1
|
Yang C, Lai H, Yang X, Huang Y, Shi Y, Ke L, Chen L, Chen M, Chen H, Wang Q. Unveiling an indole derivative YM818 as a novel tyrosinase inhibitor with anti-melanogenic and anti-melanin transfer effects. Int J Biol Macromol 2025; 306:141557. [PMID: 40020832 DOI: 10.1016/j.ijbiomac.2025.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Indole and its derivatives, heterocyclic compounds with broad therapeutic potential, have seen limited study in melanogenesis. Here, our virtual screening identified 15 indole derivatives that potentially interacted with tyrosinase (TYR), a key enzyme in melanogenesis. Nine of the 15 indole derivatives tested significantly decreased tyrosinase activity, and 3-hydroxy-5-bromo-(3-indolyl)-2‑carbonyl indole (designated as YM818) exhibited highest inhibitory rate at 74.28 % with IC50 of 0.372 mmol/L. Surface plasmon resonance and fluorescence quenching assays demonstrated the direct interaction between YM818 and TYR with KD value 94.84 ± 45.27 μmol/L. YM818 treatment reduced cellular melanin content to 35.8 %. Furthermore, YM818 treatment enhanced AKT protein phosphorylation, leading to the downregulation of melanogenesis-related proteins, including MITF, TYR and TRP1. In vivo zebrafish studies confirmed the inhibitory effects of YM818 on melanogenesis. Additionally, YM818 disrupted melanin transfer by suppressing the expression of protease-activated receptor-2 (PAR-2) gene, a G protein-coupled receptor that plays a crucial role in mediating cellular responses to serine proteases, including keratinocyte phagocytosis and melanin transfer. YM818 also exhibited robust antioxidant activity, with 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging IC50 values comparable to vitamin C and significantly reducing intracellular ROS levels in a dose-dependent manner. Taken together, these findings highlight YM818 as a promising anti-melanogenic agent, offering valuable insights into the development of novel anti-melanin drugs and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huixian Lai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lina Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lizhu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China.
| | - Hongbin Chen
- Raybow (Hangzhou) Pharmaceutical co., Ltd, Hangzhou, Zhejiang, China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Ni X, Luo X, Jiang X, Chen W, Bai R. Small-Molecule Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Molecules 2025; 30:788. [PMID: 40005101 PMCID: PMC11858095 DOI: 10.3390/molecules30040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing attention is being focused on skin health currently, especially the excessive deposition of melanin in the skin. Tyrosinase, the rate-limiting enzyme in melanin biosynthesis, is a crucial enzyme in melanin synthesis. However, existing tyrosinase inhibitors pose some degree of toxicity to humans. Therefore, the development of more efficient and low-toxicity tyrosinase inhibitors is urgently needed. This review briefly depicts the melanin biosynthesis process and the crystal structure and catalytic mechanism of tyrosinase. The latest research progress regarding small-molecule tyrosinase inhibitors is also reviewed. Moreover, the structure-function relationships are analyzed and summarized. This is expected to provide new and more scientific insights to enable researchers to explore safer and more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Tyrosinase Inhibition and Antimelanogenic Effects of Resorcinol-Containing Compounds. ChemMedChem 2024; 19:e202400314. [PMID: 39105380 PMCID: PMC11617669 DOI: 10.1002/cmdc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Tyrosinases (TYRs) are copper-containing metalloenzymes present in a large diversity of species. In human, hTYR is responsible for pivotal steps in melanogenesis, catalysing the oxidation of l-tyrosine to l-DOPA and further to dopaquinone. While numerous TYR inhibitors have been reported, polyphenolic compounds tend to dominate the literature. However, many of these compounds, particularly monophenols and catechols, have been identified as alternative substrates rather than true inhibitors, given their structural similarity to natural substrates. Resorcinol-containing compounds have emerged as promising candidates to address this challenge, as the meta-dihydroxy moiety in resorcinol demonstrates resistance to TYR-mediated oxidation, while retaining the favourable interactions with copper ions provided by the hydroxy groups. Although their precise mechanism of action remains debated, resorcinol derivatives have yielded some of the most active compounds against isolated mushroom and human TYRs, as well as clinically used dermocosmetic agents like rucinol and thiamidol, which exhibited very promising effects in patients with facial melasma. This review outlines the development of resorcinol-containing TYR inhibitors, categorized by scaffold type, ranging from simple alkyl analogues to intricate synthetic derivatives. Mechanistic insights about the resorcinol-TYR interaction are also presented and debated.
