1
|
Wang M, Wang X, Wang Y, Gai Y, Ye J, Xu X, You X. Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncol Lett 2024; 28:541. [PMID: 39310022 PMCID: PMC11413475 DOI: 10.3892/ol.2024.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Globally, nearly 2 million deaths annually are attributed to the development of liver diseases, with liver cancer and cirrhosis being particularly prominent, which makes liver disease a significant global health concern. Cirrhosis is closely linked to the evolution of hepatitis, hepatic fibrosis and fatty liver. However, most liver diseases have an insidious onset, are challenging to treat and the prognosis and efficacy of current therapies are unsatisfactory, which can result in irreversible functional damage to the liver. Therefore, there is an urgent need to explore the molecular mechanisms underlying liver disease and identify new biomarkers and therapeutic targets. In previous years, microRNAs (miRs), a class of short non-coding RNAs comprising 17-25 nucleotides, have attracted attention for their roles in various types of liver diseases. Among them, miR-22 serves a unique role in mediating multiple pathway mechanisms and epigenetic modifications and can act both as an inhibitor of liver cancer and a metabolic blocker. Given its close association with the liver, several studies have reported that the differential expression of miR-22 regulates the metabolic process of liver cancer and is involved in the evolution of hepatic fibrosis and steatohepatitis, making it a potential target for early diagnosis and treatment. The present manuscript aimed to comprehensively review the key role of miR-22 in the evolution of liver diseases and offer valuable references and guidance for subsequent studies by identifying its specific mechanism of action and future development prospects.
Collapse
Affiliation(s)
- Minghe Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xuejing Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanqi Wang
- College of Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yikuo Gai
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jingran Ye
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xinyan Xu
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
2
|
Rani P, George B, V S, Biswas S, V M, Pal A, Rajmani RS, Das S. MicroRNA-22-3p displaces critical host factors from the 5' UTR and inhibits the translation of Coxsackievirus B3 RNA. J Virol 2024; 98:e0150423. [PMID: 38289119 PMCID: PMC10883805 DOI: 10.1128/jvi.01504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.
Collapse
Affiliation(s)
- Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sabarishree V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Somarghya Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Madhurya V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
3
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
4
|
Parvin R, Zhang L, Zu Y, Ye F. Photothermal Responsive Digital Polymerase Chain Reaction Resolving Exosomal microRNAs Expression in Liver Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207672. [PMID: 36942691 DOI: 10.1002/smll.202207672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Exosomal microRNAs have been studied as a good source of noninvasive biomarkers due to their functions in genetic exchange between cells and have been already well documented in many biological activities; however, inaccuracy remains a key challenge for liver cancer surveillance. Herein, a versatile duplex photothermal digital polymerase chain reaction (PCR) strategy combined with a lipid nanoparticle-based exosome capture approach is proposed to profile microRNAs expression through a 3-h easy-to-operate process. The microfluidically-generated molybdenum disulfide-nanocomposite-doped gelatin microcarriers display attractive properties as a 2-4 °C s-1 ramping-up rate triggered by near-infrared and reversible sol-gel transforming in step with PCR activation. To achieve PCR thermocycling, the corresponding irradiation coordinating with fan cooling are automatically performed via a homemade control module with programs. Thus, taking the multiplexing capability of dual-color labeling, 19-31 folds higher in exosomal microRNA-200b-3p and microRNA-21-5p, and tenfold lower in microRNA-22-3p expressions relative to the control microRNA-26a-5p are quantified in two liver cancer cells (Huh7 and HepG2) than in those from the healthy cells. It is believed that this exosomal microRNA genotyping method would be highly applicable for liver cancer diagnostics.
Collapse
Affiliation(s)
- Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Che J, Su Z, Yang W, Xu L, Li Y, Wang H, Zhou W. Tumor-suppressor p53 specifically binds to miR-29c-3p and reduces ADAM12 expression in hepatocellular carcinoma. Dig Liver Dis 2023; 55:412-421. [PMID: 35853821 DOI: 10.1016/j.dld.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an extremely aggressive malignant tumor associated with high migratory and invasive potential. The present study intends to explore regulatory mechanism of p53/microRNA (miR)-29c-3p/A disintegrin and metalloproteinase 12 (ADAM12) axis in HCC based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. METHODS Putative miR-29c-3p binding sites on ADAM12 3'UTR were verified by a luciferase assay. The binding affinity of p53 to miR-29c-3p was assessed based on CRISPR/Cas9 technology to construct a p53 knockout (p53-/-) HCCLM3 cell line. Furthermore, the effect of p53/miR-29c-3p/ADAM12 was assessed on maligant phenotypes in vitro and tumor formation and metastasis in nude mice. RESULTS ADAM12 was highly expressed but miR-29c-3p was poorly expressed in HCC. miR-29c-3p inhibited migratory and invasive abilities of HCC cells by targeting ADAM12 expression. p53 was found to target and upregulate miR-29c-3p, thus downregulating ADAM12 and conferring inhibitory effect on HCC cell activities. Moreover, ADAM12 knockout or p53 overexpression reduced HCC tumor formation and metastasis, which were reversed by further silencing of miR-29c-3p. CONCLUSION The identification of the p53/miR-29c-3p/ADAM12 axis in migration and invasion of HCC may potentially further our understanding of mechanisms underpinning HCC, and also bear translational value as novel molecular targets.
