1
|
Mahmoud MA, Mohammed AF, Salem OIA, Almutairi TM, Bräse S, Youssif BGM. Design, synthesis, and apoptotic antiproliferative action of new 1,2,3-triazole/1,2,4-oxadiazole hybrids as dual EGFR/VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2305856. [PMID: 38326989 PMCID: PMC10854447 DOI: 10.1080/14756366.2024.2305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 02/09/2024] Open
Abstract
A novel series of 1,2,3-triazole/1,2,4-oxadiazole hybrids (7a-o) was developed as dual inhibitors of EGFR/VEGFR-2. Compounds 7a-o were evaluated as antiproliferative agents with Erlotinib as the reference drug. Results demonstrated that most of the tested compounds showed significant antiproliferative action with GI50 values ranging from 28 to 104 nM, compared to Erlotinib (GI50 = 33 nM), and compounds 7i-m were the most potent. Compounds 7h, 7i, 7j, 7k, and 7l were evaluated as dual EGFR/VEGFR-2 inhibitors. These in vitro experiments demonstrated that compounds 7j, 7k, and 7l are potent antiproliferative agents that may operate as dual EGFR/VEGFR-2 inhibitors. Compounds 7j, 7k, and 7l were evaluated for their apoptotic potential activity, where findings indicated that compounds 7j, 7k, and 7l promote apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking simulations show the binding mode of the most active antiproliferative compounds within EGFR and VEGFR-2 active sites.
Collapse
Affiliation(s)
- Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I. A. Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Al-Wahaibi L, Elshamsy AM, Ali TFS, Youssif BGM, Bräse S, Abdel-Aziz M, El-Koussi NA. Design and Synthesis of New Dihydropyrimidine Derivatives with a Cytotoxic Effect as Dual EGFR/VEGFR-2 Inhibitors. ACS OMEGA 2024; 9:34358-34369. [PMID: 39157105 PMCID: PMC11325413 DOI: 10.1021/acsomega.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 08/20/2024]
Abstract
We developed and synthesized tetrahydropyrimidine derivatives as possible cytotoxic agents to inhibit EGFR and VEGFR-2 in the present study. Our study completely assesses the cytotoxic efficiency of pyrimidine-based derivatives 4-15 against various cancer cell lines, revealing derivatives 12 and 15 for their remarkable activity with GI50 values of 37 and 35 nM, respectively, when compared to the reference erlotinib (33 nM). In vitro enzyme assays showed that target compounds, particularly 12, 14, and 15, effectively inhibited EGFR and VEGFR-2. In vitro enzyme testing revealed that compound 15 was the most promising, with IC50 values of 84 and 3.50 nM for EGFR and VEGFR-2, respectively. Additionally, an in vitro assessment of the novel targets' apoptotic potential revealed that both pro-apoptotic and antiapoptotic behaviors were promising, indicating that the apoptotic induction pathway is a strongly proposed action method for the newly developed targets. Finally, molecular docking experiments are elaborately discussed to corroborate the exact binding interactions of the most active hybrids 12 and 15 with the EGFR and VEGFR-2 active sites.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali M. Elshamsy
- Pharmceutical
Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61517, Egypt
| | - Taha F. S. Ali
- Medicinal
Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Bahaa G. M. Youssif
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute
of Biological and Chemical Systems, IBCS-FMS,
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Medicinal
Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nawal A. El-Koussi
- Pharmceutical
Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61517, Egypt
- Department
of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
3
|
Xie X, Sun T, Pan H, Ji D, Xu Z, Gao G, Miao J, Wang L, Zhang Y, Liu J, Ling Y, Su X. Development of Novel β-Carboline/Furylmalononitrile Hybrids as Type I/II Photosensitizers with Chemo-Photodynamic Therapy and Minimal Toxicity. Mol Pharm 2024; 21:3553-3565. [PMID: 38816926 DOI: 10.1021/acs.molpharmaceut.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of β-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Heyu Pan
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ge Gao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Jiefei Miao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lei Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ji Liu
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yong Ling
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xing Su
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Hassan AA, Aly AA, Ramadan M, Mohamed NK, Youssif BGM, Gomaa HAM, Bräse S, Nieger M, El-Aal ASA. Synthesis of bis-thiohydantoin derivatives as an antiproliferative agents targeting EGFR inhibitory pathway. Mol Divers 2024; 28:1249-1260. [PMID: 37306891 DOI: 10.1007/s11030-023-10653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023]
Abstract
(R)/(S)-the two enantiomers of 3-substituted-1-[2-(5)-3-substituted-4-benzyl-5-oxo-4-phenyl-2-thioxoimid-azolidin-1-yl]ethyl/propyl-5-benzyl-5-phenyl-2-thioxoimidazolidin-4-ones were formed during the diastereoselective reaction between N,N″-1,ω-alkanediylbis[N'-organylthiourea] derivatives and 2,3-diphenylcyclopropenone in refluxing ethanol. The structures of the isolated compounds were confirmed by NMR, IR, mass spectra and elemental analyses. Moreover, single-crystal X-ray structure analysis was also used to elucidate the structure of the isolated compounds. The mechanism describes the reaction was also discussed. The tested compounds showed EGFR inhibitory activity with IC50 values ranging from 90 to 178 nM in comparison to the erlotinib as a reference with IC50 value of 70 nM. Compound 4c (R = allyl, n = 3) was found as the most potent antiproliferative, had the highest inhibitory effect on EGFR with an IC50 value of 90 nM, compared to erlotinib's IC50 value of 70 nM. The second and third-most active compounds were 4e (R = phenyl, n = 3) and 4d (R = ethyl, n = 3) and with IC50 values of 107 nM and 128 nM. These findings imply that the compounds tested had a significant antiproliferative effect as well as the ability to act as an EGFR inhibitor. Docking studies showed that compound 4c showed high affinity to EGFR based on its docking score (S; kcal/mol) within five test compounds.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruher Institut Fur Technologie, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344, Eggenstein Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio I, P.O. Box 55, 00014, Helsinki, Finland
| | - Amal S Abd El-Aal
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| |
Collapse
|
5
|
Ezelarab HAA, Abd El-Hafeez AA, Ali TFS, Sayed AM, Hassan HA, Beshr EAM, Abbas SH. New 2-oxoindole derivatives as multiple PDGFRα/ß and VEGFR-2 tyrosine kinase inhibitors. Bioorg Chem 2024; 145:107234. [PMID: 38412650 DOI: 10.1016/j.bioorg.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRβ, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRβ active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
6
|
Frejat FOA, Zhao B, Furaijit N, Wang L, Abou-Zied HA, Fathy HM, Mohamed FAM, Youssif BGM, Wu C. New pyrrolidine-carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem Biol Drug Des 2024; 103:e14422. [PMID: 38230772 DOI: 10.1111/cbdd.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 μM compared to IC50 of 1.10 μM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.