Collapse
Affiliation(s)
| | - Leticia M. Lazinski
- Univ. Grenoble AlpesCNRSDPM38000GrenobleFrance
- Univ. Grenoble AlpesCNRSDCM38000GrenobleFrance
| | - Marc Maresca
- Aix Marseille Univ.CNRSCentrale MarseilleiSm213013MarseilleFrance
| | | |
Collapse
|
4
|
Azimi M, Najafi Z, Bahmani A, Chehardoli G, Iraji A. Synthesis and biological assessment of novel 4H-chromene-3-carbonitrile derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:187. [PMID: 39342248 PMCID: PMC11439338 DOI: 10.1186/s13065-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Excessive activity of the tyrosinase enzyme during melanogenesis results in hyperpigmentation in the skin. To address this issue, there is a need to develop effective tyrosinase inhibitors as a treatment for hyperpigmentation. In this study, we synthesized some novel 4H-chromene-3-carbonitrile compounds (6a-o) and assessed their inhibitory activities against tyrosinase, comparing them with kojic acid, which is known as a positive control. Compound 6f emerged as the most effective inhibitor, with an IC50 of 35.38 ± 2.12 µM. Kinetic studies of 6f exhibited competitive inhibition, with Ki = 16.15 µM. Molecular docking studies highlighted the importance of π-π stacking and hydrogen bonding interactions within the binding site. Molecular dynamics simulations showed that the R-enantiomer 6f exhibited superior binding stability compared to the S-enantiomer, with a lower standard deviation of RMSD and more persistent interactions with the key active site residues. These findings underscore the potential of the R-enantiomer of compound 6f as a potent tyrosinase inhibitor and provide insights for developing effective treatments for hyperpigmentation and related skin conditions.
Collapse
Affiliation(s)
- Mohammad Azimi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asrin Bahmani
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Iraji A, Nikfar P, Nazari Montazer M, Karimi M, Edraki N, Saeedi M, Mirfazli SS. Synthesis, biological evaluation and molecular modeling studies of methyl indole-isoxazole carbohydrazide derivatives as multi-target anti-Alzheimer's agents. Sci Rep 2024; 14:21115. [PMID: 39256495 PMCID: PMC11387822 DOI: 10.1038/s41598-024-71729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the elderly population globally and there is an urgent demand for developing novel anti-AD agents. In this study, a new series of indole-isoxazole carbohydrazides were designed and synthesized. The structure of all compounds was elucidated using spectroscopic methods including FTIR, 1H NMR, and 13C NMR as well as mass spectrometry and elemental analysis. All derivatives were screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Out of all synthesized compounds, compound 5d exhibited the highest potency as AChE inhibitor with an IC50 value of 29.46 ± 0.31 µM. It showed significant selectivity towards AChE, with no notable inhibition against BuChE. A kinetic study on AChE for compound 5d indicated a competitive inhibition pattern. Also, 5d exhibited promising BACE1 inhibitory potential with an IC50 value of 2.85 ± 0.09 µM and in vitro metal chelating ability against Fe3+. The molecular dynamic studies of 5d against both AChE and BACE1 were executed to evaluate the behavior of this derivative in the binding site. The results showed that the new compounds deserve further chemical optimization to be considered potential anti-AD agents.
Collapse
Affiliation(s)
- Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Nikfar
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Karimi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bonardi A, Gratteri P. Computational studies of tyrosinase inhibitors. Enzymes 2024; 56:191-229. [PMID: 39304287 DOI: 10.1016/bs.enz.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Computational studies have significantly advanced the understanding of tyrosinase (TYR) function, mechanism, and inhibition, accelerating the development of more effective and selective inhibitors. This chapter provides an overview of in silico studies on TYR inhibitors, emphasizing key inhibitory chemotypes and the main residues involved in ligand-target interactions. The chapter discusses tools applied in the context of TYR inhibitor development, e.g., structure-based virtual screening, molecular docking, artificial intelligence, and machine learning algorithms.