Collapse
Affiliation(s)
- Jinhui Che
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China
| | - Zhan Su
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China
| | - Weizhong Yang
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China
| | - Lu Xu
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China
| | - Yunjiu Li
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China
| | - Haihong Wang
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China.
| | - Wuyuan Zhou
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou 221000, PR China.
| |
Collapse
|
6
|
The tissue specific regulation of miR22 expression in the lung and brain by ribosomal protein L29. Sci Rep 2020; 10:16242. [PMID: 33004906 PMCID: PMC7530758 DOI: 10.1038/s41598-020-73281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous miR22 is associated with a diverse range of biological processes through post-translational modification of gene expression and its deregulation results in various diseases including cancer. Its expression is usually tissue or cell-specific, however, the reasons behind this tissue or cell specificity are not clearly outlined till-date. Therefore, our keen interest was to investigate the mechanisms of tissue or cell-specific expression of miR22. In the current study, miR22 expression showed a tissues-specific difference in the poly(I:C) induced inflammatory mouse lung and brain tissues. The cell-specific different expression of miR22 was also observed in inflammatory glial cells and endothelial cells. The pattern of RPL29 expression was also similar to miR22 in these tissues and cells under the same treatment. Interestingly, the knockdown of RPL29 exerted an inhibitory effect on miR22 and its known transcription factors including Fos-B and c-Fos. Fos-B and c-Fos were also differentially expressed in the two cell lines transfected with poly(I:C). The knockdown of c-Fos also exerted its negative effects on miR22 expression in both cells. These findings suggest that RPL29 might have regulatory roles on tissue or cell-specific expression of miR22 through the transcription activities of c-Fos and also possibly through Fos-B.
Collapse
|
7
|
Wang L, Wang YS, Mugiyanto E, Chang WC, Yvonne Wan YJ. MiR-22 as a metabolic silencer and liver tumor suppressor. LIVER RESEARCH 2020; 4:74-80. [PMID: 33005474 PMCID: PMC7523703 DOI: 10.1016/j.livres.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With obesity rate consistently increasing, a strong relationship between obesity and fatty liver disease has been discovered. More than 90% of bariatric surgery patients also have non-alcoholic fatty liver diseases (NAFLDs). NAFLD and non-alcoholic steatohepatitis (NASH), which are the hepatic manifestations of metabolic syndrome, can lead to liver carcinogenesis. Unfortunately, there is no effective medicine that can be used to treat NASH or liver cancer. Thus, it is critically important to understand the mechanism underlying the development of these diseases. Extensive evidence suggests that microRNA 22 (miR-22) can be a diagnostic marker for liver diseases as well as a treatment target. This review paper focuses on the roles of miR-22 in metabolism, steatosis, and liver carcinogenesis. Literature search is limited based on the publications included in the PubMed database in the recent 10 years.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,The College of Life Science, Yangtze University, Jingzhou, Hubei
| | - Yu-Shiuan Wang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Eko Mugiyanto
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
8
|
Biological Differentiation of Dampness-Heat Syndromes in Chronic Hepatitis B: From Comparative MicroRNA Microarray Profiling to Biomarker Identification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7234893. [PMID: 32051688 PMCID: PMC6995329 DOI: 10.1155/2020/7234893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022]
Abstract
Increasing interest is aroused by traditional Chinese medicine (TCM) treatment of chronic hepatitis B (CHB) based on specific TCM syndrome. As the most common CHB syndromes, spleen-stomach dampness-heat (SSDH) syndrome and liver-gallbladder dampness-heat (LGDH) syndrome are still apt to be confused in TCM diagnosis, greatly hindering the stable exertion of TCM effectiveness. It is urgently needed to provide objective and biological evidences for differentiation and identification of the two significant syndromes. In this study, microRNA (miRNA) microarray analyses coupled with bioinformatics were employed for comparative miRNA profiling of SSDH and LGDH patients. It was found that the two syndromes had both the same and different significantly differentially expressed miRNAs (SDE-miRNAs). Commonness and specificity were also both found between their SDE-miRNA-based bioinformatics analyses, including Hierarchical Clustering, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and miRNA-GO/pathway networks. Furthermore, syndrome-specific SDE-miRNAs were identified as the potential biomarkers, including hsa-miR-1273g-3p and hsa-miR-4419b for SSDH as well as hsa-miR-129-1-3p and hsa-miR-129-2-3p for LGDH. All these laid biological and clinical bases for classification and diagnosis of the two significant CHB dampness-heat syndromes including SSDH and LGDH, providing more opportunities for better application of TCM efficacy and superiority in CHB treatment.
