1
|
Xie W, Zhou F, Li X, Liu Z, Zhang M, Zong Z, Liang L. A surface architectured metal-organic framework for targeting delivery: suppresses cancer growth and metastasis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
2
|
Chon J, Field MS, Stover PJ. Deoxyuracil in DNA and disease: Genomic signal or managed situation? DNA Repair (Amst) 2019; 77:36-44. [PMID: 30875637 DOI: 10.1016/j.dnarep.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Genomic instability is implicated in the etiology of several deleterious health outcomes including megaloblastic anemia, neural tube defects, and neurodegeneration. Uracil misincorporation and its repair are known to cause genomic instability by inducing DNA strand breaks leading to apoptosis, but there is emerging evidence that uracil incorporation may also result in broader modifications of gene expression, including: changes in transcriptional stalling, strand break-mediated transcriptional upregulation, and direct promoter inhibition. The factors that influence uracil levels in DNA are cytosine deamination, de novo thymidylate (dTMP) biosynthesis, salvage dTMP biosynthesis, dUTPase, and DNA repair. There is evidence that the nuclear localization of the enzymes in these pathways in mammalian cells may modify and/or control the levels of uracil accumulation into nuclear DNA. Uracil sequencing technologies demonstrate that uracil in DNA is not distributed stochastically across the genome, but instead shows patterns of enrichment. Nuclear localization of the enzymes that modify uracil in DNA may serve to change these patterns of enrichment in a tissue-specific manner, and thereby signal the genome in response to metabolic and/or nutritional state of the cell.
Collapse
Affiliation(s)
- James Chon
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA
| | - Patrick J Stover
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA; Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Khedr MMS, Messaoudi W, Jonnalagadda US, Abdelmotelb AM, Glynne-Jones P, Hill M, Khakoo SI, Abu Hilal M. Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor. BIOMICROFLUIDICS 2019; 13:014112. [PMID: 30867882 PMCID: PMC6404912 DOI: 10.1063/1.5082603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Ultrasonic standing wave systems have previously been used for the generation of 3D constructs for a range of cell types. In the present study, we cultured cells from the human hepatoma Huh7 cell line in a Bulk Acoustic Wave field and studied their viability, their functions, and their response to the anti-cancer drug, 5 Fluorouracil (5FU). We found that cells grown in the acoustofluidic bioreactor (AFB) expressed no reduction in viability up to 6 h of exposure compared to those cultured in a conventional 2D system. In addition, constructs created in the AFB and subsequently cultured outside of it had improved functionality including higher albumin and urea production than 2D or pellet cultures. The viability of Huh7 cells grown in the ultrasound field to 5FU anti-cancer drug was comparable to that of cells cultured in the 2D system, showing rapid diffusion into the aggregate core. We have shown that AFB formed 3D cell constructs have improved functionality over the conventional 2D monolayer and could be a promising model for anti-cancer drug testing.
Collapse
Affiliation(s)
- Mogibelrahman M. S. Khedr
- Clinical and Experimental Sciences Academic Unit, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD, United
Kingdom
- Faculty of Medicine, Suez Canal University,
Ismailia 41111, Egypt
| | - Walid Messaoudi
- Mechanical Engineering, Faculty of Engineering and Physical
Sciences, University of Southampton, Southampton SO17 1BJ, United
Kingdom
| | - Umesh S. Jonnalagadda
- Mechanical Engineering, Faculty of Engineering and Physical
Sciences, University of Southampton, Southampton SO17 1BJ, United
Kingdom
| | - Ahmed M. Abdelmotelb
- Clinical and Experimental Sciences Academic Unit, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD, United
Kingdom
- Faculty of Medicine, Tanta University, Tanta
31527, Egypt
| | - Peter Glynne-Jones
- Mechanical Engineering, Faculty of Engineering and Physical
Sciences, University of Southampton, Southampton SO17 1BJ, United
Kingdom
| | - Martyn Hill
- Mechanical Engineering, Faculty of Engineering and Physical
Sciences, University of Southampton, Southampton SO17 1BJ, United
Kingdom
| | - Salim I. Khakoo
- Clinical and Experimental Sciences Academic Unit, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD, United
Kingdom
- Southampton University Hospitals NHS Trust,
Southampton SO16 6YD, United Kingdom
| | - Mohammed Abu Hilal
- Clinical and Experimental Sciences Academic Unit, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD, United
Kingdom
- Southampton University Hospitals NHS Trust,
Southampton SO16 6YD, United Kingdom
| |
Collapse
|
4
|
Altwerger G, Florsheim EB, Menderes G, Black J, Schwab C, Gressel GM, Nelson WK, Carusillo N, Passante T, Huang G, Litkouhi B, Azodi M, Silasi DA, Santin A, Schwartz PE, Ratner ES. Impact of carboplatin hypersensitivity and desensitization on patients with recurrent ovarian cancer. J Cancer Res Clin Oncol 2018; 144:2449-2456. [DOI: 10.1007/s00432-018-2753-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023]
|
5
|
Zeng D, Lin J, He H, Tan G, Lan Y, Jiang F, Sheng S. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma. Oncol Lett 2018; 15:2555-2561. [PMID: 29434973 DOI: 10.3892/ol.2017.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.