Collapse
Affiliation(s)
- Frias Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
| | - Bingbing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | | | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hazem M Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
- Henan Qunbo Pharmaceutical Research Institute Co. LTD., Zhengzhou, PR China
| |
Collapse
|
7
|
Mishra S, Sahu A, Kaur A, Kaur M, Kumar J, Wal P. Recent Development in the Search for Epidermal Growth Factor Receptor (EGFR) Inhibitors based on the Indole Pharmacophore. Curr Top Med Chem 2024; 24:581-613. [PMID: 37909440 DOI: 10.2174/0115680266264206231020111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023]
Abstract
The signal transduction and cell proliferation are regulated by the epidermal growth factor receptor. The proliferation of tumor cells, apoptosis, invasion, and angiogenesis is inhibited by the epidermal growth factor receptor. Thus, breast cancer, non-small cell lung cancer, cervical cancer, glioma, and bladder cancer can be treated by targeting the epidermal growth factor receptor. Although third-generation epidermal growth factor receptor inhibitors are potent drugs, patients exhibit drug resistance after treatment. Thus, the search for new drugs is being continued. Among the different potent epidermal growth factor receptor inhibitors, we have reviewed the indole-based inhibitors. We have discussed the structure-activity relationship of the compounds with the active sites of the epidermal growth factor receptor receptors, their synthesis, and molecular docking studies.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar, 473003, Madhya Pradesh, India
- Amity Institute of Pharmacy, Amity University Rajasthan, NH11C Kant Kanwar Jaipur, 300202, India
| | - Avneet Kaur
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | | | - Jayendra Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, UP, 201204, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, UP, India
| |
Collapse
|
8
|
Al-Wahaibi LH, Mahmoud MA, Mostafa YA, Raslan AE, Youssif BGM. Novel piperine-carboximidamide hybrids: design, synthesis, and antiproliferative activity via a multi-targeted inhibitory pathway. J Enzyme Inhib Med Chem 2023; 38:376-386. [DOI: 10.1080/14756366.2022.2151593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ali E. Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Salama EE, Youssef MF, Aboelmagd A, Boraei ATA, Nafie MS, Haukka M, Barakat A, Sarhan AAM. Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation. Pharmaceuticals (Basel) 2023; 16:1724. [PMID: 38139850 PMCID: PMC10748079 DOI: 10.3390/ph16121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.
Collapse
Affiliation(s)
- Eid E. Salama
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed F. Youssef
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed Aboelmagd
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed T. A. Boraei
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A. M. Sarhan
- Chemistry Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt; or
| |
Collapse
|
10
|
Zhang G, Tang Z, Fan S, Li C, Li Y, Liu W, Long X, Zhang W, Zhang Y, Li Z, Wang Z, Chen D, Ouyang G. Synthesis and biological assessment of indole derivatives containing penta-heterocycles scaffold as novel anticancer agents towards A549 and K562 cells. J Enzyme Inhib Med Chem 2023; 38:2163393. [PMID: 36629428 PMCID: PMC9848270 DOI: 10.1080/14756366.2022.2163393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Herein, a new series of 2-chloro-N-(5-(2-oxoindolin-3-yl)-4H-pyrazol-3-yl) acetamide derivatives containing 1,3,4-thiadiazole (10a-i) and 4H-1,2,4-triazol-4-amine (11a-r) moiety was designed, synthesised as novel anticancer agents. The antiproliferative activity values indicated that compound 10 b stood as the most potent derivative with IC50 values of 12.0 nM and 10 nM against A549 and K562 cells, respectively. Mechanism investigation and docking studies of 10 b indicated that it possessed good apoptosis characteristic and dose-dependent growth arrest of A549 and K562 cells, blocked cell cycle into G2/M phase. Interestingly, 10 b suppressed the growth of A549 and K562 cells via modulation of EGFR and p53-MDM2 mediated pathway.