Collapse
|
9
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
10
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
11
|
Musaddaq G, Shahzad N, Ashraf MA, Arshad MI. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human. Biomarkers 2019; 24:103-109. [PMID: 30252499 DOI: 10.1080/1354750x.2018.1528631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/22/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Hepatitis is an endemic disease worldwide leading to chronic and debilitating cancers. The viral agents and hepatotoxic substances lead to damage of hepatocytes and release of damage associated molecules in circulation. The lack of timely and rapid diagnosis of hepatitis results in chronic disease. OBJECTIVE The present review aimed to describe regulation, release and functions of microRNAs (miR) during human liver pathology and insights into their promising use as noninvasive biomarkers of hepatitis. METHODS Comprehensive data were collected from PubMed, ScienceDirect and the Web of Science databases utilizing the keywords "biomarkers", "microRNAs" and "hepatic diseases". RESULTS The miRs are readily released in the body fluids and blood during HBV/HCV associated hepatitis as well as metabolic, alcoholic, drug induced and autoimmune hepatitis. The liver-specific microRNAs including miR-122, miR-130, miR-183, miR-196, miR-209 and miR-96 are potential indicators of liver injury (mainly via apoptosis, necrosis and necroptosis) or hepatitis with their varied expression during acute/fulminant, chronic, liver fibrosis/cirrhosis and hepato-cellular carcinoma. CONCLUSIONS The liver-specific miRs can be used as rapid and noninvasive biomarkers of hepatitis to discern different stages of hepatitis. Blocking or stimulating pathways associated with miR regulation in liver could unveil novel therapeutic strategies in the management of liver diseases. Clinical significance Liver specific microRNAs interact with cellular proteins and signaling molecules to regulate the expression of various genes controlling biological processes. The circulatory level of liver specific microRNAs is indicator of severity of HBV and HCV infections as well as prognostic and therapeutic candidates. The expression of liver specific microRNAs is strongly associated with infectious, drug-induced, hepatotoxic, nonalcoholic steatohepatitis and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Ghulam Musaddaq
- a Institute of Microbiology, University of Agriculture , Faisalabad , Pakistan
| | - Naveed Shahzad
- b School of Biological Sciences (SBS), University of the Punjab , Lahore , Pakistan
| | | | | |
Collapse
|
12
|
Marchesi F, Regazzo G, Palombi F, Terrenato I, Sacconi A, Spagnuolo M, Donzelli S, Marino M, Ercolani C, Di Benedetto A, Blandino G, Ciliberto G, Mengarelli A, Rizzo MG. Serum miR-22 as potential non-invasive predictor of poor clinical outcome in newly diagnosed, uniformly treated patients with diffuse large B-cell lymphoma: an explorative pilot study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:95. [PMID: 29716630 PMCID: PMC5930939 DOI: 10.1186/s13046-018-0768-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of tumors, with aggressive clinical course that renders prognostication and choice of treatment strategy difficult. Chemo-immunotherapy with rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) is the current first-line treatment. MicroRNAs (miRNAs) are under investigation as novel diagnostic and prognostic biomarkers in several malignancies, including malignant lymphomas. While tissue miRNAs in DLBCL patients have been extensively studied as biomarkers, only few reports to date have evaluated the role of circulating/serum miRNAs as potential prognostic factors. Here circulating/serum miRNAs, including miR-22, were investigated as potential non-invasive biomarkers, with the aim of a better prognostic stratification of DLBCL patients. METHODS MiRNAs were selected by global expression profile of serum miRNAs of DLBCL patients, The Cancer Genome Atlas (TCGA) analysis and literature research. Serum and tissues miRNA expression profile in de novo DLBCL patients, consecutively enrolled for this study, were detected by quantitative real-time polymerase chain reaction. Relative expression was calculated using the comparative Ct method. Statistical significance was determined using the Mann-Whitney rank sum and Fisher's exact test. Survival analysis was conducted through the use of Kaplan-Meier method. Spearman's Rho was applied to study the correlation between miRNA distributions and days to first relapse. Experimentally validated miRNA-target interactions were assessed by miRTarBase database. Negative miRNA-mRNA correlation was evaluated in TCGA DLBCL dataset. Pathway analysis was performed by the functional annotation clustering DAVID tool. RESULTS We showed a significant modulation of serum miR-22 after R-CHOP treatment compared with basal values but no difference between baseline serum miRNAs values of DLBCL patients and healthy controls. High expression level of serum miR-22 in DLBCL at diagnosis (n = 36) is associated with a worse PFS and is independent of the currently used clinical prognostic index. Integrative and pathways analysis of miR-22 identified target genes involved in different important pathways such as p53 signaling. CONCLUSIONS Our data suggest that miR-22 is of potential interest as non-invasive biomarker to predict clinical outcome in DLBCL patients. Characterization of miR-22 pathways can pave the way to the development of targeted therapy approaches for specific subgroups of DLBCL patients.