Collapse
Affiliation(s)
- Dingyuan Zeng
- Department of Oncology, Maternity and Children's Hospital Affiliated to the Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Jiajing Lin
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Hongying He
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Guangping Tan
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Ying Lan
- Department of Gynecology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Fuyan Jiang
- Liuzhou Tumor Hospital, Liuzhou, Guangxi 545005, P.R. China
| | - Shuting Sheng
- Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, P.R. China
| |
Collapse
|
6
|
da Silva FH, Ribeiro AAL, Deluque AL, Cotrim ACDM, de Marchi PGF, França EL, Honorio-França AC. Effects of barium chloride adsorbed to polyethylene glycol (PEG) microspheres on co-culture of human blood mononuclear cell and breast cancer cell lines (MCF-7). Immunopharmacol Immunotoxicol 2017; 40:18-24. [DOI: 10.1080/08923973.2017.1392563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fabiana Helen da Silva
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Alessandra Lima Deluque
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Aron Carlos de melo Cotrim
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | |
Collapse
|
7
|
Selvarajan V, Bidkar AP, Shome R, Banerjee A, Chaubey N, Ghosh SS, Sanpui P. Studying in vitro phagocytosis of apoptotic cancer cells by recombinant GMCSF-treated RAW 264.7 macrophages. Int J Biol Macromol 2017; 102:1138-1145. [DOI: 10.1016/j.ijbiomac.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023]
|
8
|
Minero VG, De Stefanis D, Costelli P, Baccino FM, Bonelli G. In vitro and in vivo conditional sensitization of hepatocellular carcinoma cells to TNF-induced apoptosis by taxol. Cell Cycle 2015; 14:1090-102. [PMID: 25564714 DOI: 10.1080/15384101.2014.1000695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
High mortality among hepatocellular carcinoma (HCC) patients reflects both late diagnosis and low curability, due to pharmacoresistance. Taxol (TAX) is toxic for many human HCC-derived cell lines, yet its clinical efficacy on HCCs is poor. Combining TAX with other drugs appears a promising possibility to overcome such refractoriness. We analyzed whether combining tumor necrosis factor (TNF) with TAX would improve their toxicity. Human HCC-derived cell lines were treated with TAX or TNF, alone or combined. Apoptosis was assessed by morphology and flow-cytometry. Several pro- and anti-apoptotic molecules were evaluated by western blotting and/or enzymatic assay. After a 24 hour treatment, TNF was ineffective and TAX modestly cytotoxic, whereas HCC cells were conditionally sensitized to TNF by TAX. Indeed some relevant parameters were shifted to a prodeath setting: TNF-receptor 1 was increased, SOCS3, c-FLIP and pSTAT3 were markedly downregulated. These observations provide a significant clue to critically improve the drug susceptibility of HCC cells by combining 2 agents, TAX and TNF. The sequential application of TAX at a low dosage followed by TNF for only a short time triggered a strong apoptotic response. Of interest, prior TAX administration could also sensitize to TNF-induced apoptosis in the Yoshida AH-130 hepatoma transplanted in mice. Therefore, scrutinizing the possibility to develop similar combination drug regimens in suitable preclinical models seems highly advisable.
