1
|
Patra A, Kandasamy T, Ghosh SS, Saini GK. In vitro anticancer effects of recombinant anisoplin through activation of SAPK/JNK and downregulation of NFκB. Toxicol In Vitro 2024; 94:105737. [PMID: 37984481 DOI: 10.1016/j.tiv.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Emerging chemotherapeutic resistance is considered as one of the major obstacles in breast cancer therapy. Fungal ribotoxins possess promising therapeutic potential against cancer owing to their ribosome-targeted protein synthesis inhibitory action. Though the entomopathogenic ribotoxin anisoplin was characterized in the earlier study, its therapeutic efficacy against cancer cells remained unexplored. In the current study, recombinant anisoplin has been successfully produced in Escherichia coli BL21(DE3) expression system and further purified and validated by in silico, biophysical and functional characterizations. Recombinant anisoplin significantly reduced the viability of MCF-7 breast cancer cells in a dose-dependent manner. It exhibited an IC50 value of 4 μM with concurrent 3.5 fold elevation in the intracellular reactive oxygen species. Anisoplin also resulted in depolarization of the mitochondrial membrane and subsequently induced apoptosis, as evident from flow cytometric analyses. In addition, MCF-7 cells significantly lost their self-renewal capability for clonal expansion and regeneration upon treatment. Immunoblotting experiments further confirmed activation of downstream JNK-dependent MAP kinase signaling pathway due to ribotoxic stress response generated by anisoplin through upregulation of phospho-SAPK/JNK expression. This upregulation was further correlated with the NFκB expression profile, leading to cell death, highlighting therapeutic potential of the recombinant anisoplin.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India.
| |
Collapse
|
2
|
Zhang C, Deng Q, Bao S, Zhu J. Anisomycin is active in preclinical models of pediatric acute myeloid leukemia via specifically inhibiting mitochondrial respiration. J Bioenerg Biomembr 2021; 53:693-701. [PMID: 34468904 DOI: 10.1007/s10863-021-09918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
The poor outcomes in acute myeloid leukemia (AML) necessitate new treatments. In this work, we identified that anisomycin is a potential selective anti-AML candidate, particularly for those with FLT3-ITD mutation. We found that anisomycin potently inhibited proliferation and induced apoptosis in multiple AML cell lines. Anisomycin was effective in targeting progenitor cells isolated from all tested pediatric AML patients, while sparing normal counterparts. Using AML xenograft mouse models, anisomycin exhibited inhibitory effect on tumor growth throughout the whole duration without causing toxicity in mice. The combination of anisomycin with standard of care drugs is synergistic and selective in AML cell culture system and mouse model. In addition, FLT3-ITD cells were more sensitive to anisomycin than FLT3 WT cells. Mechanistic studies revealed that anisomycin acted on AML in a p38-independent manner. We found that anisomycin decreased mitochondrial respiration by disrupting complex I activity, leading to intracellular oxidative stress. AML ρ0 cells that lack of mitochondrial respiration exhibited resistance to anisomycin. Finally, we showed that mitochondrial biogenesis contributes to differential sensitivity of FLT3-ITD and FLT3 WT cells to anisomycin. Our work is the first to systematically demonstrate that anisomycin is a useful addition to the treatment armamentarium for AML. Our findings highlight the therapeutic value of mitochondrial respiration inhibition in AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China
| | - Qian Deng
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China
| | - Shiwei Bao
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
| | - Juanjuan Zhu
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
3
|
Li H, Zhou T, Zhang Y, Jiang H, Zhang J, Hua Z. RuvBL1 Maintains Resistance to TRAIL-Induced Apoptosis by Suppressing c-Jun/AP-1 Activity in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:679243. [PMID: 34164343 PMCID: PMC8215499 DOI: 10.3389/fonc.2021.679243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the common malignant tumor with the highest death rate in the world. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a potential anticancer agent induces selective apoptotic death of human cancer cells. Unfortunately, approximately half of lung cancer cell lines are intrinsically resistant to TRAIL-induced cell death. In this study, we identified RuvBL1 as a repressor of c-Jun/AP-1 activity, contributing to TRAIL resistance in lung cancer cells. Knocking down RuvBL1 effectively sensitized resistant cells to TRAIL, and overexpression of RuvBL1 inhibited TRAIL-induced apoptosis. Moreover, there was a negative correlation expression between RuvBL1 and c-Jun in lung adenocarcinoma by Oncomine analyses. High expression of RuvBL1 inversely with low c-Jun in lung cancer was associated with a poor overall prognosis. Taken together, our studies broaden the molecular mechanisms of TRAIL resistance and suggest the application of silencing RuvBL1 synergized with TRAIL to be a novel therapeutic strategy in lung cancer treatment.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Taoran Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hengyi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
| |
Collapse
|
4
|
Tan H, Hu B, Xie F, Zhu C, Cheng Z. Anisomycin sensitizes non-small-cell lung cancer cells to chemotherapeutic agents and epidermal growth factor receptor inhibitor via suppressing PI3K/Akt/mTOR. Fundam Clin Pharmacol 2020; 35:822-831. [PMID: 33336420 DOI: 10.1111/fcp.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
The poor outcomes in advanced non-small-cell lung cancer (NSCLC) necessitate new treatments. Recent studies emphasize anisomycin as a promising anti-cancer drug candidate. In this work, we systematically investigated the efficacy of anisomycin alone and its combination with the standard-of-care drugs in NSCLC. We showed that anisomycin inhibited growth, migration, and survival in NSCLC cells regardless of genetic mutation status, and to a greater extent than in normal lung epithelial cells. Isobologram analysis showed that the combination of anisomycin with cisplatin, paclitaxel, or gefitinib was synergistic in NSCLC but not normal lung cells. We further demonstrated that anisomycin inhibited NSCLC growth in mice. The combination of anisomycin with cisplatin was more effective than cisplatin alone and completely arrested NSCLC growth throughout the whole duration of treatment. JNK and p38 MAPK were not required for anisomycin's action. In contrast, anisomycin inhibits PI3K/Akt/mTOR pathway. Overexpression of constitutively active Akt reversed the pro-apoptotic effect of anisomycin. Our work demonstrates the selective anti-NSCLC activity of anisomycin via suppressing PI3K/Akt/mTOR. Our findings provide preclinical evidence to initialize the clinical trial of using anisomycin to sensitize NSCLC to current therapy.