Collapse
Affiliation(s)
- Francesco Marchesi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesca Palombi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistical Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sara Donzelli
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mirella Marino
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Benedetto
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction; IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
13
|
Chen M, Hu W, Xiong CL, Qu Z, Yin CQ, Wang YH, Luo CL, Guan Q, Yuan CH, Wang FB. miR-22 targets YWHAZ to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Oncotarget 2018; 7:80751-80764. [PMID: 27811373 PMCID: PMC5348352 DOI: 10.18632/oncotarget.13037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Many miRNAs are associated with the carcinogenesis of hepatocellular carcinoma (HCC) and some exhibit potential prognostic value. In this study, to further confirm the prognostic value of miRNAs in HCC, we employed miRNA-sequencing data of tumor tissues of 372 HCC patients released by The Cancer Genome Atlas (TCGA) and identified 3 miRNAs including miR-22, miR-9-1 and miR-9-2 could be used as independent predictors for HCC prognostic evaluation. As a tumor-suppressive miRNA, miR-22 was down-regulated in HCC tissues. This down-regulation correlated with tumor vascular invasion, Edmondson–Steiner grade, TNM stage, and AFP level. Moreover, biofunctional investigations revealed that miR-22 significantly attenuated cellular proliferation, migration and invasion of HCC cells. Additionally, through gene expression profiles and bioinformatics analysis, YWHAZ was identified to be a direct target of miR-22 and its overexpression partially counteracted the inhibitory effects of miR-22 on HCC cells. Finally, molecular studies further confirmed that miR-22 promoted the accumulation of FOXO3a in nucleus and subsequently reversed invasive phenotype of HCC cells by repressing YWHAZ-mediated AKT phosphorylation. Taken together, these data demonstrate that miR-22 exhibits tumor-suppressive effects in HCC cells by regulating YWHAZ/AKT/FOXO3a signaling and might be used as an independent prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chen-Ling Xiong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Zhen Qu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, P.R. China
| | - Chang-Qing Yin
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Yu-Hui Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Qing Guan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chun-Hui Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
14
|
Li J, Zhang X, Chen L, Zhang Z, Zhang J, Wang W, Wu M, Shi B, Zhang X, Kozlowski M, Hu Y, Yuan Z. Circulating miR-210 and miR-22 combined with ALT predict the virological response to interferon-alpha therapy of CHB patients. Sci Rep 2017; 7:15658. [PMID: 29142236 PMCID: PMC5688172 DOI: 10.1038/s41598-017-15594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Interferon-alpha (IFN-α) therapy of chronic hepatitis B (CHB) patients is constrained by limited response and side effects. We described a panel of circulating microRNAs (miRNAs) which could potentially predict outcome of IFN-α therapy. Here, we report development of a simplified scoring model for personalized treatment of CHB patients. 112 CHB patients receiving IFN-α treatment were randomly divided into a training (n = 75) or a validation group (n = 37). The expression of 15 candidate miRNAs was detected in training group with 5 miRNAs exhibiting significantly different levels (p < 0.0001) between early virological response (EVR) and non-early virological response (N-EVR). These 5 miRNAs were further tested in validation phase. Refinement analyses of results from training phase established a model composed of miR-210, miR-22 and alanine aminotransferase (ALT), with area under ROC curve (AUC) of 0.874 and 0.816 in training and validation groups, respectively. In addition, this model showed prognostic value for sustained virological response (SVR) (AUC = 0.821). Collectively, this simplified scoring model composed of miR-210, miR-22 and ALT can reproducibly predict the EVR and SVR of IFN-α therapy in CHB patients. The model should help to forecast the outcome of IFN-α treatment prior to therapy decision involving nucleoside analogs or IFNs.
Collapse
Affiliation(s)
- Jin Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanqing Zhang
- Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Weixia Wang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bisheng Shi
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxin Zhang
- Institute of Infectious and Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Ruijin Hospital, Shanghai, China
| | - Maya Kozlowski
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunwen Hu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Key Laboratory of Medical Molecular Virology at the School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Expression Profiling of Cellular MicroRNA in Asymptomatic HBsAg Carriers and Chronic Hepatitis B Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6484835. [PMID: 28913356 PMCID: PMC5587942 DOI: 10.1155/2017/6484835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/31/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Background MicroRNAs (miRNAs) may serve as potential molecular markers to predict liver injury resulting from chronic hepatitis B (CHB). In the present study, we want to study the expression profile and clinical significance of miRNAs at different stages of CHB virus infection. Methods Using miRNA microarray, we investigated the global expression profiles of cellular miRNA in asymptomatic hepatitis B antigen carriers (ASCs) and CHB patients, compared with healthy controls (HCs). Results We identified 79 and 203 differentially expressed miRNAs in the peripheral blood mononuclear cells of ASCs and CHB patients compared to HCs, respectively. Some of these miRNAs were common to ASCs and CHB patients, but another set of miRNAs that showed differential expression between ASCs and CHB patients was also identified. Gene ontology and pathway enrichment analysis showed that the target genes of the identified miRNAs played a role in important biological functions, such as learning or memory, cell-cell adherens junction, ion channel inhibitor activity, TGF-beta signaling pathway, and p53 signaling pathway. Conclusion We identified some significant differentially expressed miRNA in different phases of HBV infection, which might serve as biomarkers or therapeutic targets in the future.