Collapse
Key Words
- COL, colchicine
- DAPI, 4,6-diamidino-2-phenylindole dihydrochloride
- HCC, hepatocellular carcinoma
- NOC, nocodazole
- SOCS3
- SOCS3, suppressor of cytokine signaling 3
- STAT3, signal transducer and activator of tanscription 3
- TAX
- TAX, taxol (paclitaxel)
- TNF
- TNF, tumor necrosis factor-α
- TNF-R1, TNF-receptor 1
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- apoptosis
- hepatocellular carcinoma
Collapse
Affiliation(s)
- V G Minero
- a Department of Clinical and Biological Sciences ; Experimental Medicine and Clinical Pathology Unit; University of Turin ; Turin , Italy
| | | | | | | | | |
Collapse
|
9
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|
10
|
Pandey A, Vishnoi K, Mahata S, Tripathi SC, Misra SP, Misra V, Mehrotra R, Dwivedi M, Bharti AC. Berberine and Curcumin Target Survivin and STAT3 in Gastric Cancer Cells and Synergize Actions of Standard Chemotherapeutic 5-Fluorouracil. Nutr Cancer 2015; 67:1293-304. [PMID: 26492225 DOI: 10.1080/01635581.2015.1085581] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aberrantly expressed survivin and STAT3 signaling have emerged as major determinants of chemoresistance in gastric cancer. We evaluated effects of potent herbal derivatives curcumin, berberine, and quercetin on STAT3 signaling, survivin expression, and response to 5-fluorouracil (5-FU) treatment in gastric cancer cells (AGS). Cytotoxic and inhibitory effects of berberine, curcumin, and quercetin alone or in combination with 5-FU were examined by MTT assay, and their effect on survivin, STAT3, and the phosphorylated active STAT3 (pSTAT3) expression was examined by western blotting. Effect of these herbal derivatives on STAT3 DNA binding activity was measured by electrophoretic mobility shift assay. Curcumin, berberine, and quercetin effectively downregulated pSTAT3 levels, survivin expression, and gastric cancer cells viability in a dose-dependent manner (with corresponding IC50 values of 40.3μM, 29.2μM and 37.5μM, respectively). Berberine was more effective in inhibiting survivin expression as compared to other herbal agents. 5-FU in combination with berberine or curcumin showed a synergistic inhibition of survivin and STAT3 level resulting in enhanced cell death in gastric cancer cells. Overall, our data suggest use of berberine and curcumin as adjunct therapeutics to overcome chemoresistance during treatment of gastric malignancies.
Collapse
Affiliation(s)
- Arvind Pandey
- a Division of Molecular Oncology , Institute of Cytology and Preventive Oncology, Noida, India and Center for Biotechnology, University of Allahabad , Allahabad , India
| | - Kanchan Vishnoi
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | - Sutapa Mahata
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | | | - Sri Prakash Misra
- c Department of Gastroenterology , MLN Medical College , Allahabad , India
| | - Vatsala Misra
- d Department of Pathology , MLN Medical College , Allahabad , India
| | - Ravi Mehrotra
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | - Manisha Dwivedi
- c Department of Gastroenterology , MLN Medical College , Allahabad , India
| | - Alok C Bharti
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| |
Collapse
|
11
|
Narita M, Oussoultzoglou E, Chenard MP, Fuchshuber P, Yamamoto T, Addeo P, Jaeck D, Bachellier P. Predicting early intrahepatic recurrence after curative resection of colorectal liver metastases with molecular markers. World J Surg 2015; 39:1167-76. [PMID: 25561185 DOI: 10.1007/s00268-014-2916-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this case-control study was to identify clinicopathological factors and test three relevant biomarkers for their ability to predict early intrahepatic recurrence after curative liver resection for colorectal liver metastases (CLM). METHODS Of the 184 patients with CLM undergoing hepatectomy between January 2007 and December 2009, thirty patients had intrahepatic disease recurrence within 6 months. The control group was randomly selected from a cohort of patients between April 1997 and December 2005 who have survived without disease recurrence after CLM resection for over 5 years. Both groups were matched for size of metastasis greater than 5.0 cm, the presence of multiple metastases, and synchronous versus metachronous CLM. The final study population consisted of 60 patients with CLM undergoing R0 hepatectomy, 30 of whom had early intrahepatic-only recurrences (study group) and 30 patients without recurrence for more than 5 years (control group). Both groups were analyzed and compared for the presence of clinical factors and expression levels of CD133, survivin, and Bcl-2 within tumor tissue. RESULTS Characteristics of patients were similar between the two groups except primary tumor location and administration of postoperative chemotherapy. Expression level of CD133 and survivin were significantly increased in tumors of patients with recurrence compared to patients without recurrence. On multivariate analysis high tumor expression levels of CD133 (odds ratio [OR] 14.7, confidence interval [CI] 1.8-121.3, p = 0.012) and survivin (OR 9.5, CI 2.1-44.3, p = 0.004) and postoperative chemotherapy (OR 4.8, CI 1.01-22.9, p = 0.049) were independent factors associated with early intrahepatic recurrence. CONCLUSIONS Tumor expression levels of CD133 and survivin may be a useful predictor of early intrahepatic recurrence after hepatectomy for CLM. Administration of postoperative chemotherapy may prevent early intrahepatic recurrence.
