1
|
He XF, Li TZ, Ma YB, Wang MF, Chen JJ. Unusual cadinane-involved sesquiterpenoid dimers from Artemisia annua and their antihepatoma effect. PHYTOCHEMISTRY 2024; 226:114216. [PMID: 38972444 DOI: 10.1016/j.phytochem.2024.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Artemisia annua L. ("Qinghao" in Chinese) is a famous traditional Chinese medicinal herb and has been used to treat malaria and various tumors. Our preliminary screening indicated that the EtOAc extract of A. annua manifested activity against HepG2, Huh7, and SK-Hep-1 cell lines with inhibitory ratios of 53.2%, 52.1%, and 59.6% at 200 μg/mL, respectively. Bioassay-guided isolation of A. annua afforded 14 unusual cadinane-involved sesquiterpenoid dimers, artemannuins A‒N (1-14), of which the structures were elucidated by extensive spectral analyses, ECD calculations, and single-crystal X-ray diffraction. Structurally, these compounds were classified into five different types based on the coupled modes of two monomeric sesquiterpenoids. Among them, compounds 1-9 represented the first examples of sesquiterpenoid dimers formed via the C-3‒C-3' single bond of two 5(4 → 3)-abeo-cadinane sesquiterpenoid monomers, while compounds 13 and 14 were dimers fused by cadinane and humulane sesquiterpenoids via an ester bond. Methylated derivatives of 1, 4, 6, and 8 showed antihepatoma activity against HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values ranging from 30.5 to 57.2 μM.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Meng-Fei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Tang C, Zheng Y, Shao Z, Ke CQ, Feng Z, Ye Y. Germacrane-type sesquiterpenes from Artemisia atrovirens and their anti-inflammatory activity. Fitoterapia 2024; 179:106241. [PMID: 39362503 DOI: 10.1016/j.fitote.2024.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Artemisia plants are well-known for their abundant sesquiterpene compounds, which encompass various structural types and exhibit a range of biological activities. In this study, a systematic investigation of Artemisia atrovirens revealed the presence of germacrane-type sesquiterpenes for the first time. This included the discovery of 10 new compounds and three known analogues, among which were two rare dimeric germacrane-type compounds. Their structures were fully characterized through a comprehensive analysis involving MS, IR, 1D- and 2D-NMR spectroscopic data, single crystal X-ray diffraction, density functional theory (DFT) NMR calculations, and time-dependent DFT electronic circular dichroism (TDDFT ECD) calculations. Furthermore, all isolated compounds were evaluated for their anti-inflammatory activity in LPS-stimulated RAW 264.7 murine macrophages. Compound 10 demonstrated a potent inhibitory effect on NO production, with an IC50 value of 4.01 ± 0.09 μM. This study highlights the diverse chemical repertoire of Artemisia species and underscores their potential in drug discovery and development.
Collapse
Affiliation(s)
- Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhe Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhengguang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zheling Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Wang MF, Li TZ, Ma YB, Ma WJ, Wang YC, Li FJ, Chen JJ. Artemyriantholides A-K, guaiane-type sesquiterpenoid dimers from Artemisia myriantha var. pleiocephala and their antihepatoma activity. PHYTOCHEMISTRY 2024; 222:114100. [PMID: 38636688 DOI: 10.1016/j.phytochem.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Artemyriantholides A-K (1-11) as well as 14 known compounds (12-25) were isolated from Artemisia myriantha var. pleiocephala (Asteraceae). The structures and absolute configuration of compounds 2 and 8-9 were confirmed by the single crystal X-ray diffraction analyses, and the others were elucidated by MS, NMR spectral data and electronic circular dichroism calculations. All compounds were chemically characterized as guaiane-type sesquiterpenoid dimers (GSDs). Compound 1 was the first example of the GSD fused via C-3/C-11' and C-5/C-13' linkages, and compounds 2 and 5 were rare GSDs containing chlorine atoms. Eleven compounds showed obvious inhibitory activity in HepG2, Huh7 and SK-Hep-1 cell lines by antihepatoma assay to provide the IC50 values ranging from 7.9 to 67.1 μM. Importantly, compounds 5 and 8 exhibited the best inhibitory activity with IC50 values of 14.2 and 18.8 (HepG2), 9.0 and 11.5 (Huh7), and 8.8 and 11.3 μM (SK-Hep-1), respectively. The target of compound 5 was predicted to be MAP2K2 by a computational prediction model. The interaction between compound 5 and MAP2K2 was conducted to give docking score of -9.0 kcal/mol by molecular docking and provide KD value of 43.7 μM by Surface Plasmon Resonance assay.