Collapse
|
16
|
Zhen Y, Xinghui Z, Chao W, Yi Z, Jinwen C, Ruifang G, Chao Z, Min Z, Chunlei G, Yan F, Lingfang D, Long S, Wenzhi S, Xiaohe L, Rong X. Several microRNAs could predict survival in patients with hepatitis B-related liver cancer. Sci Rep 2017; 7:45195. [PMID: 28322348 PMCID: PMC5359660 DOI: 10.1038/srep45195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs as biomarkers play an important role in the tumorigenesis process, including hepatocellular carcinomas (HCCs). In this paper, we used The Cancer Genome Atlas (TCGA) database to mine hepatitis B-related liver cancer microRNAs that could predict survival in patients with hepatitis B-related liver cancer. There were 93 cases of HBV-HCC and 49 cases of adjacent normal controls included in the study. Kaplan–Meier survival analysis of a liver cancer group versus a normal control group of differentially expressed genes identified eight genes with statistical significance. Compared with the normal liver cell line, hepatocellular carcinoma cell lines had high expression of 8 microRNAs, albeit at different levels. A Cox proportional hazards regression model for multivariate analysis showed that four genes had a significant difference. We established classification models to distinguish short survival time and long survival time of liver cancers. Eight genes (mir9-3, mir10b, mir31, mir519c, mir522, mir3660, mir4784, and mir6883) were identified could predict survival in patients with HBV-HCC. There was a significant correlation between mir10b and mir31 and clinical stages (p < 0.05). A random forests model effectively estimated patient survival times.
Collapse
Affiliation(s)
- Ye Zhen
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China.,School of public health, Taishan Medical University, Tai'an 271016, China.,Department of Infectious Disease, Tai'an Central Hospital, Tai'an 271000, China
| | - Zhao Xinghui
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Wu Chao
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Zhao Yi
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Jinwen
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gao Ruifang
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Zhang Chao
- College of Information Science and Engineering, Shandong Agriculture University, Tai'an 271000, China
| | - Zhao Min
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an 271000, China
| | - Guo Chunlei
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Fang Yan
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Du Lingfang
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Shen Long
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Shen Wenzhi
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Luo Xiaohe
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Xiang Rong
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University School of Medicine, Tianjin 371000, China.,The International Collaborative Laboratory for Biological Medicine of the Ministry of Education, Nankai University School of Medicine, Tianjin 371000, China
| |
Collapse
|
17
|
Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes. PLoS One 2017; 12:e0168049. [PMID: 28045918 PMCID: PMC5207697 DOI: 10.1371/journal.pone.0168049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background/Aims Folic acid (FA) is a core micronutrient involved in DNA synthesis/methylation, and the metabolism of FA is responsible for genomic stability. MicroRNAs may affect gene expression during folate metabolism when cellular homeostasis is changed. This study aimed to reveal the relationship between FA deficiency and the expression of miR-22-p/miR-149-5p and the targeted regulation of miR-22-3p/miR-149-5p on the key folate metabolic gene Methylenetetrahydrofolate reductase (MTHFR). Methods Normal (HL-7702 cells) and cancerous (QGY-7703 cells) human hepatocytes were intervened in modified RPMI 1640 with FA deficiency for 21 days. The interaction between MTHFR and the tested miRNAs was verified by Dual-Luciferase Reporter Assays. The changes in the expression of miR-22-3p/miR-149-5p in response to FA deficiency were detected by Poly (A) Tailing RT-qPCR, and the expression of MTHFR at both the transcriptional and translational levels was determined by RT-qPCR and Western blotting, respectively. Result MiR-22-3p/miR-149-5p directly targeted the 3’UTR sequence of the MTHFR gene. FA deficiency led to an upregulation of miR-22-3p/miR-149-5p expression in QGY-7703/HL-7702 cells, while the transcription of MTHFR was decreased in QGY-7703 cells but elevated in HL-7702 cells. Western blotting showed that FA deficiency resulted in a decline of the MTHFR protein in QGY-7703 cells, whereas in HL-7702 cells, the MTHFR protein level remained constant. Conclusion The results suggested that miR-22-3p/miR-149-5p exert different post-transcriptional effects on MTHFR under conditions of FA deficiency in normal and cancerous human hepatocytes. The results also implied that miR-22-3p/miR-149-5p might exert anticancer effects in cases of long-term FA deficiency.