Collapse
Affiliation(s)
- Masato Narita
- Centre de Chirurgie Viscérale et de Transplantation, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Avenue Molière, 67098, Strasbourg Cedex, France,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Quantitative analysis of intraneuronal transport in human iPS neurons. J Pharmacol Sci 2015; 128:170-8. [DOI: 10.1016/j.jphs.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 01/15/2023] Open
|
13
|
Xing K, Gu B, Zhang P, Wu X. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol 2015; 16:39. [PMID: 26112261 PMCID: PMC4480888 DOI: 10.1186/s12865-015-0103-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Background Programmed cell death 1 (PD-1) is a key cell-surface receptor of CD28 superfamily that triggers inhibitory pathways to attenuate T-cell responses and promote T-cell tolerance. As a crucial role in tumor immunity, PD-1 has been a focus of studies in anti-cancer therapy. It has been approved that tumors could exploit PD-1-dependent immune suppression for immune evasion. Considering the wide use of glucocorticoids (GCs) in anti-cancer therapy and their immunosuppressive effects, we explored whether GCs could influence the expression of PD-1. Results In our study, we used dexamethasone (DEX) as a model glucocorticoid and demonstrated that DEX could enhance PD-1 expression in a dose-dependent manner. The effects were completely inhibited by the glucocorticoid receptor (GR) antagonist mifepristone (RU486), indicating that the effect of DEX on PD-1 is mediated through GR. We further found the sensitivity to DEX-induced upregulation of PD-1 expression had a significant difference between different T cell subsets, with memory T cells more susceptible to this effect. We also showed that DEX could suppress T cell functions via inhibition of cytokines production such as IL-2, IFN-γ, TNF-α and induction of apoptosis of T cells. Conclusion Our findings suggest a novel way by which DEX suppress the function of activated T lymphocytes by enhancing expression of PD-1 and provide an insight into the optimum clinical application of GCs.
Collapse
Affiliation(s)
- Kailin Xing
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
| | - Bingxin Gu
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China. .,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
| | - Ping Zhang
- Cancer Research Institute of Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
The effects of dexamethasone on the proliferation and apoptosis of human ovarian cancer cells induced by paclitaxel. J Ovarian Res 2014; 7:89. [PMID: 25297825 PMCID: PMC4200216 DOI: 10.1186/s13048-014-0089-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dexamethasone (DEX) has been routinely used as a pre-treatment in the clinical application of paclitaxel (PTX) to treat ovarian cancer. However, PTX-induced apoptosis might be inhibited by DEX. This study was undertaken to investigate the effects of DEX on the apoptosis induced by PTX. METHODS Both of SKOV-3 and HO-8910 human ovarian cancer cells were divided into four groups: (1) untreated (Con); (2) treated with DEX (0.1 μM) alone; (3) treated with PTX (50 nM); and (4) pre-treated with DEX (0.1 μM), and 24 h later, treated with PTX (DEX + PTX). Cell proliferation was determined by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) dye uptake method, while cell apoptosis was analyzed by propidium iodide (PI) staining and flow cytometry. Then, reverse transcription polymerase chain reactions (RT-PCRs) were applied to semi-quantitative analysis, followed by western blot analysis. Statistical analysis was performed, with Fisher's least significant difference test. RESULTS Our results demonstrated that DEX can differentially inhibit SKOV-3 and HO-8910 cell proliferation induced by PTX and decrease the apoptosis rates in cancer cells. Pre-treatment with DEX could up-regulate the expressions of members of anti-apoptotic Bcl-2 family (Bcl-2 and Bcl-XL) and members of IAP family (survivin). The expression of cleaved caspase-3 was down-regulated by DEX, shown by semi-quantitative RT-PCRs and western blot analysis. CONCLUSIONS Our data gained invaluable insights of the antagonistic mechanisms of DEX on PTX-induced cancer cell death and may provide new methods of using DEX as antineoplastic drugs or agents in the clinical treatment for ovarian cancer patients.
