1
|
Yin P, Jiang Z, Wang X, Gong S, Zhang C, Fan Z. Fasudil protects spiral ganglion neurons and hair cells against cisplatin-induced apoptosis by inhibiting reactive oxygen species accumulation and regulating the ROCK/PTEN/AKT signaling pathway. Toxicol Res (Camb) 2025; 14:tfaf030. [PMID: 40052021 PMCID: PMC11881692 DOI: 10.1093/toxres/tfaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/26/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Cisplatin causes hearing loss in at least 60% of chemotherapy patients, leading to impairments in the patient's life quality. Spiral ganglion neurons (SGNs) and hair cells (HCs) are the main cell types affected by cisplatin accumulation in the inner ear. Fasudil is an FDA-approved drug and has been reported to exert neuroprotective effects in previous research. However, whether fasudil possesses protective effects in cisplatin-induced SGN and HC damage and the potential mechanisms remain unknown. In this study, we investigated whether fasudil has a protective effect on cisplatin-induced damage to inner ear SGNs and HCs. We first observed the effect of different concentrations of fasudil on cisplatin-induced cell loss of SGNs and HCs. We also studied the effects of fasudil on cisplatin-induced apoptosis of SGNs and HCs and detected the mitochondrial reactive oxygen species (ROS) level. Furthermore, we investigated the mechanisms of fasudil in protecting the SGNs and HCs from cisplatin- induced cells apoptosis. We found that fasudil treatment significantly ameliorated SGNs and HCs loss and attenuated cell apoptosis after cisplatin exposure. Moreover, fasudil attenuated the cisplatin-induced ROS generation in SGN- and HC-explants culture. Further mechanistic studies revealed that fasudil regulated the ROCK/PTEN/AKT signaling pathway in SGN- and HC-explants after cisplatin exposure. This study indicates that fasudil might be a novel therapeutic target for preventing cisplatin-induced SGNs and HCs damage.
Collapse
Affiliation(s)
- Peng Yin
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Zhenhua Jiang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Xue Wang
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing 10050, China
| | - Cui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Zhaomin Fan
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| |
Collapse
|
2
|
Palomo I, Wehinger S, Andrés V, García‐García FJ, Fuentes E. RhoA/rho kinase pathway activation in age-associated endothelial cell dysfunction and thrombosis. J Cell Mol Med 2024; 28:e18153. [PMID: 38568071 PMCID: PMC10989549 DOI: 10.1111/jcmm.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 04/05/2024] Open
Abstract
The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Francisco J. García‐García
- Department of Geriatric MedicineHospital Universitario de Toledo, Instituto de Investigación de Castilla La Mancha (IDISCAM), CIBERFES (ISCIII)ToledoSpain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| |
Collapse
|
3
|
Liu Q, Nan Y, Yang Y, Li X, Jiang W, Jiao T, Li J, Jia X, Ye M, Niu Y, Yuan L. Exploring the Role of Lycium barbarum Polysaccharide in Corneal Injury Repair and Investigating the Relevant Mechanisms through In Vivo and In Vitro Experiments. Molecules 2023; 29:49. [PMID: 38202631 PMCID: PMC10779902 DOI: 10.3390/molecules29010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Fructus Lycii, exhibiting various biological activities. This study aims to explore the protective effects of LBP on human corneal epithelial cells (HCEC) and a rat corneal injury model. Potential target points for LBP improving corneal injury repair were screened from public databases, and functional and pathway enrichment analyses of core targets were conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Rat corneal alkali burns and HCEC oxidative stress injury models were established, and the results were validated through slit lamp examination, HE staining, TUNEL assay, immunofluorescence, CCK-8 assay, flow cytometry, scratch assay, and qRT-PCR methods. In the context of database retrieval, identification of 10 LBP monosaccharide components and 50 corneal injury repair-related targets was achieved. KEGG pathway analysis suggested that LBP might regulate the IL-17 and TNF signaling pathways through targets such as JUN, CASP3, and MMP9, thereby improving corneal damage. In vivo and in vitro experimental results indicated that LBP could reduce the increase of inflammation index scores (p < 0.05), inflammatory cell density (p < 0.01), TUNEL-positive cells (p < 0.01), corneal opacity scores (p < 0.01), and expression of corneal stromal fibrosis-related proteins α-SMA, FN, and COL (p < 0.01) caused by chemical damage to rat corneas. LBP inhibited oxidative stress-induced decreases in cell viability (p < 0.001) and migration healing ability (p < 0.01) in HCECs, reducing apoptosis rates (p < 0.001), ROS levels (p < 0.001), and the expression of inflammatory factors TNF-α and IL-6 (p < 0.01). qRT-PCR results demonstrated that LBP intervention decreased the mRNA levels of JUN, CASP3, and MMP9 in H2O2-induced alkaline-burned corneas and HCECs (p < 0.01).The integrated results from network pharmacology and validation experiments suggest that the inhibitory effects of LBP on apoptosis, inflammation, and fibrosis after corneal injury may be achieved through the suppression of the TNF and IL-17 signaling pathways mediated by JUN, CASP3, and MMP9.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Yifan Yang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (M.Y.)