Collapse
|
18
|
Wang J, Li Y, Ding M, Zhang H, Xu X, Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review). Int J Oncol 2016; 50:345-355. [PMID: 28000852 PMCID: PMC5238783 DOI: 10.3892/ijo.2016.3811] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
miRNAs (microRNAs) have been validated to play fateful roles in the occurrence and development of cancers by post-transcriptionally targeting 3′-untranslated regions of the downstream gene mRNAs to repress mRNA expression. Mounting investigations forcefully document that not only does miR-22 biologically impinge on the processes of senescence, energy supply, angiogenesis, EMT (epithelial-mesenchymal transition), proliferation, migration, invasion, metastasis and apoptosis, but also it genetically or epigenetically exerts dual (inhibitory/promoting cancer) effects in various cancers via CNAs (copy number alterations), SNPs (single nucleotide polymorphisms), methylation, acetylation and even more momentously hydroxymethylation. Additionally, miR-22 expression may fluctuate with cancer progression in the body fluids of cancer patients and miR-22 could amplify its inhibitory or promoting effects through partaking in positive or negative feedback loops and interplaying with many other related miRNAs in the cascade of events, making it possible for miR-22 to be a promising and complementary or even independent cancer biomarker in some cancers and engendering profound influences on the early diagnosis, therapeutics, supervising curative effects and prognosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, P.R. China
| | - Yuan Li
- Department of Pediatrics, The Affiliated Children's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Meiman Ding
- The Criminal Investigation Detachment of Jiaxing Public Security Bureau, Hangzhou, Zhejiang, P.R. China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jinlong Tang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
19
|
Xia J, Song P, Sun Z, Sawakami T, Jia M, Wang Z. Advances of diagnostic and mechanistic studies of γ-glutamyl transpeptidase in hepatocellular carcinoma. Drug Discov Ther 2016; 10:181-7. [PMID: 27534452 DOI: 10.5582/ddt.2016.01052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second major cause of cancerous deaths in the world, accounting for 80-90% of all cases of liver cancer with an assessed global incidence of 782,000 new cases and approximate 746,000 deaths in 2012. Preoperative laboratory data (des-γ carboxyprothrombin (DCP), α-fetoprotein (AFP), Indocyanine green retention 15 min (ICG-R15), and γ-glutamyl transferase (GGT)) should be completely assessed before deciding a treatment and predicting prognosis in order to improve the prognosis for patients with HCC. A few recent studies have suggested GGT as an independent prognostic indicator in cases with HCC. And the data of our and other research teams revealed that combination of GGT and ICG-R15 or other factors may improve the efficiency of GGT as a prognostic predictor. In addition of clinical studies, a few mechanistic studies had been performed and GGT was suggested to promote tumor progression and poor prognosis through inducing DNA damage and genome instability, releasing reactive oxygen species to activating invasion-related signaling pathway, blocking chemotherapy, regulating microRNAs, and managing CpG island methylation. Although there were a few mechanistic studies, further and accurate researches were still in need.
Collapse
Affiliation(s)
- Jufeng Xia
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | |
Collapse
|
20
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
21
|
MicroRNAs as Biomarkers for Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:280. [PMID: 26927063 PMCID: PMC4813144 DOI: 10.3390/ijms17030280] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Serum levels of liver enzymes, such as alanine transaminase, aspartate transaminase, and α-fetoprotein, provide insight into liver function and are used during treatment of liver disease, but such information is limited. In the case of hepatocellular carcinoma (HCC), which is often not detected until an advanced stage, more sensitive biomarkers may help to achieve earlier detection. Serum also contains microRNAs, a class of small non-coding RNAs that play an important role in regulating gene expression. miR-122 is specific to the liver and correlates strongly with liver enzyme levels and necroinflammatory activity, and other microRNAs are correlated with the degree of fibrosis. miR-122 has also been found to be required for hepatitis C virus (HCV) infection, whereas other microRNAs have been shown to play antiviral roles. miR-125a-5p and miR-1231 have been shown to directly target hepatitis B virus (HBV) transcripts, and others are up- or down-regulated in infected individuals. MicroRNA profiles also differ in the case of HBV and HCV infection as well as between HBeAg-positive and negative patients, and in patients with occult versus active HBV infection. In such patients, monitoring of changes in microRNA profiles might provide earlier warning of neoplastic changes preceding HCC.
Collapse
|
22
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
23
|
MicroRNA panels as disease biomarkers distinguishing hepatitis B virus infection caused hepatitis and liver cirrhosis. Sci Rep 2015; 5:15026. [PMID: 26456479 PMCID: PMC4601029 DOI: 10.1038/srep15026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/15/2015] [Indexed: 12/26/2022] Open
Abstract
An important unresolved clinical issue is to distinguish hepatitis B virus (HBV) infection caused chronic hepatitis and their corresponding liver cirrhosis (LC). Recent research suggests that circulating microRNAs are useful biomarkers for a wide array of diseases. We analyzed microRNA profiles in the plasmas of a total of 495 chronic hepatitis B (CHB) patients, LC patients and healthy donors and identified 10 miRNAs that were differentially expressed between CHB and LC patients. Our logistic models show that three panels of miRNAs have promising diagnostic performances in discriminating CHB from LC. Blinded tests were subsequently conducted to evaluate the diagnostic performances in clinical practice and a sensitivity of 85% and specificity of 70% have been achieved in separating CHB from LC pateints. The expression levels of some circulating miRNAs were significantly correlated with HBV DNA load and liver function, such as prothrombin activity (PTA) and levels of alanin aminotransferase (ALT), albumin (ALB) and cholinesterase (CHE). Our results provide important information for developing novel diagnostic tools for distinguishing chronic HBV hepatitis and their corresponding cirrhosis.