Collapse
Affiliation(s)
- Meng-Fei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Wen-Jing Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yong-Cui Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Feng-Jiao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Ding LF, Hu GX, Liu YY, Wang QH, Li ZJ, Shen MX, Zhu GF, Wu XD, Su J. Eudesmane-type sesquiterpenoids from the aerial parts of Artemisia lavandulaefolia and their anti-pancreatic cancer activities. PHYTOCHEMISTRY 2023; 216:113871. [PMID: 37777165 DOI: 10.1016/j.phytochem.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Five undescribed eudesmane sesquiterpenoids, artemilavanins A-E, and one undescribed rearranged eudesmane sesquiterpenoid, artemilavanin F, were isolated from the 95% ethanol extract of the aerial parts of Artemisia lavandulaefolia DC., along with ten known compounds. The structures and configurations of undescribed compounds were mainly elucidated by spectroscopic analyses and single-crystal X-ray diffraction analysis. Among all isolated compounds, artemilavanin F exhibited inhibitory activity on PANC-1 pancreatic cancer cells with IC50 of 9.69 ± 2.39 μM. Artemilavanin F inhibited PANC-1 cell proliferation by induction of G2/M cell cycle arrest and apoptosis mediated by downregulation of cyclin-dependent kinases and accumulation of reactive oxygen species. Moreover, artemilavanin F inhibited the colony formation, cell migration and sphere formation of PANC-1 cells, indicating the suppression of stem-cell-like phenotype of PANC-1 cells. Further results confirmed that the expression of cancer stem cell markers such as Bmi1, CD44, CD133 were inhibited by artemilavanin F. Downregulation of epithelial-mesenchymal transition (EMT) markers such as N-cadherin and Oct-4 indicated the potential of artemilavanin F in prevention of metastasis.
Collapse
Affiliation(s)
- Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guo-Xian Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yu-Yao Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiu-Hua Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhang-Juan Li
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Meng-Xia Shen
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Gui-Fa Zhu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Xing-De Wu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Jia Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
5
|
Shang C, Ma YB, Wang Y, He XF, Li TZ, Chen JJ. Artemongolins A-K, undescribed germacrane-guaiane sesquiterpenoid dimers from Artemisia mongolica and their antihepatoma activities. Arch Pharm Res 2023; 46:782-794. [PMID: 37770811 DOI: 10.1007/s12272-023-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Artemongolins A-K (1-11), which are undescribed sesquiterpenoid dimers, were obtained from Artemisia mongolica and characterized through comprehensive spectral data, including HRESIMS, IR, 1D and 2D NMR, and ECD calculations. The absolute configurations of compounds 1, 4, and 7 were undoubtedly determined by a single-crystal X-ray crystallography. Artemongolins A-K (1-11) featured a rare 5/7/5/5/5/10 hexacyclic system composed of a germacrene and a guaianolide by a fused 2-oxaspiro[4,4]nonane-1-one ring system. Antihepatoma evaluation against three human hepatoma cell lines demonstrated that the most active compounds 5 and 6 displayed inhibitory activity with IC50 values of 88.6 and 57.0 (HepG2), 59.1 and 26.4 (Huh7), and 67.5 and 32.5 (SK-Hep-1) µM, respectively.
Collapse
Affiliation(s)
- Chong Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Shang C, Huang XY, Wang Y, Dong W, He XF, Li TZ, Chen JJ. Artemongolides A-F, undescribed sesquiterpenoid dimers from Artemisia mongolica and their antihepatic fibrosis activities. Org Biomol Chem 2023; 21:823-831. [PMID: 36601986 DOI: 10.1039/d2ob02182j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Artemongolides A-E (1-5), an unusual class of diseco-guaianolides featuring a rare fused 7-methylbicyclo[2.2.1]-2-ene-7-heptanol ring system, and artemongolide F (6), the first example of [4 + 2] Diels-Alder type adducts presumably incorporating a chain farnesane sesquiterpene and a guaianolide diene, were isolated from the whole plant of Artemisia mongolica. Their structures were elucidated based on the spectroscopic analyses of UV, IR, MS, and 1D and 2D NMR spectra. The absolute configurations of artemongolides A (1) and F (6) were determined by single-crystal X-ray crystallography, and those of artemongolides B-E (2-5) were established by ECD calculations. Cytotoxicity evaluation suggested that compound 1 exhibited activity against HSC-LX2 cells with an IC50 value of 165.0 μM, equivalent to that of the positive control silybin (IC50, 146.4 μM). Preliminary mechanism studies revealed that compound 1 could inhibit the deposition of human collagen type I (Col I), human hyaluronic acid (HA), and human laminin (HL) with IC50 values of 123.8, 160.4, and 139.20 μM.