| | - Xiangyang Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Wenjie Jiang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Taiqiang Jiao
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Jiaqing Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Xusheng Jia
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (M.Y.)
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (Q.L.); (Y.N.); (X.L.); (W.J.); (T.J.); (J.L.); (X.J.)
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
4
|
Guan X, Wei D, Liang Z, Xie L, Wang Y, Huang Z, Wu J, Pang T. FDCA Attenuates Neuroinflammation and Brain Injury after Cerebral Ischemic Stroke. ACS Chem Neurosci 2023; 14:3839-3854. [PMID: 37768739 DOI: 10.1021/acschemneuro.3c00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is a deleterious cerebrovascular disease with few therapeutic options, and its functional recovery is highly associated with the integrity of the blood-brain barrier and neuroinflammation. The Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor fasudil (F) and the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) have been demonstrated to exhibit neuroprotection in a series of neurological disorders. Hence, we synthesized and biologically examined the new salt fasudil dichloroacetate (FDCA) and validated that FDCA was eligible for attenuating ischemic volume and neurological deficits in the rat transient middle cerebral artery occlusion (tMCAO) model. Additionally, FDCA exerted superior effects than fasudil and dichloroacetate alone or in combination in reducing cerebral ischemic injury. Particularly, FDCA could maintain the blood-brain barrier (BBB) integrity by inhibiting matrix metalloproteinase 9 (MMP-9) protein expression and the degradation of zonula occludens (ZO-1) and Occludin protein. Meanwhile, FDCA could mitigate the neuroinflammation induced by microglia. The in vivo and in vitro experiments further demonstrated that FDCA disrupted the phosphorylations of myosin phosphatase target subunit 1 (MYPT1), mitogen-activated protein kinase (MAPK) cascade, including p38 and c-Jun N-terminal kinase (JNK), and pyruvate dehydrogenase (PDH) and limited excessive lactic acid metabolites, resulting in inhibition of BBB disruption and neuroinflammation. In addition, FDCA potently mitigated inflammatory response in human monocytes isolated from ischemic stroke patients, which provides the possibilities of a clinical translation perspective. Overall, these findings provided a therapeutic potential for FDCA as a candidate agent for ischemic stroke and other neurological diseases associated with BBB disruption and neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Soleymani M, Masoudkabir F, Shabani M, Vasheghani-Farahani A, Behnoush AH, Khalaji A. Updates on Pharmacologic Management of Microvascular Angina. Cardiovasc Ther 2022; 2022:6080258. [PMID: 36382021 PMCID: PMC9626221 DOI: 10.1155/2022/6080258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 01/14/2024] Open
Abstract
Microvascular angina (MVA), historically called cardiac syndrome X, refers to angina with nonobstructive coronary artery disease. This female-predominant cardiovascular disorder adds considerable health-related costs due to repeated diagnostic angiography and frequent hospital admissions. Despite the high prevalence of this diagnosis in patients undergoing coronary angiography, it is still a therapeutic challenge for cardiologists. Unlike obstructive coronary artery disease, with multiple evidence-based therapies and management guidelines, little is known regarding the management of MVA. During the last decade, many therapeutic interventions have been suggested for the treatment of MVA. However, there is a lack of summarization tab and update of current knowledge about pharmacologic management of MVA, mostly due to unclear pathophysiology. In this article, we have reviewed the underlying mechanisms of MVA and the outcomes of various medications in patients with this disease. Contrary to vasospastic angina in which normal angiogram is observed as well, nitrates are not effective in the treatment of MVA. Beta-blockers and calcium channel blockers have the strongest evidence of improving the symptoms. Moreover, the use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, statins, estrogen, and novel antianginal drugs has had promising outcomes. Investigations are still ongoing for vitamin D, omega-3, incretins, and n-acetyl cysteine, which have resulted in beneficial initial outcomes. We believe that the employment of the available results and results of the future large-scale trials into cardiac care guidelines would help reduce the global cost of cardiac care tremendously.