Collapse
Affiliation(s)
- Guanglong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhenhua Tang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Sili Fan
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Weiqin Liu
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Xuesha Long
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Wenjing Zhang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Yi Zhang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhurui Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China,College of Pharmacy, Guizhou University, Guiyang, China,Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China,CONTACT Zhenchao Wang
| | - Danping Chen
- College of Pharmacy, Guizhou University, Guiyang, China,Danping Chen
| | - Guiping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China,College of Pharmacy, Guizhou University, Guiyang, China,Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China,Guiping Ouyang
| |
Collapse
|
11
|
Hagar FF, Abbas SH, Gomaa HAM, Youssif BGM, Sayed AM, Abdelhamid D, Abdel-Aziz M. Chalcone/1,3,4-Oxadiazole/Benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR & BRAFV 600E. BMC Chem 2023; 17:116. [PMID: 37716963 PMCID: PMC10504751 DOI: 10.1186/s13065-023-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 09/18/2023] Open
Abstract
INTRODUCTION One of the most robust global challenges and difficulties in the 21st century is cancer. Treating cancer is a goal which continues to motivate researchers to innovate in design and development of new treatments to help battle the disease. OBJECTIVES Our objective was developing new antiapoptotic hybrids based on biologically active heterocyclic motifs "benzimidazole?oxadiazole-chalcone hybrids'' that had shown promising ability to inhibit EGFR and induce apoptosis. We expected these scaffolds to display anticancer activity via inhibition of BRAF, EGFR, and Bcl-2 and induction of apoptosis through activation of caspases. METHODS The new hybrids 7a-x were evaluated for their anti-proliferative, EGFR & BRAFV600E inhibitory, and apoptosis induction activities were detected. Docking study & dynamic stimulation into EGFR and BRAFV600E were studied. RESULTS All hybrids exhibited remarkable cell growth inhibition on the four tested cell lines with IC50 ranging from 0.95 μM to 12.50 μM. which was comparable to Doxorubicin. Compounds 7k-m had the most potent EGFR inhibitory activity. While, compounds 7e, 7g, 7k and 7l showed good inhibitory activities against BRAFV600E. Furthermore, Compounds 7k, 7l, and 7m increased Caspases 3,8 & 9, Cytochrome C and Bax levels and decreased Bcl-2 protein levels. Compounds 7k-m received the best binding scores and showed binding modes that were almost identical to each other and comparable with that of the co-crystalized Erlotinib in EGFR and BRAF active sites. CONCLUSION Compounds 7k-m could be used as potential apoptotic anti-proliferative agents upon further optimization.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
12
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
13
|
Kurban B, Sağlık BN, Osmaniye D, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and Anticancer Activities of Pyrazole-Thiadiazole-Based EGFR Inhibitors. ACS OMEGA 2023; 8:31500-31509. [PMID: 37663500 PMCID: PMC10468883 DOI: 10.1021/acsomega.3c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Lung cancer is one of the most common cancer types of cancer with the highest mortality rates. However, while epidermal growth factor receptor (EGFR) is an important parameter for lung cancer, EGFR inhibitors also show great promise in the treatment of the disease. Therefore, a series of new EGFR inhibitor candidates containing thiadiazole and pyrazole rings have been developed. The activities of the synthesized compounds were elucidated by in vitro MTT, (which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cytotoxicity assay, analysis of mitochondrial membrane potential (MMP) by flow cytometry, and EGFR inhibition experiments. Molecular docking and molecular dynamics simulations were performed as in silico studies. Compounds 6d, 6g, and 6j showed inhibitor activity against the A549 cell line with IC50 = 5.176 ± 0.164; 1.537 ± 0.097; and 8.493 ± 0.667 μM values, respectively. As a result of MMP by flow cytometry, compound 6g showed 80.93% mitochondrial membrane potential. According to the results of the obtained EGFR inhibitory assay, compound 6g shows inhibitory activity on the EGFR enzyme with a value of IC50 = 0.024 ± 0.002 μM.
Collapse
Affiliation(s)
- Berkant Kurban
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
14
|
Ding J, Sun T, Wu H, Zheng H, Wang S, Wang D, Shan W, Ling Y, Zhang Y. Novel Canthin-6-one Derivatives: Design, Synthesis, and Their Antiproliferative Activities via Inducing Apoptosis, Deoxyribonucleic Acid Damage, and Ferroptosis. ACS OMEGA 2023; 8:31215-31224. [PMID: 37663479 PMCID: PMC10468838 DOI: 10.1021/acsomega.3c03358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
A series of novel canthin-6-one (CO) derivatives (8a-l) were designed and synthesized by introducing different amide side chains at the C-2 position, and their water solubility, antiproliferative activity, and preliminary mechanism were investigated. Most compounds displayed high cytotoxicity exhibiting low-micromolar IC50 values against four human cancer cell lines, especially HT29 cells. Meanwhile, the water solubility of active CO derivatives was significantly improved. Among these compounds, compound 8h with the N-methyl piperazine group exhibiting the highest antiproliferative capability with an IC50 value of 1.0 μM against HT29 cells, which was 8.6-fold lower than that of CO. Furthermore, 8h could upregulate the levels of reactive oxygen species, leading to mitochondrial damage. In addition, 8h could promote cell apoptosis and DNA damage by regulating the expression of apoptosis-associated proteins (Bcl-2 and cleaved-caspase 3) and the DNA damage-associated protein (H2AX). Most importantly, 8h also exerted ferroptosis by reducing the GSH level and GPX4 expression as well as increasing the lipid peroxidation level. Thus, the novel CO derivative 8h with N-methylpiperazine represents a promising anticancer candidate and warrants a more intensive study.