Collapse
|
15
|
Weng Y, Fei B, Chi AL, Cai M. Inhibition of gastric cancer cell growth in vivo by overexpression of adeno-associated virus-mediated survivin mutant C84A. Oncol Res 2013; 20:411-7. [PMID: 23924925 DOI: 10.3727/096504013x13657689383094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Survivin is overexpressed in most of human cancer cells and tissues. Its overexpression is associated with apoptosis inhibition, drug resistance, and poor prognosis. In this study, we investigated the effect of adeno-associated virus (AAV)-mediated survivin mutant Cys84Ala [rAAV-Sur-Mut(C84A)] on gastric cancer growth. Sur-Mut(C84A) was subcloned into the AAV expression vector pAM/CAG to generate recombinant (r)AAV-Sur-Mut(C84A) virus. Cell survival was determined by the MTT method. Apoptosis was measured by FACS analysis and TUNEL. Tumor growth was assessed using a xenograft mouse model. Results showed that treatment of rAAV-Sur-Mut(C84A) virus significantly reduced cell survival, induced apoptosis, and sensitized gastric cancer cells to 5-fluorouracil in vitro. Furthermore, treatment of rAAV-Sur-Mut(C84A) virus markedly induced apoptosis and inhibited gastric cancer growth in vivo. Moreover, rAAV-Sur-Mut(C84A) treatment strongly enhanced the antitumor activity of 5-fluorouracil. Our results suggest that the combination of rAAV-Sur-Mut(C84A) with chemotherapy may be a promising strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Yuan Weng
- Department of Thoracic and Cardiovascular Surgery, No. 4 People's Hospital of Wuxi City, Wuxi City, PR China
| | | | | | | |
Collapse
|
16
|
Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim Biophys Acta Gen Subj 2012; 1820:1081-91. [PMID: 22554915 DOI: 10.1016/j.bbagen.2012.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. METHODS The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. RESULTS Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. CONCLUSIONS Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. GENERAL SIGNIFICANCE These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells.
Collapse
|
17
|
Urick ME, Chung EJ, Shield WP, Gerber N, White A, Sowers A, Thetford A, Camphausen K, Mitchell J, Citrin DE. Enhancement of 5-fluorouracil-induced in vitro and in vivo radiosensitization with MEK inhibition. Clin Cancer Res 2011; 17:5038-47. [PMID: 21690569 PMCID: PMC3149743 DOI: 10.1158/1078-0432.ccr-11-0358] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Gastrointestinal cancers frequently exhibit mutational activation of the Ras/MAPK pathway, which is implicated in resistance to ionizing radiation (IR) and chemotherapy. Concurrent radiotherapy and 5-fluorouracil (5-FU) based chemotherapy is commonly used for treatment of gastrointestinal malignancies. We previously reported radiosensitization with selumetinib, an inhibitor of MEK1/2. The purpose of the current study was to evaluate if selumetinib could enhance radiosensitivity induced by 5-FU. EXPERIMENTAL DESIGN Clonogenic survival assays were carried out with the HT29 (colorectal), HCT116 (colorectal), and MiaPaca-2 (pancreatic) cell lines using pre-IR treatment with selumetinib, 5-FU and 5-FU+selumetinib. Cell proliferation was determined using a tetrazolium conversion assay. Mitotic catastrophe and DNA repair were analyzed using immunocytochemistry. Flow cytometry was used to analyze cell cycle and apoptosis. Growth delay was used to determine effects of 5-FU+selumetinib on in vivo tumor radiosensitivity. RESULTS Pre-IR treatment with 5-FU+selumetinib significantly decreased clonogenic survival compared with either agent alone. Dose modifying factors at a surviving fraction of 0.1 for 5-FU+selumetinib was 1.78, 1.52, and 1.3 for HT29, HCT116, and MiaPaca-2, respectively. Cell proliferation was decreased by treatment with selumetinib+5-FU as compared with single agent treatment regardless of treatment sequencing. Enhancement of 5-FU cytotoxicity and 5-FU mediated radiosensitization with selumetinib treatment was accompanied by an increase in mitotic catastrophe and apoptosis, and reductions in Stat3 phosphorylation and survivin expression. In vivo, an additive growth delay was observed with 5-FU+selumetinib+3Gy versus 5-FU+3Gy and selumetinib alone. CONCLUSION These data suggest that selumetinib can be used with 5-FU to augment radiation response.