Collapse
Affiliation(s)
- Mosayeb Soleymani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Liu H, Pan Z, Ma X, Cui J, Gao J, Miao Q, Zhu Z, Chen X, Su S. ROCK inhibitor fasudil reduces the expression of inflammatory factors in LPS-induced rat pulmonary microvascular endothelial cells via ROS/NF-κB pathway. BMC Pharmacol Toxicol 2022; 23:24. [PMID: 35428330 PMCID: PMC9013060 DOI: 10.1186/s40360-022-00565-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation plays a major role in the pulmonary artery hypertension (PAH) and the acute lung injury (ALI) diseases. The common feature of these complications is the dysfunction of pulmonary microvascular endothelial cells (PMVECs). Fasudil, the only Rho kinase (ROCK) inhibitor used in clinic, has been proved to be the most promising new drug for the treatment of PAH, with some anti-inflammatory activity. Therefore, in the present study, the effect of fasudil on lipopolysaccharide (LPS)-induced inflammatory injury in rat PMVECs was investigated. Methods LPS was used to make inflammatory injury model of rat PMVECs. Thereafter, the mRNA and protein expression of pro-inflammatory factors was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay respectively. Intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA) were determined by using commercial kits according to the manufacturer’s instructions. Western blot assay was used to detect the protein expression of nuclear factor kappa B (NF-κB) p65. Results Fasudil effectively prevented inflammatory injury induced by LPS, which is manifested by the decrease of pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chenotactic protein-1 (MCP-1). Meanwhile, fasudil dramatically reduced the levels of ROS and MDA, and also elevated the activities of SOD and GSH-Px. Furthermore, the nuclear translocation of NF-κB p65 induced by LPS was also suppressed by fasudil. Additionally, the ROS scavengers N-Acetylcysteine (N-Ace) was also found to inhibit the nuclear translocation of NF-κB and the mRNA expression of IL-6 and MCP-1 induced by LPS, which suggested that ROS was essential for the nuclear translocation of NF-κB. Conclusions The present study revealed that fasudil reduced the expression of inflammatory factors, alleviated the inflammatory and oxidative damage induced by LPS in rat PMVECs via ROS-NF-κB signaling pathway.
Collapse
|
7
|
NMDA mediates disruption of blood-brain barrier permeability via Rho/ROCK signaling pathway. Neurochem Int 2022; 154:105278. [PMID: 35017026 DOI: 10.1016/j.neuint.2022.105278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
Glutamate can activate the N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR), damage brain microvascular endothelial cells, and disturb the intercellular tight junctions (TJs). These result in changes in the permeability of the blood brain barrier (BBB). In neurons, the activation of Rho/ROCK signaling pathway is related to the activation of NMDAR,however, whether human brain vascular endothelial cells NMDAR mediates the Rho/ROCK pathway is not fully understood. The present study evaluates the effects of excessive NMDAR activation induced by NMDA (a glutamate analog) on the Rho/ROCK signaling pathway and the permeability of BBB by using a primary human brain microvascular endothelial cell (HBMEC) model. NMDAR subunit GluN1 was expressed in HBMECs and promoted by NMDA detected by Western blot and qRT-PCR. Furthermore, NMDA exposure decreased HBMEC viability, promoted HBMEC apoptosis, increased intracellular reactive oxygen species (ROS) levels, and destroyed the endothelial cytoskeleton. Additionally, NMDA exposure suppressed transendothelial electrical resistance (TEER) values and the expression of TJ proteins occludin and claudin5; it also promoted ROCK activated substrate myosin phosphatase target subunit-1 (MYPT)-1 phosphorylation and the transmittance of sodium fluorescein. In contrast, these effects were attenuated by ROCK inhibitor hydroxyfasudil (HF) and NMDAR antagonist MK801, respectively. Therefore, these results indicate that excessive endothelial NMDAR activation induced by NMDA may induce TJs and cytoskeleton damage, while HF attenuated NMDA-induced cytotoxicity in HBMECs by inhibiting the Rho/ROCK signaling pathway.