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
7
|
Xu Y, Liang X, Hyun CG. Discovery of Indole-Thiourea Derivatives as Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Kinetic Studies, and In Silico Analysis. Int J Mol Sci 2024; 25:9636. [PMID: 39273583 PMCID: PMC11394742 DOI: 10.3390/ijms25179636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosinase, a key enzyme in melanin synthesis, represents a crucial therapeutic target for hyperpigmentation disorders due to excessive melanin production. This study aimed to design and evaluate a series of indole-thiourea derivatives by conjugating thiosemicarbazones with strong tyrosinase inhibitory activity to indole. Among these derivatives, compound 4b demonstrated tyrosinase inhibitory activity with an IC50 of 5.9 ± 2.47 μM, outperforming kojic acid (IC50 = 16.4 ± 3.53 μM). Kinetic studies using Lineweaver-Burk plots confirmed competitive inhibition by compound 4b. Its favorable ADMET and drug-likeness properties make compound 4b a promising therapeutic candidate with a reduced risk of toxicity. Molecular docking revealed that the compounds bind strongly to mushroom tyrosinase (mTYR) and human tyrosinase-related protein 1 (TYRP1), with compound 4b showing superior binding energies of -7.0 kcal/mol (mTYR) and -6.5 kcal/mol (TYRP1), surpassing both kojic acid and tropolone. Molecular dynamics simulations demonstrated the stability of the mTYR-4b complex with low RMSD and RMSF and consistent Rg and SASA values. Persistent strong hydrogen bonds with mTYR, along with favorable Gibbs free energy and MM/PBSA calculations (-19.37 kcal/mol), further support stable protein-ligand interactions. Overall, compound 4b demonstrated strong tyrosinase inhibition and favorable pharmacokinetics, highlighting its potential for treating pigmentary disorders.
Collapse
Affiliation(s)
- Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
- Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
8
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
9
|
Liang F. Inhibition mechanism investigation of quercetagetin as a potential tyrosinase inhibitor. Front Chem 2024; 12:1411801. [PMID: 38894729 PMCID: PMC11184945 DOI: 10.3389/fchem.2024.1411801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Tyrosinase is one important rate limiting enzyme in melanin synthesis, directly affecting the melanin synthesis. Quercetagetin is one active ingredient from marigold. Thence, the inhibition effects of quercetagetin against tyrosinase were investigated. The results showed quercetagetin could inhibit tyrosinase activity with IC50 value of 0.19 ± 0.01 mM and the inhibition type was a reversible mixed-type. Results of fluorescence quenching showed quercetagetin could quench tyrosinase fluorescence in static process. CD and 3D fluorescence results showed the interaction of quercetagetin to tyrosinase could change tyrosinase conformation to inhibit activity. Moreover, docking revealed details of quercetagetin's interactions with tyrosinase.