Collapse
Affiliation(s)
- Jinfeng Ding
- Department
of Pharmacy, Jiangsu Vocational College
of Medicine, Yancheng 224005, China
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongmei Wu
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongwei Zheng
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Sijia Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Dezhi Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wenpei Shan
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yong Ling
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
15
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides as Potential Multi-Target Antiproliferative Agents. Pharmaceuticals (Basel) 2023; 16:1039. [PMID: 37513950 PMCID: PMC10385579 DOI: 10.3390/ph16071039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
A small set of indole-based derivatives, IV and Va-I, was designed and synthesized. Compounds Va-i demonstrated promising antiproliferative activity, with GI50 values ranging from 26 nM to 86 nM compared to erlotinib's 33 nM. The most potent antiproliferative derivatives-Va, Ve, Vf, Vg, and Vh-were tested for EGFR inhibitory activity. Compound Va demonstrated the highest inhibitory activity against EGFR with an IC50 value of 71 ± 06 nM, which is higher than the reference erlotinib (IC50 = 80 ± 05 nM). Compounds Va, Ve, Vf, Vg, and Vh were further tested for BRAFV600E inhibitory activity. The tested compounds inhibited BRAFV600E with IC50 values ranging from 77 nM to 107 nM compared to erlotinib's IC50 value of 60 nM. The inhibitory activity of compounds Va, Ve, Vf, Vg, and Vh against VEGFR-2 was also determined. Finally, in silico docking experiments attempted to investigate the binding mode of compounds within the active sites of EGFR, BRAFV600E, and VEGFR-2.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71234, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
16
|
Al-Wahaibi LH, El-Sheref EM, Hassan AA, Bräse S, Nieger M, Youssif BGM, Ibrahim MAA, Tawfeek HN. Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAF V600E Dual Inhibitors Endowed with Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1014. [PMID: 37513926 PMCID: PMC10384562 DOI: 10.3390/ph16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
2,3,4-trisubstituted thiazoles 3a-i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a-i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a-i demonstrated good antiproliferative activity, with GI50 values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50 value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E inhibitory assays' results matched the antiproliferative assay's results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E and EGFR, with values of -8.7 and -8.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - S Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University, El-Minia 61519, Egypt
| |
Collapse
|
17
|
Al-Wahaibi LH, Abou-Zied HA, Beshr EAM, Youssif BGM, Hayallah AM, Abdel-Aziz M. Design, Synthesis, Antiproliferative Actions, and DFT Studies of New Bis-Pyrazoline Derivatives as Dual EGFR/BRAF V600E Inhibitors. Int J Mol Sci 2023; 24:9104. [PMID: 37240450 PMCID: PMC10218941 DOI: 10.3390/ijms24109104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Some new Bis-pyrazoline hybrids 8-17 with dual EGFR and BRAFV600E inhibitors have been developed. The target compounds were synthesized and tested in vitro against four cancer cell lines. Compounds 12, 15, and 17 demonstrated strong antiproliferative activity with GI50 values of 1.05 µM, 1.50 µM, and 1.20 µM, respectively. Hybrids showed dual inhibition of EGFR and BRAFV600E. Compounds 12, 15, and 17 inhibited EGFR-like erlotinib and exhibited promising anticancer activity. Compound 12 is the most potent inhibitor of cancer cell proliferation and BRAFV600E. Compounds 12 and 17 induced apoptosis by increasing caspase 3, 8, and Bax levels, and resulted in the downregulation of the antiapoptotic Bcl2. The molecular docking studies verified that compounds 12, 15, and 17 have the potential to be dual EGFR/BRAFV600E inhibitors. Additionally, in silico ADMET prediction revealed that most synthesized bis-pyrazoline hybrids have low toxicity and adverse effects. DFT studies for the two most active compounds, 12 and 15, were also carried out. The values of the HOMO and LUMO energies, as well as softness and hardness, were computationally investigated using the DFT method. These findings agreed well with those of the in vitro research and molecular docking study.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| |
Collapse
|
18
|
El-Kalyoubi SA, Gomaa HAM, Abdelhafez EMN, Ramadan M, Agili F, Youssif BGM. Design, Synthesis, and Anti-Proliferative Action of Purine/Pteridine-Based Derivatives as Dual Inhibitors of EGFR and BRAF V600E. Pharmaceuticals (Basel) 2023; 16:716. [PMID: 37242499 PMCID: PMC10223936 DOI: 10.3390/ph16050716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The investigation of novel EGFR and BRAFV600E dual inhibitors is intended to serve as targeted cancer treatment. Two sets of purine/pteridine-based derivatives were designed and synthesized as EGFR/BRAFV600E dual inhibitors. The majority of the compounds exhibited promising antiproliferative activity on the cancer cell lines tested. Compounds 5a, 5e, and 7e of purine-based and pteridine-based scaffolds were identified as the most potent hits in anti-proliferative screening, with GI50 values of 38 nM, 46 nM, and 44 nM, respectively. Compounds 5a, 5e, and 7e demonstrated promising EGFR inhibitory activity, with IC50 values of 87 nM, 98 nM, and 92 nM, respectively, when compared to erlotinib's IC50 value of 80 nM. According to the results of the BRAFV600E inhibitory assay, BRAFV600E may not be a viable target for this class of organic compounds. Finally, molecular docking studies were carried out at the EGFR and BRAFV600E active sites to suggest possible binding modes.
Collapse
Affiliation(s)
- Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | | | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 11651, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Jazan, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
19
|
Mohamed FAM, Alakilli SYM, El Azab EF, Baawad FAM, Shaaban EIA, Alrub HA, Hendawy O, Gomaa HAM, Bakr AG, Abdelrahman MH, Trembleau L, Mohammed AF, Youssif BGM. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action. RSC Med Chem 2023; 14:734-744. [PMID: 37122549 PMCID: PMC10131667 DOI: 10.1039/d3md00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