Collapse
|
8
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
9
|
Bai Y, Du Q, Zhang L, Li L, Tang L, Zhang W, Du R, Li P, Li L. Fasudil alleviated insulin resistance through promotion of proliferation, attenuation of cell apoptosis and inflammation and regulation of RhoA/Rho kinase/insulin/nuclear factor-κB signalling pathway in HTR-8/SVneo cells. J Pharm Pharmacol 2021; 73:1118-1127. [PMID: 33779714 DOI: 10.1093/jpp/rgab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/10/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of fasudil on insulin resistance (IR) in HTR-8/SVneo cells. METHODS HTR-8/SVneo cells were treated with insulin or/and fasudil. Cell proliferation, apoptosis, inflammation and related signalling pathways were assessed. KEY FINDINGS Insulin treatment significantly enhanced the protein expressions of RhoA and Rho kinase (ROCK1 and ROCK2), but decreased glucose consumption. Administration of fasudil effectively promoted glucose uptake. Moreover, fasudil enhanced cell viability and the level of proliferating cell nuclear antigen (PCNA). Insulin-mediated cell apoptosis was inhibited by fasudil via the down-regulation of bax and cleaved-caspase-3, and the up-regulation of bcl-2. At the same time, fasudil led to the reduction of IL-1β, TNF-α, IL-6 and IL-8 mRNA levels in insulin-treated cells. In addition, RhoA, ROCK2 and phosphorylated myosin phosphatase target subunit-1 (p-MYPT-1) expressions were down-regulated by fasudil. Importantly, fasudil activated insulin receptor substrate-1 (IRS-1) through increasing p-IRS-1 (Tyr612) and p-Akt expressions. The nuclear NF-κB p65 and p-IκB-α levels were reduced via the administration of fasudil in insulin-treated cells. CONCLUSIONS Fasudil mitigated IR by the promotion of cell proliferation, inhibition of apoptosis and inflammation and regulation of RhoA/ROCK/insulin/NF-κB signalling pathway through in vitro studies.
Collapse
Affiliation(s)
- Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiang Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Le Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Lei Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
10
|
Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury. Sci Rep 2020; 10:15709. [PMID: 32973242 PMCID: PMC7515881 DOI: 10.1038/s41598-020-72748-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Optic nerve injury induces optic nerve degeneration and retinal ganglion cell (RGC) death that lead to visual disturbance. In this study, we examined if topical ripasudil has therapeutic potential in adult mice after optic nerve crush (ONC). Topical ripasudil suppressed ONC-induced phosphorylation of p38 mitogen-activated protein kinase and ameliorated RGC death. In addition, topical ripasudil significantly suppressed the phosphorylation of collapsin response mediator protein 2 and cofilin, and promoted optic nerve regeneration. These results suggest that topical ripasudil promotes RGC protection and optic nerve regeneration by modulating multiple signaling pathways associated with neural cell death, microtubule assembly and actin polymerization.