Collapse
Affiliation(s)
- Faliang Liang
- Pharmacy Department, Jiang Men Maternity and Child Healthcare Hospital, Jiangmen, China
| |
Collapse
|
10
|
Najafi Z, Zandi Haramabadi M, Chehardoli G, Ebadi A, Iraji A. Design, synthesis, and molecular dynamics simulation studies of some novel kojic acid fused 2-amino-3-cyano-4H-pyran derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:41. [PMID: 38388934 PMCID: PMC10885651 DOI: 10.1186/s13065-024-01134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
A novel series of kojic acid fused 2-amino-3-cyano-4H-pyran derivatives were synthesized via a multicomponent reaction involving kojic acid, benzyloxy benzaldehyde, and malonitrile as tyrosinase inhibitors. Subsequently, the structures of the compounds were characterized using FT-IR, 1H-, and 13C-NMR spectroscopic analyses. The designed compounds fall into three series: (1) 4-benzyloxy-phenyl kojopyran 6a-e, (2) 3-benzyloxy- phenyl kojopyran derivatives 6f-j, and (3) 4-benzyloxy-3-methoxy-phenyl kojopyran derivative 6 k-o. The assessment of tyrosinase inhibition activity was conducted using L-Dopa as the substrate. Among synthesized compounds, 2-amino-4-(4-((4-fluorobenzyl)oxy)phenyl)-6-(hydroxymethyl)-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile (6b) demonstrated the highest antityrosinase activity with a competitive inhibition pattern (IC50 = 7.69 ± 1.99 μM) as compared to the control agent kojic acid (IC50 = 23.64 ± 2.56 µM). Since compound 6b was synthesized as a racemic mixture, in silico studies were performed for both R and S enantiomers. The R- enantiomer showed critical interactions compared with the S-enantiomer. Specifically, it established hydrogen bonds and hydrophobic interactions with crucial and highly conserved amino acids within the enzyme's binding site in the target protein. Moreover, the molecular dynamics simulations revealed that compound 6b demonstrated significant interactions with essential residues of the binding site, resulting in a stable complex throughout the entire simulation run. The drug-like and ADMET properties predictions showed an acceptable profile for compound 6b. Thus, it can serve as a drug candidate to develop more potent antityrosinase agents due to its low toxicity and its high inhibition activity.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Zandi Haramabadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Bagheri A, Moradi S, Iraji A, Mahdavi M. Structure-based development of 3,5-dihydroxybenzoyl-hydrazineylidene as tyrosinase inhibitor; in vitro and in silico study. Sci Rep 2024; 14:1540. [PMID: 38233558 PMCID: PMC10794188 DOI: 10.1038/s41598-024-52022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.
Collapse
Affiliation(s)
- Azzam Bagheri
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Shahram Moradi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lu L, Hu C, Min X, Liu Z, Xu X, Gan L. In Vitro and In Vivo Biological Evaluation of Indole-thiazolidine-2,4-dione Derivatives as Tyrosinase Inhibitors. Molecules 2023; 28:7470. [PMID: 38005192 PMCID: PMC10673563 DOI: 10.3390/molecules28227470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 μM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Lishe Gan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| |
Collapse
|
13
|
Rezapour Niri D, Sayahi MH, Behrouz S, Moazzam A, Rasekh F, Tanideh N, Irajie C, Seif Nezhad M, Larijani B, Iraji A, Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors. Heliyon 2023; 9:e22009. [PMID: 38034733 PMCID: PMC10682633 DOI: 10.1016/j.heliyon.2023.e22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
In the present study, novel series of kojic acid derivatives conjugated to amino pyridine moiety were designed and synthesized to explore their inhibitory activity against tyrosinase. To this end, the structure of all derivatives was characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Next, all derivatives were evaluated against tyrosinase compared to the kojic acid as positive control and exhibited different inhibitory potencies. Furthermore, the antioxidant potential of all derivatives was determined. The kinetic analysis of the most active agent revealed that 3-hydroxy-6-(hydroxymethyl)-2-((3-nitrophenyl)(pyridin-2-ylamino)methyl)-4H-pyran-4-one (4h) binds to the enzyme in the uncompetitive mode of action. The docking analysis and molecular dynamic simulations showed considerable binding affinity and significant interactions with tyrosinase enzyme to target the melanogenesis pathway, proposing them as potent candidates to control hyperpigmentation in the future.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Somayeh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Fatemeh Rasekh
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Seif Nezhad
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| |
Collapse
|
14
|