Collapse
|
24
|
Anwar SL, Lehmann U. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas. J Clin Med 2015; 4:1631-50. [PMID: 26295264 PMCID: PMC4555081 DOI: 10.3390/jcm4081631] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC), the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| |
Collapse
|
25
|
Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 2015; 21:7375-7399. [PMID: 26139985 PMCID: PMC4481434 DOI: 10.3748/wjg.v21.i24.7375] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is the leading risk factor for the development of hepatocellular carcinoma (HCC). With nearly 750000 deaths yearly, hepatocellular carcinoma is the second highest cause of cancer-related death in the world. Unfortunately, the molecular mechanisms that contribute to the development of HBV-associated HCC remain incompletely understood. Recently, microRNAs (miRNAs), a family of small non-coding RNAs that play a role primarily in post-transcriptional gene regulation, have been recognized as important regulators of cellular homeostasis, and altered regulation of miRNA expression has been suggested to play a significant role in virus-associated diseases and the development of many cancers. With this in mind, many groups have begun to investigate the relationship between miRNAs and HBV replication and HBV-associated disease. Multiple findings suggest that some miRNAs, such as miR-122, and miR-125 and miR-199 family members, are playing a role in HBV replication and HBV-associated disease, including the development of HBV-associated HCC. In this review, we discuss the current state of our understanding of the relationship between HBV and miRNAs, including how HBV affects cellular miRNAs, how these miRNAs impact HBV replication, and the relationship between HBV-mediated miRNA regulation and HCC development. We also address the impact of challenges in studying HBV, such as the lack of an effective model system for infectivity and a reliance on transformed cell lines, on our understanding of the relationship between HBV and miRNAs, and propose potential applications of miRNA-related techniques that could enhance our understanding of the role miRNAs play in HBV replication and HBV-associated disease, ultimately leading to new therapeutic options and improved patient outcomes.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Virus Replication
Collapse
|
26
|
Kitab B, Alj HS, Ezzikouri S, Benjelloun S. MicroRNAs as Important Players in Host-hepatitis B Virus Interactions. J Clin Transl Hepatol 2015; 3:149-61. [PMID: 26357642 PMCID: PMC4548348 DOI: 10.14218/jcth.2015.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a major public health problem, causes acute and chronic hepatitis that is often complicated by liver cirrhosis and hepatocellular carcinoma. The pathogenic mechanisms of HBV-related liver disease are not well understood, and the current licensed therapies are not effective in permanently clearing virus from the circulation. In recent years, the role of micro-ribonucleic acids (miRNAs) in HBV infection has attracted great interest. Cellular miRNAs can influence HBV replication directly by binding to HBV transcripts and indirectly by targeting cellular factors relevant to the HBV life cycle. They are also involved in the regulation of cellular genes and signaling pathways that have critical roles in HBV pathogenesis. HBV infection, in turn, can trigger changes in cellular miRNA expression that are associated with distinctive miRNA expression profiles depending on the phase of liver disease. These alterations in miRNA expression have been linked to disease progression and hepatocarcinogenesis. We provide here an up to date review regarding the field of miRNAs and HBV interplay and highlight the potential utility of miRNAs as diagnostic biomarkers and therapeutic targets for the management of HBV-related liver disease.