A new series of 5-substituted-3-ethylindole-2-carboxamides 5a-k and 6a-c was designed and synthesised in an attempt to develop a dual targeted antiproliferative agent. Various spectroscopic methods of analysis were used to confirm the structures of the new compounds. The antiproliferative effect of compounds 5a-k and 6a-c against four cancer cell lines was investigated. Compounds 5a-k and 6a-c had significant antiproliferative activity against the four cancer cell lines tested, with mean GI50 values ranging from 37 nM to 193 nM. The most powerful derivatives were compounds 5g, 5i, and 5j, with GI50 values of 55 nM, 49 nM, and 37 nM, respectively, in comparison to the reference erlotinib, which had a GI50 of 33 nM. The four most potent compounds, 5c, 5g, 5i, and 5j, were then investigated for their efficacy as EGFR inhibitors, and the findings showed that the tested compounds inhibited EGFR with IC50 values ranging from 85 nM to 124 nM when compared to the reference erlotinib (IC50 = 80 nM). Moreover, compounds 5c and 5g inhibited CDK2 with IC50 values of 46 ± 05 nM and 33 ± 04 nM, respectively. The EGFR and CDK2 assays revealed that compounds 5i and 5j displayed potent antiproliferative activity and can be considered as potential dual EGFR and CDK2 inhibitors.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Saleha Y M Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
- Biochemistry Department, Faculty of Science, Alexandria University Alexandria 21511 Egypt
| | - Faris A M Baawad
- M.B.B.S, Faculty of Medicine, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Esraa Ibrahim A Shaaban
- Department of Biochemistry, Graduate; School of Medical Sciences, Nagoya City University Mizuho-cho, Mizuho-ku Nagoya 467-8601 Japan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Omnia Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University Beni-Suef Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen Meston Building Aberdeen AB243UE UK
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| |
Collapse
|
20
|
Al-Wahaibi LH, El-Sheref EM, Hammouda MM, Youssif BGM. One-Pot Synthesis of 1-Thia-4-azaspiro[4.4/5]alkan-3-ones via Schiff Base: Design, Synthesis, and Apoptotic Antiproliferative Properties of Dual EGFR/BRAF V600E Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16030467. [PMID: 36986566 PMCID: PMC10056593 DOI: 10.3390/ph16030467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In this investigation, novel 4-((quinolin-4-yl)amino)-thia-azaspiro[4.4/5]alkan-3-ones were synthesized via interactions between 4-(2-cyclodenehydrazinyl)quinolin-2(1H)-one and thioglycolic acid catalyzed by thioglycolic acid. We prepared a new family of spiro-thiazolidinone derivatives in a one-step reaction with excellent yields (67-79%). The various NMR, mass spectra, and elemental analyses verified the structures of all the newly obtained compounds. The antiproliferative effects of 6a-e, 7a, and 7b against four cancer cells were investigated. The most effective antiproliferative compounds were 6b, 6e, and 7b. Compounds 6b and 7b inhibited EGFR with IC50 values of 84 and 78 nM, respectively. Additionally, 6b and 7b were the most effective inhibitors of BRAFV600E (IC50 = 108 and 96 nM, respectively) and cancer cell proliferation (GI50 = 35 and 32 nM against four cancer cell lines, respectively). Finally, the apoptosis assay results revealed that compounds 6b and 7b had dual EGFR/BRAFV600E inhibitory properties and showed promising antiproliferative and apoptotic activity.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
21
|
Meena N, Bhawani, Sonam, Rangan K, Kumar A. Ball-Milling-Enabled Zn(OTf) 2-Catalyzed Friedel-Crafts Hydroxyalkylation of Imidazo[1,2- a]pyridines and Indoles. J Org Chem 2023. [PMID: 36787621 DOI: 10.1021/acs.joc.2c02719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A facile and efficient synthetic method for the construction of C3-hydroxyalkylated imidazo[1,2-a]pyridines and indoles by a Zn(OTf)2-catalyzed Friedel-Crafts hydroxyalkylation of imidazo[1,2-a]pyridines and indoles with carbonyl compounds under mechanochemical conditions is reported. Good product selectivity, shorter reaction time, ambient reaction temperature, tolerance of a wide range of functional groups, broad substrate scope, moderate to good yield of products, and scalability are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
22
|
Maghraby MTE, Salem OIA, Youssif BGM, Sheha MM. Design, synthesis, and modelling study of new 1,2,3-triazole/chalcone hybrids with antiproliferative action as epidermal growth factor receptor inhibitors. Chem Biol Drug Des 2023; 101:749-759. [PMID: 36366966 DOI: 10.1111/cbdd.14178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
A novel series of 1,2,3-triazole/chalcone hybrids 6a-n was designed and synthesized using a molecular hybridization approach to develop a new cytotoxic agent capable of targeting epidermal growth factor receptor (EGFR) and/or BRAF. The antiproliferative effect of the novel hybrids was investigated against four cancer cells using doxorubicin as a reference. Hybrids 6a, 6d, 6f-h, and 6n have the highest antiproliferative activity (IC50 values 0.95-1.80 μM) compared to doxorubicin (IC50 1.14 μM). The most potent antiproliferative derivative, compound 6d, was also the most potent EGFR inhibitor with an IC50 of 0.09 ± 0.05 μM, which is comparable to the reference Erlotinib (IC50 = 0.05 ± 0.03 μM). 6d has modest BRAF inhibitory action with an IC50 of 0.90 ± 0.10 μM. The findings were also related to molecular docking studies, which provided models of strong interactions with the EGFR-TK domain for the inhibitors. In cell cycle analysis, hybrid 6d caused a cell cycle arrest at the G1 transition phase.
Collapse
Affiliation(s)
- Mohamed T-E Maghraby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Valley University, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Sheha
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
23
|
Hagar FF, Abbas SH, Abdelhamid D, Gomaa HAM, Youssif BGM, Abdel-Aziz M. New 1,3,4-oxadiazole-chalcone/benzimidazole hybrids as potent antiproliferative agents. Arch Pharm (Weinheim) 2023; 356:e2200357. [PMID: 36351754 DOI: 10.1002/ardp.202200357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A series of new 1,3,4-oxadiazole-chalcone/benzimidazole hybrids 9a-o and 10a-k were designed and synthesized as potential antiproliferative agents. Hybrids 9a-o exhibited remarkable antiproliferative activities on different NCI-60 cell lines in a single-dose assay. The antiproliferative activities of the newly synthesized compounds were evaluated against a panel of four human cancer cell lines (A-549, MCF-7, Panc-1, and HT-29). Compounds 9g-i and their oxygen isosteres, 10f-h, exhibited promising antiproliferative activities with IC50 values ranging from 0.80 to 2.27 µM compared to doxorubicin (IC50 ranging from 0.90 to 1.41 µM). Furthermore, the inhibitory potency of these compounds against the epidermal growth factor receptor (EGFR) and BRAFV600E kinases was evaluated using erlotinib as a reference drug. Molecular modeling studies were done to investigate the binding mode of the most active hybrids in the ATP binding site of EGFR.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
24
|