Collapse
Affiliation(s)
- Mary Ellen Urick
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Eun Joo Chung
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - William P. Shield
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Naamit Gerber
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Ayla White
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Anastasia Sowers
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland
| | - Angela Thetford
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - James Mitchell
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland
| | - Deborah E. Citrin
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Gazzaniga P, Gradilone A, Petracca A, Nicolazzo C, Raimondi C, Iacovelli R, Naso G, Cortesi E. Molecular markers in circulating tumour cells from metastatic colorectal cancer patients. J Cell Mol Med 2011; 14:2073-7. [PMID: 20597995 PMCID: PMC3822998 DOI: 10.1111/j.1582-4934.2010.01117.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prognosis of metastatic cancer patients is still largely affected by treatment failure, mainly due to drug resistance. The hypothesis that chemotherapy might miss circulating tumour cells (CTCs) and particularly a subpopulation of more aggressive, stem-like CTCs, characterized by multidrug resistance, has been recently raised. We investigated the prognostic value of drug resistance and stemness markers in CTCs from metastatic colorectal cancer patients treated with oxaliplatin (L-OHP) and 5-fluoruracil (5-FU) based regimens. Forty patients with metastatic colorectal cancer were enrolled. CTCs were isolated from peripheral blood and analysed for the expression of aldheyde dehydrogenase 1 (ALDH1), CD44, CD133 (used as markers of stemness), multidrug resistance related protein 5 (MRP5 used as marker of resistance to 5-FU and L-OHP) and survivin (used as a marker of apoptosis resistance). CTCs were found in 27/40 (67%) patients. No correlation was found between the expression of either CD44 and CD133 in CTCs and the outcome of patients, while a statistically significant shorter progression-free survival was found in patients with CTCs positive for the expression of ALDH1, survivin and MRP5. These results support the idea that isolating survivin and MRP5+ CTCs may help in the selection of metastatic colorectal cancer patients resistant to standard 5-FU and L-OHP based chemotherapy, for which alternative regimens may be appropriate.
Collapse
Affiliation(s)
- Paola Gazzaniga
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Insulin-like growth factor 1 mediates 5-fluorouracil chemoresistance in esophageal carcinoma cells through increasing survivin stability. Apoptosis 2010; 16:174-83. [DOI: 10.1007/s10495-010-0555-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Chen AA, Underhill GH, Bhatia SN. Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr Biol (Camb) 2010; 2:517-27. [PMID: 20820630 PMCID: PMC4124885 DOI: 10.1039/c0ib00054j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, approaches for functional assessment have been relatively limited. Here, we describe the fabrication of microtissue (μ-tissue) suspensions and their quantitative evaluation with techniques capable of analyzing large sample numbers and performing multiplexed parallel analysis. We applied this platform to 3D μ-tissues representing multiple stages of liver development and disease including: embryonic stem cells, bipotential hepatic progenitors, mature hepatocytes, and hepatoma cells photoencapsulated in polyethylene glycol hydrogels. Multiparametric μ-tissue cytometry enabled quantitation of fluorescent reporter expression within populations of intact μ-tissues (n≥ 10²-10³) and sorting-based enrichment of subsets for subsequent studies. Further, 3D μ-tissues could be implanted in vivo, respond to systemic stimuli, retrieved and quantitatively assessed. In order to facilitate multiplexed 'pooled' experimentation, fluorescent labeling strategies were developed and utilized to investigate the impact of μ-tissue composition and exposure to soluble factors. In particular, examination of drug/gene interactions on collections of 3D hepatoma μ-tissues indicated synergistic influence of doxorubicin and siRNA knockdown of the anti-apoptotic gene BCL-XL. Collectively, these studies highlight the broad utility of μ-tissue suspensions as an enabling approach for high n, populational analysis of 3D tissue biology in vitro and in vivo.