Li J, Min X, Zheng X, Wang S, Xu X, Peng J. Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid-Eugenol Esters. Molecules 2023; 28:5969. [PMID: 37630220 PMCID: PMC10460039 DOI: 10.3390/molecules28165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Tyrosinase plays crucial roles in mediating the production of melanin pigment; thus, its inhibitors could be useful in preventing melanin-related diseases. To find potential tyrosinase inhibitors, a series of cinnamic acid-eugenol esters (c1~c29) was synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, HRMS, and FT-IR, respectively. The biological evaluation results showed that all compounds c1~c29 exhibited definite tyrosinase inhibitory activity; especially, compound c27 was the strongest tyrosinase inhibitor (IC50: 3.07 ± 0.26 μM), being ~4.6-fold stronger than the positive control, kojic acid (IC50: 14.15 ± 0.46 μM). Inhibition kinetic studies validated compound c27 as a reversible mixed-type inhibitor against tyrosinase. Three-dimensional fluorescence and circular dichroism (CD) spectra results indicated that compound c27 could change the conformation and secondary structure of tyrosinase. Fluorescence-quenching results showed that compound c27 quenched tyrosinase fluorescence in the static manner with one binding site. Molecular docking results also revealed the binding interactions between compound c27 and tyrosinase. Therefore, cinnamic acid-eugenol esters, especially c27, could be used as lead compounds to find potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jianping Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xiaofeng Min
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Shaohua Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Jinbao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| |
Collapse
|
15
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
16
|
Hashemi A, Noori M, Dastyafteh N, Sadat-Ebrahimi SE, Fazelzadeh Haghighi N, Mehrpour K, Sattarinezhad E, Jalali Zafrei F, Irajie C, Daneshmehr MA, Heydari M, Larijani B, Iraji A, Mahdavi M. Synthesis and tyrosinase inhibitory activities of novel isopropylquinazolinones. BMC Chem 2023; 17:65. [PMID: 37353836 DOI: 10.1186/s13065-023-00978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
To find new anti-browning and whitening agents in this study, new series of isopropylquinazolinone derivatives were designed and synthesized. All derivatives were evaluated as possible tyrosinase inhibitors and compound 9q bearing 4-fluorobenzyl moieties at the R position exhibited the best potencies with an IC50 value of 34.67 ± 3.68 µM. The kinetic evaluations of 9q as the most potent derivatives recorded mix-type inhibition. Compounds 9o and 9q also exhibited potent antioxidant capacity with IC50 values of 38.81 and 40.73 µM, respectively confirming their antioxidant potential. Molecular docking studies of 9q as the most potent derivative were exacuated and it was shown that quinazolinone and acetamide moieties of compound 9q participated in interaction with critical His residues of the binding site. The obtained results demonstrated that the 9q can be considered a suitable pharmacophore to develop potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Arshia Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Esmaeil Sadat-Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Fazelzadeh Haghighi
- Molecular Dermatology Research Center and Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoun Mehrpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Sattarinezhad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jalali Zafrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Heydari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
18
|
Yousefnejad F, Iraji A, Sabourian R, Moazzam A, Tasharoie S, Sara Mirfazli S, Zomorodian K, Alireza Akhlagh S, Hosseini S, Larijani B, Tehrani MB, Hajimahmoodi M, Mahdavi M. Ugi Bis-Amide Derivatives as Tyrosinase Inhibitor; Synthesis, Biology Assessment, and in Silico Analysis. Chem Biodivers 2023; 20:e202200607. [PMID: 36538729 DOI: 10.1002/cbdv.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Herein, a straightforward synthetic strategy mediated by Ugi reaction was developed to synthesize novel series of compounds as tyrosinase inhibitors. The structures of all compounds were confirmed by FT-IR, 1 H-NMR, 13 C-NMR, and CHNOS techniques. The tyrosinase inhibitory activities of all synthesized derivatives 5a-m were determined against mushroom tyrosinase and it was found that derivative 5c possesses the best inhibition with an IC50 value of 69.53±0.042 μM compared to the rest of the synthesized derivatives. Structure-activity relationships (SARs) showed that the presence of 4-MeO or 4-NO2 at the R2 position plays a key role in tyrosinase inhibitory activities. The enzyme kinetics studies showed that compound 5c is an noncompetitive inhibitor. For in silico study, the allosteric site detection was first applied to find the appropriate binding site and then molecular docking and molecular dynamic studies were performed to reveal the position and interactions of 5c as the most potent inhibitor within the tyrosinase active site. The results showed that 5c bind well with the proposed binding site and formed a stable complex with the target protein.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tasharoie
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Samensadst Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|