Collapse
Affiliation(s)
- Chong Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Wei Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Gao Z, Ma WJ, Li TZ, Ma YB, Hu J, Huang XY, Geng CA, He XF, Zhang XM, Chen JJ. Artemidubolides A-T, cytotoxic unreported guaiane-type sesquiterpenoid dimers against three hepatoma cell lines from Artemisia dubia. PHYTOCHEMISTRY 2022; 202:113299. [PMID: 35809862 DOI: 10.1016/j.phytochem.2022.113299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A random bioassay revealed that the EtOH extract and EtOAc fraction of Artemisia dubia Wall. (Asteraceae) exhibited cytotoxic activity against HepG2 cells with inhibitory ratios of 57.1% and 84.2% at a concentration of 100.0 μg/mL. Bio-guided isolation combined by LC-MS-IT-TOF analyses of the active fractions led to the isolation of 20 previously undescribed guaiane-type sesquiterpenoid dimers named artemidubolides A-T (1-20). Their structures and the absolute configurations were determined by comprehensive spectral analyses, comparison of the experimental and calculated ECD spectra, and seven compounds (artemidubolides A, B, D, F, K, O and R) were confirmed unequivocally by single crystal X-ray diffraction analysis. Structurally, artemidubolides A-Q were [4 + 2] Diels-Alder adducts of two monomeric guaianolides, and artemidubolides R-T were linked though an ester bond. All the isolated compounds were evaluated for their hepatomatic cytotoxicity against HepG2, Huh7, and SK-Hep-1 cell lines to demonstrate that 18 compounds exhibited obvious cytotoxicity against three tested hepatoma cell lines with IC50 values in the range of 5.4-87.6 μM. Importantly, artemidubolides B, D, and M exhibited hepatoma cytotoxicity with IC50 values of 5.4, 5.7, and 9.7 (HepG2), 8.2, 4.3, and 12.2 (Huh7), and 13.4, 8.4, and 12.9 μM (SK-Hep-1), respectively. Mechanism investigation in HepG2 cells suggested the most active artemidubolide D dose-dependently inhibited cell migration and invasion, induced G1/M cell cycle arrest by down-regulating proteins CDK4, CDK6 and CyclinD1 and up-regulating the level of protein P21; and induced apoptosis by down-regulated of PARP-1 and BCL-2 expression and up-regulating Bax and cleaved PARP-1 levels.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wen-Jing Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Shao Z, Li L, Zheng Y, Gong Q, Ke CQ, Yao S, Zhang H, Tang C, Ye Y. Anti-inflammatory sesquiterpenoid dimers from Artemisia atrovirens. Fitoterapia 2022; 159:105199. [PMID: 35452745 DOI: 10.1016/j.fitote.2022.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
Eight new sesquiterpenoid dimers, artatrovirenolides A-H (1-8), along with three known analogues (9-11), were isolated from Artemisia atrovirens by using the LC-MS guided isolation. Compound 1 was a compound dimerized from a guaianolide and a 1,10-seco-guaianolide unit while others were from two guaianolide units. Their structures were established by comprehensive analysis of spectroscopic data, and their absolute configurations were determined by the aid of time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. Compound 8 showed anti-inflammatory effect in LPS-stimulated BV-2 microglial cells at 1 μM, while compounds 1, 2, 5, and 6 inhibited microglial inflammation at 10 μM.