Halim PA, Sharkawi SMZ, Labib MB. Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition. Bioorg Chem 2023; 131:106273. [PMID: 36444790 DOI: 10.1016/j.bioorg.2022.106273] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Novel differently substituted pyrazole derivatives were designed, synthesized and evaluated for their anticancer activity. All compounds selectively inhibited COX-2 enzyme (IC50 = 0.043-0.56 μM). Compounds 11, 12 and 15 showed superior potency (IC50 = 0.043-0.049 μM) and screened for their antiproliferative effect against MCF-7 and HT-29 cancer cell lines using doxorubicin and 5-FU as reference drugs. Compounds 11, 12 and 15 showed good potency against MCF-7 (IC50 = 2.85-23.99 μM) and HT-29 (IC50 = 2.12-69.37 μM) cell lines. Also, compounds 11, 12 and 15 displayed (IC50 = 56.61-115.75 μM) against non-cancerous WI-38 cells compared to doxorubicin (IC50 = 13.32 μM). Compound 11 showed superior cytotoxicity against both MCF-7 (IC50 = 2.85) and HT-29 (IC50 = 2.12 μM) and was more potent than 5-FU (HT-29: IC50 = 8.77 μM). Besides, it displayed IC50 of 115.75 μM against normal WI-38 cells regarding it as a safe cytotoxic agent. In addition, compound 11 displayed IC50 values of 63.44 μM and 98.60 μM against resistant HT-29 and resistant MCF-7 cancer cell lines sequentially. The most potent compound arrested cell cycle at G1/S phase in HT-29 treated cells displaying accumulation of cells in G0 phase and increase in percentage of cells in both early and late apoptotic stages. Apoptotic induction ability was confirmed via up-regulation of BAX, down-regulation of Bcl-2 and activation of caspase-3/9 protein levels. Compound 11 inhibited both EGFR (IC50 = 0.083 μM) and Topo-1 (IC50 = 0.020 μM) enzymes. Also, compound 11 decreased both total and phosphorylated EGFR concentration in HT-29 cells. Finally, molecular docking study showed good binding interactions between novel compounds and target receptors.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Souty M Z Sharkawi
- Department of Pharmacology & Toxicolgy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
25
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
26
|
Mahesh P, Akshinthala P, Ankireddy AR, Katari NK, Gupta LK, Srivastava D, Jonnalagadda SB, Gundla R. Convenient synthesis, characterization and biological evaluation of novel 1-phenylcyclopropane carboxamide derivatives. Heliyon 2023; 9:e13111. [PMID: 36747540 PMCID: PMC9898299 DOI: 10.1016/j.heliyon.2023.e13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Small, strained ring molecules of phenylcyclopropane carboxamide have rigid, defined conformations and unique electronic properties. For these reasons many groups, seek to use these subunits to form biologically active compounds. Herein we report a generally applicable approach for preparing a small cyclopropane ring containing 1-phenylcyclopropane carboxamide derivatives to a wide range of the different aromatic compounds by α-alkylation of 2-phenyl acetonitrile derivatives with 1, 2-dibromo ethane in good yields followed by the conversion of cyano group to acid group by the reaction with concentrated hydrochloric acid. This obtained acid derivative undergoes acid amine coupling with various Methyl 2-(aminophenoxy)acetate to form 1-Phenylcyclopropane Carboxamide. These compounds possess distinct effective inhibition on the proliferation of U937, pro-monocytic, human myeloid leukaemia cell line while these compounds did not show cytotoxic activity on these cells. The structure-activity relationships of these compounds are discussed.
Collapse
Affiliation(s)
- Panasa Mahesh
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Parameswari Akshinthala
- Department of Science and Humanities, MLR Institute of Technology, Dundigal, Medchal, Hyderabad, 500 043, India
| | - Ashok Reddy Ankireddy
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India,School of Chemistry & Physics, College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Westville Campus, P Bag X 54001, Durban, 4000, South Africa,Corresponding author. Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Lavleen Kumar Gupta
- Drug Discovery Division, IgYImmunologix India Pvt Ltd, Hyderabad, Telangana, 500089 India
| | - Deepali Srivastava
- Drug Discovery Division, IgYImmunologix India Pvt Ltd, Hyderabad, Telangana, 500089 India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Westville Campus, P Bag X 54001, Durban, 4000, South Africa,Corresponding author.
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India,Corresponding author.
| |
Collapse
|
27
|
Aly AA, Alshammari MB, Ahmad A, A. M. Gomaa H, G. M. Youssif B, Bräse S, A. A. Ibrahim M, Mohamed AH. Design, synthesis, docking, and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
28
|
Design, synthesis and antimicrobial activity of novel quinoline-2-one hybrids as promising DNA gyrase and topoisomerase IV inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Bhuin S, Sharma P, Chakraborty P, Kulkarni OP, Chakravarty M. Solid-state emitting twisted π-conjugate as AIE-active DSE-gen: in vitro anticancer properties against FaDu and 4T1 with biocompatibility and bioimaging. J Mater Chem B 2022; 11:188-203. [PMID: 36477106 DOI: 10.1039/d2tb02078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dual-state emissive fluorogens (DSE-gens) are currently defining their importance as a transpiring tool in biological and biomedical applications. This work focuses on designing and synthesizing indole-anthracene-based solid-state emitting twisted π-conjugates using a metal-free protocol to achieve AIE-active DSE-gens, expanding their scope in biological applications. Special effort has been made to introduce proficient and photo/thermostable DSE-gens that inhibit cancer but not normal cells. Here, the lead DSE-gen initially detects cancer and normal cells by bioimaging; however, it could also confirm and distinguish cancer cells from normal cells by its abated fluorescence signal after killing cancer cells. In contrast, the fluorescence signals for a normal cell remain unscathed. Surprisingly, these molecules displayed decent anticancer properties against FaDu and 4T1 but not MCF-7 cell lines. From a series of newly designed indole-based molecules, we report one single 2,3,4-trimethoxybenzene-linked DSE-gen (the lead), exhibiting high ROS generation, less haemolysis, and less cytotoxicity than doxorubicin (DOX) for normal cells, crucial parameters for a biocompatible in vitro anticancer probe. Thus, we present a potentially applicable anticancer drug, offering a bioactive material with bioimaging efficacy and a way to detect dead cancer cells selectively. The primary mechanism behind the identified outcomes is deciphered with the support of experimental (steady-state and time-resolved fluorescence, biological assays, cellular uptake) and molecular docking studies.
Collapse
Affiliation(s)
- Shouvik Bhuin
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India.