Collapse
Affiliation(s)
- Alice A. Chen
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory H. Underhill
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Division of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
RasV12 induces Survivin/AuroraB pathway conferring tumor cell apoptosis resistance. Cell Signal 2010; 22:1214-21. [DOI: 10.1016/j.cellsig.2010.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 12/13/2022]
|
22
|
The compound cis-(dichloro)tetrammineruthenium(III) chloride induces caspase-mediated apoptosis in K562 cells. Toxicol In Vitro 2010; 24:1562-8. [PMID: 20600797 DOI: 10.1016/j.tiv.2010.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022]
Abstract
Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. In the present study, we investigated the ability of cis-(dichloro)tetrammineruthenium(III) chloride to produce lethal effects in human chronic myelogenous leukemia K562 cells. The MTT tetrazolium reduction test and the trypan blue exclusion assay revealed that the IC(50) for the compound after 48 h of incubation with K562 cells was approximately 10.74 and 73.45 microM, respectively. Interestingly, it was observed that this compound exhibits mild cytotoxicity towards MRC-5 human fibroblast cells (IC(50)>383 microM). Flow cytometric analysis revealed that cis-(dichloro)tetrammineruthenium(III) chloride was capable of change cell cycle distribution since the percentage of cells in the G1, S and G2 phases decreased. In addition, treatment with this compound induced apoptotic cell death in K562 cells, demonstrated by increased DNA content in the sub-G1-peak and a significant increase in caspase-3 activity. Assay using cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (MPT) showed that the preincubation of K562 cells with this inhibitor had not effect on cis-(dichloro)tetrammineruthenium(III) chloride induced caspase-3 activation. In summary, cis-(dichloro)tetrammineruthenium(III) chloride displayed a significant cytotoxic effect through cell cycle arrest and apoptotic induction in K562 cells, which suggests that cis-(dichloro)tetrammineruthenium(III) chloride might have therapeutic potential against leukemia.
Collapse
|
23
|
Yang KC, Tsai CY, Wang YJ, Wei PL, Lee CH, Chen JH, Wu CH, Ho YS. Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep G2 cells. Mol Carcinog 2009; 48:420-31. [PMID: 18767070 DOI: 10.1002/mc.20480] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phloretin (Ph), which can be obtained from apples, apple juice, and cider, is a known inhibitor of the type II glucose transporter (GLUT2). In this study, real-time PCR analysis of laser-capture microdissected (LCM) human hepatoma cells showed elevated expression (>5-fold) of GLUT2 mRNA in comparison with nonmalignant hepatocytes. In vitro and in vivo studies were performed to assess Ph antitumor activity when combined with paclitaxel (PTX) for treatment of human liver cancer cells. Inhibition of GLUT2 by Ph potentiated the anticancer effects of PTX, resensitizing human liver cancer cells to drugs. These results demonstrate that 50-150 microM Ph significantly potentiates DNA laddering induced in Hep G2 cells by 10 nM PTX. Activity assays showed that caspases 3, 8, and 9 are involved in this apoptosis. The antitumor therapeutic efficacy of Ph (10 mg/kg body weight) was determined in cells of the SCID mouse model that were treated in parallel with PTX (1 mg/kg body weight). The Hep G2-xenografted tumor volume was reduced more than fivefold in the Ph + PTX-treated mice compared to the PTX-treated group. These results suggest that Ph may be useful for cancer chemotherapy and chemoprevention.
Collapse
Affiliation(s)
- Kuo-Ching Yang
- Division of Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lam TL, Wong GKY, Chong HC, Cheng PNM, Choi SC, Chow TL, Kwok SY, Poon RTP, Wheatley DN, Lo WH, Leung YC. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett 2009; 277:91-100. [PMID: 19138817 DOI: 10.1016/j.canlet.2008.11.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/31/2008] [Accepted: 11/22/2008] [Indexed: 12/19/2022]
Abstract
Human hepatocellular carcinoma (HCC) has an elevated requirement for arginine in vitro, and pegylated recombinant human arginase I (rhArg-PEG), an arginine-depleting enzyme, can inhibit the growth of arginine-dependent tumors. While supplementation of the culture medium with ornithine failed to rescue Hep3B cells from growth inhibition induced by rhArg-PEG, citrulline successfully restored cell growth. The data support the roles previously proposed for ornithine transcarbamylase (OTC) in the arginine auxotrophy and rhArg-PEG sensitivity of HCC cells. Expression profiling of argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and OTC in 40 HCC tumor biopsy specimens predicted that 16 of the patients would be rhArg-sensitive, compared with 5 who would be sensitive to arginine deiminase (ADI), another arginine-depleting enzyme with anti-tumor activity. Furthermore, rhArg-PEG-mediated deprivation of arginine from the culture medium of different HCC cell lines produced cell cycle arrests at the G(2)/M or S phase, possibly mediated by transcriptional modulation of cyclins and/or cyclin dependent kinases (CDKs). Based on these results, together with further validation of the in vivo efficacy of rhArg-PEG against HCC, we propose that the application of rhArg-PEG alone or in combination with existing chemotherapeutic drugs may represent a specific and effective therapeutic strategy against HCC.