Collapse
|
11
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Leng J, Huang F, Hai Y, Tian H, Liu W, Fang Y, Hu Y, Peng J. Amelioration of non-alcoholic steatohepatitis by Qushi Huayu decoction is associated with inhibition of the intestinal mitogen-activated protein kinase pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153135. [PMID: 31790895 DOI: 10.1016/j.phymed.2019.153135] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gut microbiota is increasingly recognized as the key participant in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) by translocation of its products, such as lipopolysaccharide (LPS), via the dysfunctional intestinal barrier. Qushi Huayu decoction (QHD), a traditional Chinese medicine, is developed specially for NAFLD and used in clinic in China for more than a decade and previously found to ameliorate non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mice accompanied with inhibited metabolic endotoxemia and hepatic LPS signalling. PURPOSE To investigate the mechanism of LPS gut-leakage inhibition by QHD in NASH. METHODS Effects of QHD on gut microbioa and intestinal barrier were evaluated in NASH induced by HFD in mice. 16S rRNA sequencing is employed to analyse the gut microbiota composition. To identify the potential signalling pathway responsible for tight junction regulation, the colonic phosphoprotein profile is screened via the Phospho Explorer Antibody Array and verified in NASH, intestinal barrier dysfunctional mouse and Caco-2 cells. RESULTS QHD ameliorates NASH accompanied with regulating the gut microbiota composition, protecting intestinal tight junctions and inhibiting LPS gut-leakage without decreasing the abundance of identified Gram-negative bacteria. The validated data of phosphorylated proteins suggested that mitogen-activated protein kinase (MAPK) pathway is predominantly responsible for the colonic tight junction regulation by QHD. CONCLUSION QHD inhibits LPS gut-leakage in NASH, which is associated with downregulation of intestinal MAPK pathway.
Collapse
Affiliation(s)
- Jing Leng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Fu Huang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yamei Hai
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Huajie Tian
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Wei Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yi Fang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
13
|
Zhang Y, Li W, He Z, Wang Y, Shao B, Cheng C, Zhang S, Tang M, Qian X, Kong W, Wang H, Chai R, Gao X. Pre-treatment With Fasudil Prevents Neomycin-Induced Hair Cell Damage by Reducing the Accumulation of Reactive Oxygen Species. Front Mol Neurosci 2019; 12:264. [PMID: 31780893 PMCID: PMC6851027 DOI: 10.3389/fnmol.2019.00264] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ototoxic drug-induced hair cell (HC) damage is one of the main causes of sensorineural hearing loss, which is one of the most common sensory disorders in humans. Aminoglycoside antibiotics are common ototoxic drugs, and these can cause the accumulation of intracellular oxygen free radicals and lead to apoptosis in HCs. Fasudil is a Rho kinase inhibitor and vasodilator that has been widely used in the clinic and has been shown to have neuroprotective effects. However, the possible application of fasudil in protecting against aminoglycoside-induced HC loss and hearing loss has not been investigated. In this study, we investigated the ability of fasudil to protect against neomycin-induced HC loss both in vitro and in vivo. We found that fasudil significantly reduced the HC loss in cochlear whole-organ explant cultures and reduced the cell death of auditory HEI-OC1 cells after neomycin exposure in vitro. Moreover, we found that fasudil significantly prevented the HC loss and hearing loss of mice in the in vivo neomycin damage model. Furthermore, we found that fasudil could significantly inhibit the Rho signaling pathway in the auditory HEI-OC1 cells after neomycin exposure, thus further reducing the neomycin-induced accumulation of reactive oxygen species and subsequent apoptosis in HEI-OC1 cells. This study suggests that fasudil might contribute to the increased viability of HCs after neomycin exposure by inhibition of the Rho signaling pathway and suggests a new therapeutic target for the prevention of aminoglycoside-induced HC loss and hearing loss.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Wei Li
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuhong He
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfeng Wang
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Shanghai Fenyang Vision & Audition Center, Shanghai, China
| | - Buwei Shao
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
14
|
