression.
Collapse
Affiliation(s)
- Antonio Nieto Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico;
| | - Itzel Isaura Baca Ibarra
- Bioterio, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico
| |
Collapse
|
10
|
Xiao D, Lu L, Liang B, Xiong Z, Xu X, Chen WH. Identification of 1,3,4-oxadiazolyl-containing β-carboline derivatives as novel α-glucosidase inhibitors with antidiabetic activity. Eur J Med Chem 2023; 261:115795. [PMID: 37688939 DOI: 10.1016/j.ejmech.2023.115795] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
In this study, we designed and synthesized a novel class of 1,3,4-oxadiazolyl-containing β-carboline derivatives, i.e., compounds f1∼f35 as potential α-glucosidase inhibitors. All the synthesized compounds possessed outstanding α-glucosidase inhibitory activity with the IC50 values in the range of 3.07-15.49 μM, representing that they are 36∼183-fold more active than a positive control, acarbose (IC50 = 564.28 μM). Among them, compound f26 exhibited the highest α-glucosidase inhibitory activity (IC50 = 3.07 μM) and was demonstrated to function as a reversible and noncompetitive inhibitor. Mechanistic studies by means of 3D fluorescence spectra, CD spectra and molecular docking suggested that complexation of compound f26 with α-glucosidase through hydrogen bonds and hydrophobic interactions, led to changes in the conformation and secondary strictures of α-glucosidase and further the inhibition of the enzymatic activity. In vivo results showed that oral administration of compound f26 (50 mg/kg/day) could obviously reduce the levels of fasting blood glucose and improve glucose tolerance and dyslipidemia in diabetic mice. The present findings suggest that compound f26 is exploitable as a potential lead compound for the development of new α-glucosidase inhibitors with antidiabetic activity.
Collapse
Affiliation(s)
- Di Xiao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Li Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Bingwen Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
11
|
Monteiro-Alfredo T, Macedo MLR, de Picoli Souza K, Matafome P. New Therapeutic Strategies for Obesity and Its Metabolic Sequelae: Brazilian Cerrado as a Unique Biome. Int J Mol Sci 2023; 24:15588. [PMID: 37958572 PMCID: PMC10648839 DOI: 10.3390/ijms242115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Brazil has several important biomes holding impressive fauna and flora biodiversity. Cerrado being one of the richest ones and a significant area in the search for new plant-based products, such as foods, cosmetics, and medicines. The therapeutic potential of Cerrado plants has been described by several studies associating ethnopharmacological knowledge with phytochemical compounds and therapeutic effects. Based on this wide range of options, the Brazilian population has been using these medicinal plants (MP) for centuries for the treatment of various health conditions. Among these, we highlight metabolic diseases, namely obesity and its metabolic alterations from metabolic syndrome to later stages such as type 2 diabetes (T2D). Several studies have shown that adipose tissue (AT) dysfunction leads to proinflammatory cytokine secretion and impaired free fatty acid (FFA) oxidation and oxidative status, creating the basis for insulin resistance and glucose dysmetabolism. In this scenario, the great Brazilian biodiversity and a wide variety of phytochemical compounds make it an important candidate for the identification of pharmacological strategies for the treatment of these conditions. This review aimed to analyze and summarize the current literature on plants from the Brazilian Cerrado that have therapeutic activity against obesity and its metabolic conditions, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
12
|
Qaed E, Almoiliqy M, Al-Hamyari B, Qaid A, Alademy H, Al-Maamari A, Alyafeai E, Geng Z, Tang Z, Ma X. Procyanidins: A promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Repair Regen 2023; 31:688-699. [PMID: 37553788 DOI: 10.1111/wrr.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Collapse
Affiliation(s)
- Eskandar Qaed
- Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Taizz, Yemen
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Metabolomics-Based Profiling via a Chemometric Approach to Investigate the Antidiabetic Property of Different Parts and Origins of Pistacia lentiscus L. Metabolites 2023; 13:metabo13020275. [PMID: 36837894 PMCID: PMC9960292 DOI: 10.3390/metabo13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of different extracts from the leaves, stem barks and fruits of P. lentiscus harvested on mountains and the littoral of Tizi-Ouzou in Algeria. Metabolomic profiling combined with a chemometric approach highlighted the variation of the antidiabetic properties of P. lentiscus according to the plant's part and origin. A multiblock OPLS analysis showed that the metabolites most involved in α-glucosidase inhibition activity were mainly found in the stem bark extracts. The highest inhibitory activity was found for the stem bark extracts, with averaged inhibition percentage values of 84.7% and 69.9% for the harvested samples from the littoral and mountain, respectively. On the other hand, the fruit extracts showed a lower effect (13.6%) at both locations. The UHPLC-ESI-HRMS characterization of the metabolites most likely responsible for the α-glucosidase-inhibitory activity allowed the identification of six compounds: epigallocatechin(4a>8)epigallocatechin (two isomers), (epi)gallocatechin-3'-O-galloyl-(epi)gallocatechin (two isomers), 3,5-O-digalloylquinic acid and dihydroxy benzoic acid pentoside.
Collapse
|
14
|
Inhibition of α-Amylase, α-Glucosidase, and Lipase, Intestinal Glucose Absorption, and Antidiabetic Properties by Extracts of Erodium guttatum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5868682. [PMID: 36034954 PMCID: PMC9402324 DOI: 10.1155/2022/5868682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Erodium guttatum is widely used in traditional medicine to treat various diseases, including diabetes. In this study, we evaluated in vitro inhibitory activity of extracts of E. guttatum on α-amylase, α-glucosidase, and lipase and then studied in vivo using different animal models. The results showed that the aqueous and alcoholic extracts of E. guttatum significantly inhibited digestive enzymes. The extracts of E. guttatum significantly reduced postprandial hyperglycemia after starch loading in normal rats. Additionally, extracts of E. guttatum significantly decrease the intestinal absorption of D-glucose. However, the methanolic extract of E. guttatum showed remarkable antidiabetic activity compared to the aqueous and ethanolic extracts of E. guttatum. In addition, the extracts significantly reduced blood sugar levels in albino mice and hematological and biochemical profiles. Therefore, the results of this study show that the extracts of E. guttatum have antidiabetic effects and could therefore be suggested in the management of type 2 diabetes.
Collapse
|
15
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|