Collapse
Affiliation(s)
- T L Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takano M, Otani Y, Tanda M, Kawami M, Nagai J, Yumoto R. Paclitaxel-resistance Conferred by Altered Expression of Efflux and Influx Transporters for Paclitaxel in the Human Hepatoma Cell Line, HepG2. Drug Metab Pharmacokinet 2009; 24:418-27. [DOI: 10.2133/dmpk.24.418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Kang SJ, Lee YJ, Kim BM, Kim YJ, Woo HD, Jeon HK, Chung HW. Effect of Bupleuri Radix extracts on the toxicity of 5-fluorouracil in HepG2 hepatoma cells and normal human lymphocytes. Basic Clin Pharmacol Toxicol 2008; 103:305-13. [PMID: 18834353 DOI: 10.1111/j.1742-7843.2008.00280.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the excellent chemotherapeutic effect of 5-fluorouracil, its cytotoxicity and genotoxicity in normal cells remain a major problem. We sought to assess whether Bupleuri Radix extract enhances 5-fluorouracil-induced cytotoxicity in HepG2 hepatoma cells, while protecting normal blood lymphocytes. Bupleuri Radix, used for treatment of liver disease in oriental medicine, possesses antitumour properties; it induces apoptosis through cell arrest in tumour cells, but does not affect normal lymphocytes. In this study, we evaluated the protective and enhancing effects of Bupleuri Radix on 5-fluorouracil-induced cytotoxicity in HepG2 cells and normal lymphocytes. Treatment with Bupleuri Radix increased the micronuclei frequency and DNA damage, resulting from 5-fluorouracil treatment. However, when human lymphocytes were cotreated with Bupleuri Radix and 5-fluorouracil, the frequency of 5-fluorouracil-induced micronuclei decreased. Although the extent of 5-fluorouracil-induced DNA damage, determined by single-cell gel electrophoresis, increased after treating HepG2 cells with Bupleuri Radix, it decreased in normal lymphocytes. When cells were treated with 20 microM 5-fluorouracil and 200 microg/ml Bupleuri Radix simultaneously, Bax protein increased in HepG2 cells at 24 hr; however, p21 and p53 proteins were up-regulated in normal human lymphocytes. Cotreatment with 200 microg/ml Bupleuri Radix and 20 microM 5-fluorouracil resulted in cell arrest at the late G(1)/early S phase in HepG2 cells (55.80 +/- 0.19%) and normal lymphocytes (97.19 +/- 0.27%). In addition, Bupleuri Radix and 5-fluorouracil treatment increased mitochondria membrane potential collapse only in HepG2 cells (19.02%), while it was not changed in lymphocytes. In conclusion, our findings suggest that Bupleuri Radix may be effective as a therapeutic agent to treat hepatomas.
Collapse
Affiliation(s)
- Su Jin Kang
- School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 2008; 13:1551-69. [PMID: 18794772 PMCID: PMC6244944 DOI: 10.3390/molecules13081551] [Citation(s) in RCA: 475] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/01/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022] Open
Abstract
The purpose of this work is to review the published studies on the mechanisms of action and resistance of 5-fluorouracil. The review is divided into three main sections: mechanisms of anti-tumor action, studies of the resistance to the drug, and procedures for the identification of new genes involved in resistance with microarray techniques. The details of the induction and reversal of the drug resistance are also described.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
| | - Ying Yin
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Sheng-Jie Xu
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Wei-Shan Chen
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|