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Purbali Chakraborty
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
30
|
Alshammari MB, Aly AA, Youssif BGM, Bräse S, Ahmad A, Brown AB, Ibrahim MAA, Mohamed AH. Design and synthesis of new thiazolidinone/uracil derivatives as antiproliferative agents targeting EGFR and/or BRAF V600E. Front Chem 2022; 10:1076383. [PMID: 36578355 PMCID: PMC9792171 DOI: 10.3389/fchem.2022.1076383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Thiourea derivatives of uracil were efficiently synthesized via the reaction of 5-aminouracil with isothiocyanates. Then, we prepared uracil-containing thiazoles via condensation of thioureas with diethyl/dimethyl acetylenedicarboxylates. The structures of the products were confirmed by a combination of spectral techniques including infra-red (IR), nuclear magnetic resonance (NMR), mass spectrometry (MS) and elemental analyses. A rationale for the formation of the products is presented. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against four cancer cell lines. The compounds tested showed promising antiproliferative activity, with GI50 values ranging from 1.10 µM to 10.00 µM. Compounds 3c, 5b, 5c, 5h, 5i, and 5j were the most potent derivatives, with GI50 values ranging from 1.10 µM to 1.80 µM. Compound 5b showed potent inhibitory activity against EGFR and BRAFV600E with IC50 of 91 ± 07 and 93 ± 08 nM, respectively, indicating that this compound could serve as a dual inhibitor of EGFR and BRAFV600E with promising antiproliferative properties. Docking computations revealed the great potency of compounds 5b and 5j towards EGFR and BRAFV600E with docking scores of -8.3 and -9.7 kcal/mol and -8.2 and -9.3 kcal/mol, respectively.
Collapse
Affiliation(s)
- Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Asyut, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruher Institut fur Technologie, Karlsruhe, Germany,Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Karlsruhe, Germany,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, United States
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
31
|
El-Sheref EM, Ameen MA, El-Shaieb KM, Abdel-Latif FF, Abdel-naser AI, Brown AB, Bräse S, Fathy HM, Ahmad I, Patel H, Gomaa HAM, Youssif BGM, Mohamed AH. Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action. Molecules 2022; 27:molecules27248765. [PMID: 36557897 PMCID: PMC9788418 DOI: 10.3390/molecules27248765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Our investigation includes the synthesis of new naphthalene-bis-triazole-bis-quinolin-2(1H)-ones 4a−e and 7a−e via Cu-catalyzed [3 + 2] cycloadditions of 4-azidoquinolin-2(1H)-ones 3a−e with 1,5-/or 1,8-bis(prop-2-yn-1-yloxy)naphthalene (2) or (6). All structures of the obtained products have been confirmed with different spectroscopic analyses. Additionally, a mild and versatile method based on copper-catalyzed [3 + 2] cycloaddition (Meldal−Sharpless reaction) was developed to tether quinolinones to O-atoms of 1,5- or 1,8-dinaphthols. The triazolo linkers could be considered as anti and syn products, which are interesting precursors for functionalized epidermal growth factor receptor (EGFR) inhibitors with potential apoptotic antiproliferative action. The antiproliferative activities of the 4a−e and 7a−e were evaluated. Compounds 4a−e and 7a−e demonstrated strong antiproliferative activity against the four tested cancer cell lines, with mean GI50 ranging from 34 nM to 134 nM compared to the reference erlotinib, which had a GI50 of 33 nM. The most potent derivatives as antiproliferative agents, compounds 4a, 4b, and 7d, were investigated for their efficacy as EGFR inhibitors, with IC50 values ranging from 64 nM to 97 nM. Compounds 4a, 4b, and 7d demonstrated potent apoptotic effects via their effects on caspases 3, 8, 9, Cytochrome C, Bax, and Bcl2. Finally, docking studies show the relevance of the free amino group of the quinoline moiety for antiproliferative action via hydrogen bond formation with essential amino acids.
Collapse
Affiliation(s)
- Essmat M. El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Mohamed A. Ameen
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Kamal M. El-Shaieb
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Fathy F. Abdel-Latif
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Asmaa I. Abdel-naser
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Hazem M. Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72314, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (E.M.E.-S.); (M.A.A.); (S.B.); (B.G.M.Y.)
| | - Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| |
Collapse
|
32
|
Tawfeek HN, Hassan AA, Bräse S, Nieger M, Mostafa YA, Gomaa HA, Youssif BG, El-Shreef EM. Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Gomaa HAM. A Comprehensive Review of Recent Advances in the Biological Activities of Quinazolines. Chem Biol Drug Des 2022; 100:639-655. [PMID: 35920244 DOI: 10.1111/cbdd.14129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022]
Abstract
Quinazoline heterocycles are critical in the development of medications. Quinazoline derivatives have been intensively researched, providing a wide range of compounds with diverse biological roles. The quinazoline nucleus has garnered a lot of attention in medical chemistry in recent years. It was assumed to be a pharmacophore component in the development of physiologically interesting drugs. This review is an attempt to increase the potential of quinazoline by highlighting a wide range of advancements demonstrated by numerous derivatives of the quinazoline moiety, as well as focusing on diverse pharmacological actions of the quinazoline moiety. This review compiles recent studies on the quinazoline moiety described in the literature by researchers.