Collapse
Affiliation(s)
- Zhengguang Shao
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lizhi Li
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Yongzhe Zheng
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyan Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| |
Collapse
|
9
|
Ren H, Zhang YY, Li YL, Bai M, Yan QL, Huang XX, Cui W, Zhao H, Gu L, Liu Q, Yao GD, Song SJ. Semisynthesis and Non-Small-Cell Lung Cancer Cytotoxicity Evaluation of Germacrane-Type Sesquiterpene Lactones from Elephantopus scaber. JOURNAL OF NATURAL PRODUCTS 2022; 85:352-364. [PMID: 35090346 DOI: 10.1021/acs.jnatprod.1c00936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two series of germacrane-type sesquiterpene lactones were produced by semisynthetic modulation of scaberol C, which was prepared by a standard chemical transformation from an Elephantopus scaber extract. Their inhibition activities against non-small-cell lung cancer cells were screened, and preliminary structure-activity relationships were also established. Among them, monomeric analog 1u and dimeric analog 3d exhibited superior anti-non-small-cell lung cancer cytotoxic potencies with IC50 values of 4.3 and 0.7 μM against A549 cells, respectively, and were more active than cisplatin and the standard sesquiterpene lactones, parthenolide and scabertopin. Further studies revealed that compounds 1u and 3d cause G2/M phase arrest and induce apoptosis through the activation of mitochondrial pathways in A549 cells. Collectively, the results obtained suggest that compounds 1u and 3d are promising anti-non-small-cell lung cancer lead compounds.
Collapse
Affiliation(s)
- Hui Ren
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yang-Yang Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ya-Ling Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ming Bai
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping 136001, Jilin Province, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping 136001, Jilin Province, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
10
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
11
|
Wang Q, Zhang T, Ke CQ, Tang C, Yao S, Lin L, Ye Y. Guaianolides from Artemisia codonocephala suppress interleukine-1β secretion in macrophages. PHYTOCHEMISTRY 2021; 192:112955. [PMID: 34555775 DOI: 10.1016/j.phytochem.2021.112955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Sesquiterpene lactones supply a variety of scaffolds for the development of anti-inflammatory drugs. In this study, eight undescribed guaianolides, i.e., lavandolides A‒H, were isolated from the whole plants of Artemisia codonocephala, together with five known analogues. Their planar structures and relative configurations were elucidated by spectroscopic measurements, and their absolute configurations were determined by electronic circulardichroism spectra and single crystal X-ray diffraction experiments. The nitric oxide inhibitory effect of all the isolates was assessed on lipopolysaccharide stimulated THP-1 macrophages. Lavandolide D showed a potent inhibitory effect on NO production, with IC50 values of 3.31 ± 0.74 μM. Furthermore, lavandolide D inhibited NOD-, LRR- and pyrin domain-containing protein 3 inflammasome-mediated interleukin-1β production through activating autophagy.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Yang Ye
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
12
|
Su L, Li T, Ma Y, Geng C, Huang X, Zhang X, Gao Z, Chen J. Artematrovirenolides A—D and Artematrolides S—Z, Sesquiterpenoid Dimers with Cytotoxicity against Three Hepatoma Cell Lines from
Artemisia atrovirens. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Li‐Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Yun‐Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Chang‐An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Xiao‐Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Xin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Li TZ, Yang XT, Wang JP, Geng CA, Ma YB, Su LH, Zhang XM, Chen JJ. Biomimetic Synthesis of Lavandiolides H, I, and K and Artematrolide F via Diels-Alder Reaction. Org Lett 2021; 23:8380-8384. [PMID: 34634203 DOI: 10.1021/acs.orglett.1c03120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biomimetic synthesis of guaianolide dimers lavandiolides H, I, and K and artematrolide F containing a spirolactone moiety has been accomplished for the first time from naturally abundant arglabin in four to six steps with an overall yield up to 60%, and a series of natural product-like guaianolide dimers, trimer, and tetramer were also successfully synthesized. Notably, the trimeric compound exhibited antihepatoma cytotoxicity more potent than that of sorafenib with IC50 values of 6.2 μM (HepG2), 6.8 μM (Huh7), and 7.2 μM (SK-HEP-1).