Collapse
Affiliation(s)
- Bouchra Kitab
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanane Salih Alj
- Laboratory of Biology and Health, URAC34, Faculty of Sciences Ben M’sik, University Hassan II Casablanca, Morocco
| | - Sayeh Ezzikouri
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
- Correspondence to: Soumaya Benjelloun, Virology Unit, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca 20360, Morocco. Tel: +212‐527‐016‐076; +212‐522‐434‐450, Fax: +212‐522‐260‐957, E‐mail:
| |
Collapse
|
27
|
Fiorino S, Bacchi-Reggiani L, Sabbatani S, Grizzi F, di Tommaso L, Masetti M, Fornelli A, Bondi A, de Biase D, Visani M, Cuppini A, Jovine E, Pession A. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: a systematic review. Br J Nutr 2014; 112:1751-68. [PMID: 25325563 DOI: 10.1017/s0007114514002839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection represents a serious global health problem and persistent HBV infection is associated with an increased risk of cirrhosis, hepatocellular carcinoma and liver failure. Recently, the study of the role of microRNA (miRNA) in the pathogenesis of HBV has gained considerable interest as well as new treatments against this pathogen have been approved. A few studies have investigated the antiviral activity of vitamin E (VE) in chronic HBV carriers. Herein, we review the possible role of tocopherols in the modulation of host miRNA with potential anti-HBV activity. A systematic research of the scientific literature was performed by searching the MEDLINE, Cochrane Library and EMBASE databases. The keywords used were 'HBV therapy', 'HBV treatment', 'VE antiviral effects', 'tocopherol antiviral activity', 'miRNA antiviral activity' and 'VE microRNA'. Reports describing the role of miRNA in the regulation of HBV life cycle, in vitro and in vivo available studies reporting the effects of VE on miRNA expression profiles and epigenetic networks, and clinical trials reporting the use of VE in patients with HBV-related chronic hepatitis were identified and examined. Based on the clinical results obtained in VE-treated chronic HBV carriers, we provide a reliable hypothesis for the possible role of this vitamin in the modulation of host miRNA profiles perturbed by this viral pathogen and in the regulation of some cellular miRNA with a suggested potential anti-HBV activity. This approach may contribute to the improvement of our understanding of pathogenetic mechanisms involved in HBV infection and increase the possibility of its management and treatment.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio,Via Benni 44,40065Budrio, Bologna,Italy
| | - L Bacchi-Reggiani
- Istituto di Cardiologia, Policlinico S. Orsola-Malpighi, Università degli Studi di Bologna,Bologna,Italy
| | - S Sabbatani
- Istituto di Malattie Infettive, Policlinico S. Orsola-Malpighi, Università degli Studi di Bologna,Bologna,Italy
| | - F Grizzi
- Humanitas Clinical and Research Center,Rozzano, Milano,Italy
| | - L di Tommaso
- Humanitas Clinical and Research Center,Rozzano, Milano,Italy
| | - M Masetti
- Unità Operativa di Chirurgia A, Ospedale Maggiore Bologna,Bologna,Italy
| | - A Fornelli
- Servizio di Anatomia Patologica, Ospedale Maggiore,Bologna,Italy
| | - A Bondi
- Servizio di Anatomia Patologica, Ospedale Maggiore,Bologna,Italy
| | - D de Biase
- Dipartimento di Medicina Sperimentale,Università di Bologna, Ospedale Bellaria,Bologna,Italy
| | - M Visani
- Dipartimento di Farmacia e Biotecnologie,Università di Bologna,Bologna,Italy
| | - A Cuppini
- Unità Operativa di Medicina Interna, Ospedale di Budrio,Via Benni 44,40065Budrio, Bologna,Italy
| | - E Jovine
- Unità Operativa di Chirurgia A, Ospedale Maggiore Bologna,Bologna,Italy
| | - A Pession
- Dipartimento di Farmacia e Biotecnologie,Università di Bologna,Bologna,Italy
| |
Collapse
|
28
|
Akamatsu S, Hayes CN, Tsuge M, Miki D, Akiyama R, Abe H, Ochi H, Hiraga N, Imamura M, Takahashi S, Aikata H, Kawaoka T, Kawakami Y, Ohishi W, Chayama K. Differences in serum microRNA profiles in hepatitis B and C virus infection. J Infect 2014; 70:273-87. [PMID: 25452043 DOI: 10.1016/j.jinf.2014.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Patients infected with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) are at greater risk of cirrhosis and hepatocellular carcinoma. The objective of this study was to identify virus-specific serum microRNA profiles associated with liver function and disease progression. Microarray analysis of serum microRNAs was performed using the Toray 3D array system in 22 healthy subjects, 42 HBV patients, and 30 HCV patients. Selected microRNAs were then validated by qRT-PCR in 186 HBV patients, 107 HCV patients, and 22 healthy subjects. RESULTS Microarray analysis showed up-regulation of a number of microRNAs in serum of both HBV and HCV patients. In qRT-PCR analysis, miR-122, miR-99a, miR-125b, miR-720, miR-22, and miR-1275 were up-regulated both in HBV patients relative to healthy subjects, and all except miR-1275 were up-regulated in HBeAg-positive patients relative to HBeAg-negative patients. Specific microRNAs were independently associated with different aspects of HBV infection. MiR-122 was independently associated with HBV DNA level, whereas miR-125b was independently associated with levels of HBV DNA, HBsAg, and HBeAg. MiR-22 and miR-1275 were independently associated with serum γ-glutamyl transpeptidase levels. CONCLUSIONS Serum microRNA levels reflect differences in the etiology and stage of viral hepatitis.
Collapse
Affiliation(s)
- Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | | | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
29
|
Xie KL, Zhang YG, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 2014; 4:1176-92. [PMID: 25285167 PMCID: PMC4183996 DOI: 10.7150/thno.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global problem and a major risk factor for hepatocellular carcinoma (HCC). microRNAs (miRNAs) comprise a group of small noncoding RNAs regulating gene expression at the posttranslational level, thereby participating in fundamental biological processes, including cell proliferation, differentiation, and apoptosis. In this review, we summarize the roles of miRNAs in HBV infection, the recently identified mechanism underlying dysregulation of miRNAs in HBV-associated HCC, and their association with hepatocarcinogenesis. Moreover, we discuss the recent advances in the use of circulating miRNAs in the early diagnosis of HCC as well as therapies based on these aberrantly expressed miRNAs.
Collapse
|