Collapse
Affiliation(s)
- Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| |
Collapse
|
34
|
Hendawy OM. A comprehensive review of recent advances in the biological activities of 1,2,4-oxadiazoles. Arch Pharm (Weinheim) 2022; 355:e2200045. [PMID: 35445430 DOI: 10.1002/ardp.202200045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Nitrogen heterocycles play an essential role in medication development. The 1,2,4-oxadiazole heterocycle has been extensively studied, yielding a large variety of molecules with varied biological functions. The 1,2,4-oxadiazole shows bioisosteric equivalency with ester and amide moieties. In recent years, the 1,2,4-oxadiazole nucleus has received a lot of attention in medicinal chemistry. It was thought to be a pharmacophore component in the production of biologically intriguing drugs. This review presents a comprehensive overview of the recent achievements in the biological activities of 1,2,4-oxadiazoles as potential antimicrobial, anticancer, anti-inflammatory, neuroprotective, and antidiabetic agents. The structure-activity relationship and mechanisms of action are also reviewed.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
35
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Frejat FOA, Cao Y, Wang L, Zhai H, Abdelazeem AH, Gomaa HAM, Youssif BGM, Wu C. New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Arch Pharm (Weinheim) 2022; 355:e2100516. [PMID: 35363388 DOI: 10.1002/ardp.202100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
A series of hybridized pyrrolidine compounds with a 1,2,4-oxadiazole moiety were synthesized to develop effective molecules against the enzymes DNA gyrase and topoisomerase IV (Topo IV). Compounds 8-20 were developed based on a previously disclosed series of compounds from our lab, but with small structural modifications in the hopes of increasing the compounds' biological activity. In comparison to novobiocin, with IC50 = 170 nM, the findings of the DNA gyrase inhibitory assay revealed that compounds 16 and 17 were the most potent of all synthesized derivatives, with IC50 values of 180 and 210 nM, respectively. Compound 17 had the strongest inhibitory effect against Escherichia coli Topo IV of all the synthesized compounds, with an IC50 value of 13 µM, which was comparable to novobiocin (IC50 = 11 µM). Therefore, hybrids 16 and 17 appeared to be potential dual-target inhibitors. In the minimal inhibitory concentration (MIC) assays, compound 17 outperformed ciprofloxacin against E. coli, with an MIC of 55 ng/ml, compared to 60 ng/ml for ciprofloxacin. Finally, the docking study, along with the in vitro experiments, supports our promising approach to effectively develop potent leads for further optimization as dual DNA gyrase and Topo IV inhibitors.
Collapse
Affiliation(s)
- Firas O A Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Hongjin Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Pharmacy Department, College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| |
Collapse
|
37
|
Gomaa HA, Shaker ME, Alzarea SI, Hendawy O, Mohamed FA, Gouda AM, Ali AT, Morcoss MM, Abdelrahman MH, Trembleau L, Youssif BG. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg Chem 2022; 120:105616. [DOI: 10.1016/j.bioorg.2022.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
38
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
39
|
Mekheimer RA, Allam SMR, Al-Sheikh MA, Moustafa MS, Al-Mousawi SM, Mostafa YA, Youssif BGM, Gomaa HAM, Hayallah AM, Abdelaziz M, Sadek KU. Discovery of new pyrimido[5,4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg Chem 2022; 121:105693. [PMID: 35219045 DOI: 10.1016/j.bioorg.2022.105693] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
A novel series of pyrimido[5,4-c]quinoline derivatives variously substituted at positions 2 and 5 have been synthesized, in good to excellent yields, via rapid base-catalyzed cyclization reaction of 2,4-dichloroquinoline-3-carbonitrile (5) with guanidine hydrochlorides 6a-c. All the synthesized compounds were screened for their in vitro antiproliferative activity. The most active hybrids 26a-d, 28a-d, and 30B were assessed against topoisomerase (topo) I, topo IIα, CDK2, and EGFR. The majority of the tested compounds exhibited selective topo I inhibitory activity while had weak topo IIα inhibitory action with compounds 30B and 28d, showed better topo I inhibitory activity than the reference camptothecin. Compound 30B, the most potent derivative as antiproliferative agent, exhibited moderate activity against CDK2 (IC50 = 1.60 µM). The results of this assay show that CDK2 is not a potential target for these compounds, implying that the observed cytotoxicity of these compounds is due to a different mechanism. Compounds 30B, 28d, and 28c were found to be the most potent against EGFR and their EGFR inhibitory activities (IC50 = 0.40 ± 0.2, 0.49 ± 0.2, and 0.64 ± 0.3, respectively) relative to the positive control erlotinib (IC50 = 0.07 ± 0.03 µM). These results revealed that topo I and EGFR are attractive targets for this class of chemical compounds.
Collapse
Affiliation(s)
- Ramadan A Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Samar M R Allam
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mariam A Al-Sheikh
- Department of Chemistry, Jeddah University, Faculty of Sciences-Al Faisaliah, Jeddah 21493, Saudi Arabia
| | - Moustafa S Moustafa
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh M Al-Mousawi
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait.
| | - Yaser A Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Mohamed Abdelaziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Kamal U Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
40
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021; 26:6677. [PMID: 34771085 PMCID: PMC8587155 DOI: 10.3390/molecules26216677] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Ahmed M. Gouda
- Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
42
|
Almalki FA, Shawky AM, Abdalla AN, Gouda AM. Icotinib, Almonertinib, and Olmutinib: A 2D Similarity/Docking-Based Study to Predict the Potential Binding Modes and Interactions into EGFR. Molecules 2021; 26:molecules26216423. [PMID: 34770832 PMCID: PMC8588130 DOI: 10.3390/molecules26216423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
In the current study, a 2D similarity/docking-based study was used to predict the potential binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib, almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition, the results of the docking study of the three drugs into EGFR revealed high binding free energies (ΔGb = −6.32 to −8.42 kcal/mol) compared to the co-crystallized ligands (ΔGb = −7.03 to −8.07 kcal/mol). Analysis of the top-scoring poses of the three drugs was done to identify their potential binding modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and olmutinib were determined. In conclusion, the results could provide insights into the potential binding characteristics of the three drugs into EGFR which could help in the design of new more potent analogs.
Collapse
Affiliation(s)
- Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Central Laboratory for Micro-analysis, Minia University, Minia 61519, Egypt
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Ahmed M. Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: or ; Tel.: +20-1126897483; Fax: +20-822162133
| |
Collapse
|
43
|
Hendawy OM, Gomaa HAM, Alzarea SI, Alshammari MS, Mohamed FAM, Mostafa YA, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Novel 1,5-diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects. Bioorg Chem 2021; 116:105302. [PMID: 34464816 DOI: 10.1016/j.bioorg.2021.105302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.
Collapse
Affiliation(s)
- O M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutariah S Alshammari
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, United Kingdom.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
44
|
In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases. Molecules 2021; 26:molecules26134002. [PMID: 34209011 PMCID: PMC8271847 DOI: 10.3390/molecules26134002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.
Collapse
|