Collapse
Affiliation(s)
- Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Tong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jin-Ping Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Lou R, Xu F, Xu Y, Chen J, Feng Z, Gan L, Lin L. Caesalpinaxin, a cassane-type diterpenoid with a 21-carbon core skeleton from the seeds of Caesalpinia minax possessing pro-angiogenetic property. Bioorg Chem 2021; 117:105426. [PMID: 34666257 DOI: 10.1016/j.bioorg.2021.105426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
A novel cassane-type diterpenoid, caesalpinaxin (1), was isolated from the seeds of Caesalpinia minax Hance. The structure of caesalpinaxin was established by means of spectroscopic techniques (NMR, HR-ESIMS, UV and IR). The absolute configuration of caesalpinaxin was determined by quantum chemical calculations of its theoretical electronic circular dichroism (ECD) spectrum. Caesalpinaxin is the first cassane-type diterpenoid with 21 carbons core skeleton, containing an unusual δ-lactone ring. A plausible biosynthetic pathway was proposed for compound 1. Furthermore, caesalpinaxin was tested for the pro-angiogenetic activity on human umbilical vein endothelial cells(HUVECs). The results indicated that this compound significantly stimulated migration and tuber formation through enhancing the level of vascular endothelial growth factor (VEGF). Thus, caesalpinaxin might be applied in accelerating wound healing.
Collapse
Affiliation(s)
- Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Fan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yunshao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China.
| |
Collapse
|
15
|
Su L, Zhang X, Ma Y, Geng C, Huang X, Hu J, Li T, Tang S, Shen C, Gao Z, Zhang X, Chen JJ. New guaiane-type sesquiterpenoid dimers from Artemisia atrovirens and their antihepatoma activity. Acta Pharm Sin B 2021; 11:1648-1666. [PMID: 34221874 PMCID: PMC8245908 DOI: 10.1016/j.apsb.2020.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Leading by cytotoxicity against HepG2 cells, bioactivity-guided fractionation of the EtOAc fraction from Artemisia atrovirens led to the isolation of 18 new guaianolide dimers, artematrolides A–R and lavandiolides A, B, C, H, and J. Eight compounds (1, 4, 10, 12, 13, and 19–21) were unambiguously confirmed by the single-crystal X-ray diffraction analyses, and the others were elucidated based on IR, UV, HRESIMS, 1D and 2D NMR experiments, and comparison of the experimental and calculated ECD data. Structurally, all of them were [4 + 2] Diels–Alder adducts of two monomeric guaianolides. The isolates were evaluated for their cytotoxicity against three human hepatoma cell lines, and 19 compounds demonstrated cytotoxicity against HepG2, SMMC-7721, and Huh7 cell lines. Especially, compounds 1, 12, 14, and 15 exhibited cytotoxicity with IC50 values of 4.4, 3.8, 7.6, and 6.7 μmol/L (HepG2), 9.6, 4.6, 6.6, and 6.0 μmol/L (SMMC-7721), and 7.6, 4.5, 6.9, and 5.6 μmol/L (Huh7), respectively. Notably, compound 12 showed the most promising activity against three human hepatoma cell lines and dose-dependently inhibited cell migration and invasion, induced G2/M cell cycle arrest and cell apoptosis in HepG2 cells, down-regulated the expression of BCL-2 and PARP-1, and activated PARP-1 to up-regulate the expression of cleaved-PARP-1.
Collapse
Affiliation(s)
- Lihua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xintian Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Changan Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Xiaoyan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Tianze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Shuang Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. Tel.: +86 871 65223265; fax: +86 871 65227197.
| |
Collapse
|
16
|
Zheng Y, Ke CQ, Zhou S, Feng L, Tang C, Ye Y. Cytotoxic guaianolides and seco-guaianolides from Artemisia atrovirens. Fitoterapia 2021; 151:104900. [PMID: 33781859 DOI: 10.1016/j.fitote.2021.104900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
A phytochemical investigation of a medicinal plant Artemisia atrovirens was carried out, resulting in the characterization of a novel bis-nor seco-guaianolide, seco-atrovirenolide A (1), a new 1,10-seco-guaianolide derivative, seco-atrovirenoic acid A (2), and a new artifact 10-methanoyloxy-seco-atrovirenoic acid A (3), together with eight known guaianolide and seco-guaianolide derivatives (4-11). The structures of new compounds were fully established by extensive analysis of MS, 1D and 2D NMR spectroscopic data. The absolute configurations of the isolated compounds were confirmed by TDDFT ECD calculation, Mosher's method, and X-ray crystal diffraction experiment. All the compounds were tested in vitro for their cytotoxicity against HL-60 and A549 cell lines. Some of them showed moderate inhibitory activity against HL-60 cell lines with IC50 values ranging from 5.99 to 11.74 μM.
Collapse
Affiliation(s)
- Yongzhe Zheng
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuaizhen Zhou
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Feng
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|