Kim SW, Lee J, Park J, Chai JS, Oh S, Paick JS, Cho MC. Combination of LIM-kinase 2 and Jun Amino-terminal Kinase Inhibitors Improves Erectile Function in a Rat Model of Cavernous Nerve Injury. Urology 2019; 131:136-143. [PMID: 31202856 DOI: 10.1016/j.urology.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine if combined administration of LIMK2 and JNK inhibitors in a rat model of erectile dysfunction induced by cavernosal nerve (CN) injury could restore erectile function by suppressing both cavernosal apoptosis and fibrosis via rectification of molecular pathways related to the structural alterations. METHODS Sixty 12-week-old male Sprague-Dawley rats were categorized into 4 groups: (1) Sham-surgery (Sham) group, (2) CN-crush-injury (CNCI), (3) CNCI group (CNCI+L+1.0J) treated with a combination of 10.0 mg/kg LIMK2-inhibitors and low-dose (1.0 mg/kg) JNK-inhibitors, and (4) CNCI group (CNCI+L+10.0J) treated with a combination of 10.0 mg/kg LIMK2-inhibitors and a high dose (10.0 mg/kg) of JNK-inhibitors. Ten days after surgery, erectile response, histological-studies, and Western-blot was investigated. RESULTS The CNCI group showed a reduced maximal ICP/MAP or AUC/MAP, decreased immunohistochemical-staining of α-SMA, decreased SM/collagen ratio, increased phospho-cJun-positive apoptotic cells, increased phospho-LIMK2-positive fibroblasts, increased cJun-phosphorylation, increased LIMK2/Cofilin-phosphorylation, decreased Bcl-2/Bax ratio, and increased protein-expression of fibronectin, compared to the Sham group. Both the CNCI+L+1.0J and CNCI+L+10.0J groups showed improvements in erectile-responses, content of cavernosal α-SMA, number of phospho-cJun-positive apoptotic cells, Bcl-2/Bax ratio and cJun phosphorylation. Their improvements in the CNCI+L+10.0J group showed a tendency to be greater than those in the CNCI+L+1.0J group. Also, in the 2 treatment groups, rectification of SM/collagen ratio, number of phospho-LIMK2-positive fibroblasts, LIMK2/Cofilin-phosphorylation, and protein-expression of fibronectin was observed. CONCLUSION This study suggests that combined inhibition of JNK and LIMK2 may improve erectile function by suppressing cavernosal apoptosis and fibrosis via restoration of cJun/Bcl-2/Bax and LIMK2/Cofilin pathways at 10 days after CN injury.
Collapse
Affiliation(s)
- Soo Woong Kim
- Department of Urology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junghoon Lee
- Department of Urology, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Juhyun Park
- Department of Urology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Ji Sun Chai
- Department of Urology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jae-Seung Paick
- Department of Urology, Mediplex Sejong Hospital, Incheon, Republic of Korea
| | - Min Chul Cho
- Department of Urology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Yan Y, Yu J, Gao Y, Kumar G, Guo M, Zhao Y, Fang Q, Zhang H, Yu J, Jiang Y, Zhang HT, Ma CG. Therapeutic potentials of the Rho kinase inhibitor Fasudil in experimental autoimmune encephalomyelitis and the related mechanisms. Metab Brain Dis 2019; 34:377-384. [PMID: 30552558 DOI: 10.1007/s11011-018-0355-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), and other neurodegenerative diseases of central nervous system (CNS) disorders are serious human health problems. Rho-kinase (ROCK) is emerging as a potentially important therapeutic target relevant to inflammatory neurodegeneration diseases. This is supported by studies showing the beneficial effects of fasudil, a ROCK inhibitor, in inflammatory neurodegeneration diseases. MS is an autoimmune disease resulting from inflammation and demyelination in the white matter of the CNS. It has been postulated that activation of Rho/ROCK causes neuropathological changes accompanied with related clinical symptoms, which are improved by treatment with ROCK inhibitors. Therefore, inhibition of abnormal activation of the Rho/ROCK signaling pathway appears to be a new mechanism for treating CNS diseases. In this review, we extensively discussed the role of ROCK inhibitors, summarized the efficacy of fasudil in the MS conventional animal model of experimental autoimmune encephalomyelitis (EAE), both in vivo and in vitro, and highlighted the mechanism involved. Overall, the findings collected in this review support the role of the ROCK signaling pathway in neurodegenerative diseases. Hence, ROCK inhibitors such as fasudil can be novel, and efficacious treatment for inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuqing Yan
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Gao
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yijin Zhao
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Qingli Fang
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Huiyu Zhang
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Jingwen Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Han-Ting Zhang
- Institute of Brain Science, Shanxi Datong University, Datong, China.
- Departments of Behavioral Medicine & Psychiatry, Physiology & Pharmacology, and Neuroscience, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, China.