Collapse
Affiliation(s)
- Hongxia Tan
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, 430071, China.,Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Biao Hu
- Department of Orthopaedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Fan Xie
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Chuanbing Zhu
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, 430071, China
| |
Collapse
|
5
|
Li Y, Hu J, Song H, Wu T. Antibiotic anisomycin selectively targets leukemia cell lines and patient samples through suppressing Wnt/β-catenin signaling. Biochem Biophys Res Commun 2018; 505:858-864. [DOI: 10.1016/j.bbrc.2018.09.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023]
|
6
|
Lin H, Wang Y, Lai H, Li X, Chen T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem Asian J 2018; 13:2730-2738. [PMID: 29963768 DOI: 10.1002/asia.201800862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
A promising cancer-targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF-related apoptosis-inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)-polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL-induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer-cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP-2/MMP-9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal-based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.
Collapse
Affiliation(s)
- Hao Lin
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yifan Wang
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Haoqiang Lai
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianfeng Chen
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Tolić L, Grujić S, Laušević M. Development and validation of a stability-indicating LC-UV and LC-MS/MS methods for quantitative analysis of anisomycin and identification of degradation products. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Yang N, Yao S, Liu D. Tumor necrosis factor-related apoptosis-inducing ligand additive with Iodine-131 of inhibits non-small cell lung cancer cells through promoting apoptosis. Oncol Lett 2018; 16:276-284. [PMID: 29928412 PMCID: PMC6006446 DOI: 10.3892/ol.2018.8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/12/2018] [Indexed: 11/26/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for ~80% of human lung cancer cases and is the most common cause of cancer-associated mortality worldwide. Reports have indicated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Iodine-131 (I-131) can induce tumor cell apoptosis. The purpose of the present study was to investigate the additive efficacy of TRAIL and I-131 on NSCLC cells. The present study demonstrated that additive treatment of TRAIL and I-131 (TRAIL-I-131) significantly inhibited the growth and aggressiveness of NSCLC cells compared with single TRAIL or I-131 treatment. Results demonstrated that TRAIL-I-131 treatment induced apoptosis of NSCLC cells, with western blot analysis confirming that TRAIL-I-131 treatment increased proapoptotic Bad and Bax expression levels, while antiapoptotic Bcl-2 and Bcl-w protein levels were decreased in NSCLC cells. The present study demonstrated that TRAIL-I-131 treatment inhibited vascular endothelial growth factor (VEGF) and activator protein-1 (AP-1) in NSCLC cells. Potential mechanism analyses identified that TRAIL-I-131 treatment induced apoptosis of NSCLC cells through caspase-9 activation. In vivo assays revealed that TRAIL-I-131 treatment significantly inhibited NSCLC tumor growth and increased apoptotic bodies in tumor tissues. Immunohistology demonstrated that caspase-9 was upregulated and VEGF was downregulated in tumor tissues in TRAIL-I-131-treated tumors. In conclusion, these results indicate that TRAIL combined with I-131 promoted apoptosis of NSCLC through caspase-9 activation, which may be a promising anticancer therapeutic schedule for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Shuzhan Yao
- Positron Emission Tomography/Computed Tomography Center, Shandong Provincial Hospital, Jinan, Shandong 250012, P.R. China
| | - Dong Liu
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
9
|
Enhancement of death receptor 4-mediated apoptosis and cytotoxicity in renal cell carcinoma cells by anisomycin. Anticancer Drugs 2017; 28:180-186. [PMID: 27879498 DOI: 10.1097/cad.0000000000000450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most drug-resistant malignancies, and an effective therapy is lacking for metastatic RCC. Anisomycin is known to inhibit protein synthesis and induce ribotoxic stress. The aim of this study was to explore whether anisomycin enhances the cytotoxic effects of mapatumumab, a human agonistic monoclonal antibody specific for death receptor 4 (DR4), in human RCC cells. We examined the cytotoxicity of anisomycin alone and in combination with mapatumumab in human RCC cell lines and primary RCC cell cultures. RCC cells treated with anisomycin showed cytotoxicity in a dose-dependent manner. Anisomyin in combination with mapatumumab showed a synergistic effect not only in two human RCC cell lines but also in five primary RCC cell cultures. The synergy between anisomycin and mapatumumab for cytotoxicity was also observed for apoptosis. Interestingly, anisomycin significantly increased DR4 expression at both the mRNA and the protein level. Furthermore, the combination-induced cytotoxicity was significantly suppressed by a human recombinant DR4:Fc chimeric protein. The combination of anisomycin and mapatumumab also enhanced the activity of caspases 8 and 3, the downstream molecules of death receptors. These findings indicate that anisomycin sensitizes RCC cells to DR4-mediated apoptosis through the induction of DR4, suggesting that combinational treatment with anisomycin and mapatumumab might represent a novel therapeutic strategy for the treatment of RCC.