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Taiyuan, China.
| |
Collapse
|
16
|
Zhang L, Li C, Zhu Q, Li N, Zhou H. Liraglutide, a glucagon-like peptide-1 analog, inhibits high glucose-induced oxidative stress and apoptosis in neonatal rat cardiomyocytes. Exp Ther Med 2019; 17:3734-3740. [PMID: 30988759 DOI: 10.3892/etm.2019.7388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiomyocyte apoptosis serves an important role in diabetic cardiomyopathy. Liraglutide, a glucagon-like peptide-1 analog, has been indicated to exert a cardioprotective effect. However, the role of liraglutide on cardiomyocyte apoptosis in hyperglycemia is not fully understood. The aim of the current study was to assess whether liraglutide protects against high glucose (HG)-induced cardiomyocyte apoptosis in vitro. Sprague-Dawley neonatal rat cardiomyocytes were cultured in Dulbecco's modified Eagle's medium, supplemented with 5.5 or 25 mmol/l D-glucose or 5.5 mmol/l D-glucose + 19.5 mmol/l mannitol, in the presence or absence of liraglutide (10 or 100 nmol/l). Cell viability was assessed via an MTT assay and early apoptosis rates were assessed via flow cytometry. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cell supernatants were measured. Bcl-2 associated X (Bax), B-cell lymphoma-2 (Bcl-2) and cleaved/full caspase-3 protein levels were determined via western blotting. The results revealed that liraglutide effectively inhibited the HG-induced increase in early apoptosis and MDA content and markedly increased SOD activity. Furthermore, liraglutide markedly inhibited the HG-induced increase in Bax and cleaved caspase-3 protein expression, and upregulated the expression of Bcl-2. The present study demonstrated that liraglutide suppressed HG-induced oxidative stress and cardiomyocyte apoptosis. Thus, the anti-apoptotic actions of liraglutide may be attributable, in part, to the inhibition of Bax, the inhibition of caspase-3 activation and the upregualtion of Bcl-2.
Collapse
Affiliation(s)
- Lihui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Caige Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiuxiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
17
|
Feng S, Zou L, Wang H, He R, Liu K, Zhu H. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules 2018; 23:molecules23092371. [PMID: 30227623 PMCID: PMC6225311 DOI: 10.3390/molecules23092371] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/18/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
Lipopolysaccaride (LPS) directly or indirectly injures brain microvascular endothelial cells (BMECs) and damages the intercellular tight junction that gives rise to altered blood-brain barrier (BBB) permeability. Catalpol plays a protective role in LPS-induced injury, but whether catalpol protects against LPS-caused damage of BBB permeability and the underlying mechanism remain to be delineated. Prophylactic protection with catalpol (5 mg/kg, i.v.) consecutively for three days reversed the LPS-induced damage of BBB by decreased Evans Blue (EB) leakage and restored tight junctions in C57 mice. Besides, catalpol co-administrated with LPS increased BMECs survival, decreased their endothelin-1, TNF-Α and IL-6 secretion, improved transmembrane electrical resistance in a time-dependent manner, and in addition increased the fluorescein sodium permeability coefficient of BMECs. Also, transmission electron microscopy showed catalpol protective effects on tight junctions. Fluorescence staining displayed that catalpol reversed the rearrangement of the cytoskeleton protein F-actin and upregulated the tight junction protein of claudin-5 and ZO-1, which have been further demonstrated by the mRNA and protein expression levels of ZO-1, ZO-2, ZO-3, claudin-5, and occludin. Moreover, catalpol concurrently downregulated the mRNA and protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 signaling pathway. This study thus indicated that catalpol, via inhibition of the RhoA/ROCK2 signaling pathway, reverses the disaggregation of cytoskeleton actin in BMECs and prevents down-regulation of junctional proteins, such as claudin-5, occludin, and ZO-1, and decreases endothelin-1 and inflammatory cytokine secretion, eventually alleviating the increase in LPS-induced BBB permeability.