Collapse
|
10
|
Deoxyarbutin displays antitumour activity against melanoma in vitro and in vivo through a p38-mediated mitochondria associated apoptotic pathway. Sci Rep 2017; 7:7197. [PMID: 28775302 PMCID: PMC5543205 DOI: 10.1038/s41598-017-05416-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 02/05/2023] Open
Abstract
Deoxyarbutin (DeoxyArbutin, dA), a natural compound widely used in skin lighting, displayed selectively cytotoxicity in vitro. In the study, we found that dA significantly inhibited viability/proliferation of B16F10 melanoma cells, induced tumour cell arrest and apoptosis. Furthermore, dA triggered its pro-apoptosis through damaging the mitochondrial function (membrane potential loss, ATP depletion and ROS overload generation etc.) and activating caspase-9, PARP, caspase-3 and the phosphorylation of p38. Treatment with p38 agonist confirmed the involvement of p38 pathway triggered by dA in B16F10 cells. The in vivo finding also revealed that administration of dA significantly decreased the tumour volume and tumour metastasis in B16F10 xenograft model by inhibiting tumour proliferation and inducing tumour apoptosis. Importantly, the results indicated that dA was specific against tumour cell lines and had no observed systemic toxicity in vivo. Taken together, our study demonstrated that dA could combate tumour in vitro and in vivo by inhibiting the proliferation and metastasis of tumour via a p38-mediated mitochondria associated apoptotic pathway.
Collapse
|
11
|
Zhou Z, Lu X, Wang J, Xiao J, Liu J, Xing F. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling. Sci Rep 2016; 6:24434. [PMID: 27087117 PMCID: PMC4834478 DOI: 10.1038/srep24434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 11/24/2022] Open
Abstract
Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xijian Lu
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jin Wang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jia Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou 510632, China
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Zhang Q, Liu H, Soukup GA, He DZZ. Identifying microRNAs involved in aging of the lateral wall of the cochlear duct. PLoS One 2014; 9:e112857. [PMID: 25405349 PMCID: PMC4236067 DOI: 10.1371/journal.pone.0112857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
Abstract
Age-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging. We examined miRNA gene expression profiles in the lateral wall of two mouse strains, along with exploration of the potential targets of those miRNAs that showed dynamic expression during aging. We show that 95 and 60 miRNAs exhibited differential expression in C57 and CBA mice during aging, respectively. A majority of downregulated miRNAs are known to regulate pathways of cell proliferation and differentiation, while all upregulated miRNAs are known regulators in the pro-apoptotic pathways. By using apoptosis-related gene array and bioinformatic approaches to predict miRNA targets, we identify candidate miRNA-regulated genes that regulate apoptosis pathways in the lateral wall of C57 and CBA mice during aging.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| |
Collapse
|
13
|
The synergistic effects of low dose fluorouracil and TRAIL on TRAIL-resistant human gastric adenocarcinoma AGS cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:293874. [PMID: 24324958 PMCID: PMC3845848 DOI: 10.1155/2013/293874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is a TNF family member which has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. However, many cancer cells remain resistant to TRAIL. In this study, we had investigated the synergistic effects of low dose fluorouracil (5-Fu) and TRAIL on TRAIL-resistant human gastric adenocarcinoma AGS cells and explored the potential mechanisms. Cell viability was analyzed by sulforhodamine B (SRB) assay and the synergistic effects were evaluated by Jin's formula and confirmed by both morphological changes under inverted microscope and flow cytometry. The expression of TRAIL-R1 (death receptor 4, DR4), TRAIL-R2 (DR5), TRAIL-R3 (decoy receptor, DcR1), TRAIL-R4 (DcR2), procaspase-3, procaspase-8, and procaspase-9 was detected by western blotting. Our results showed that there were significant synergistic effects of low dose 5-Fu and TRAIL on TRAIL-resistant AGS cells, and this effect was supposed to be mediated by decreasing DcR2 expression and increasing DR5 expression. The extrinsic and intrinsic apoptosis pathways were both activated. The data suggest that combined treatment of low dose 5-Fu and TRAIL can be an effective therapeutic approach for gastric adenocarcinoma.
Collapse
|