Collapse
Affiliation(s)
- Shan Feng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
| | - Li Zou
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China.
| | - Hongjin Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
| | - Ran He
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
| | - Ke Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
18
|
Zhou H, Sun Y, Zhang L, Kang W, Li N, Li Y. The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes Metab Res Rev 2018; 34:e3022. [PMID: 29745021 DOI: 10.1002/dmrr.3022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
AIMS To understand the roles of the RhoA/ROCK and mitogen-activated protein kinase (MAPK) pathways in high glucose (HG)-induced apoptosis and oxidative stress in cardiomyocytes. MATERIALS AND METHODS Neonatal rat cardiomyocytes were cultured in Dulbecco's modified Eagle's medium, supplemented with 5.5 or 30 mmol/L D-glucose, in the presence or absence of fasudil (50 or 100 μM), SB203580, SP600125, or PD98059 (10 μM, respectively). The percentage of early apoptotic cardiomyocytes was evaluated using flow cytometry. The superoxide dismutase activity and malondialdehyde contents in the cellular supernatants were measured. The Bax and Bcl-2 mRNA levels were determined by quantitative real-time PCR. Phosphorylation of myosin phosphatase target subunit 1 (MYPT1), p38MAPK, JNK, and ERK as well as the protein levels of Bax, Bcl-2, and cleaved caspase-3 was analysed by Western blot. RESULTS Fasudil, SB203580, and SP600125 effectively inhibited the HG-induced early apoptosis increase and decreased Bax mRNA expression, the Bax/Bcl-2 protein expression ratio, and cleaved caspase-3 protein levels in the cardiomyocytes; this was accompanied by upregulation of the Bcl-2 mRNA. Moreover, fasudil markedly increased the superoxide dismutase activity level and suppressed the elevation in HG-induced malondialdehyde content and the phosphorylation of MYPT1, p38MAPK and JNK. CONCLUSIONS The RhoA/ROCK pathway mediates HG-induced cardiomyocyte apoptosis via oxidative stress and activation of p38MAPK and JNK in neonatal rats in vitro. Fasudil effectively ameliorates HG-induced cardiomyocyte apoptosis by suppressing oxidative stress and the p38MAPK and JNK pathways.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonghong Sun
- Nutriology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihui Zhang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyuan Kang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Institute of Cardiovascular and Cerebrovascular Diseases, Shijiazhuang, China
| |
Collapse
|
19
|
Wang X, Mao R, Chen W. FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling. Med Sci Monit 2018; 24:5509-5516. [PMID: 30088495 PMCID: PMC6097139 DOI: 10.12659/msm.911481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ox-LDL-induced injury of brain microvascular endothelial cells (BMECs) is strongly associated with cerebral vascular diseases such as cerebral arterial atherosclerosis. ROCK inhibitor was proved to be anti-apoptotic and has been used in treating cerebral vascular diseases. Research on the neuroprotective effects of a novel ROCK inhibitor, FSD-C10, is still limited. The present study investigated the anti-apoptotic effect and underlying molecular mechanism of FSD-C10 in ox-LDL-mediated apoptosis of BMECs. MATERIAL AND METHODS ox-LDL and/or FSD-C10 were used to incubate immortalized human BMECs. MTT assay was used to assess cell viability. Cell apoptosis was evaluated by TUNEL assay. A colorimetric method was used to assess ROCK activity. Western blot analysis was used to examine the expression and phosphorylation levels of proteins. RESULTS ox-LDL incubation reduced the viability of BMECs by inducing cell apoptosis in a concentration-dependent manner. ROCK activity was also elevated by ox-LDL incubation in BMECs in a concentration-dependent manner. Expression level of Bcl2 was reduced while expression levels of Bax and active caspase3 were increased by ox-LDL treatment in a concentration-dependent manner. ox-LDL also increased the phosphorylation levels of p38, JNK, and ERK1/2 in a concentration-dependent manner. FSD-C10 treatment increased the cell viability by reducing apoptosis of BMECs exposed to ox-LDL. Moreover, FSD-C10 was found to suppress the phosphorylation levels of p38, JNK, and ERK1/2 and the expression levels of Bax and active caspase3 in ox-LDL treated BMECs. CONCLUSIONS FSD-C10 increases cell viability in ox-LDL-treated BMECs by reducing cell apoptosis. ROCK/MAPKs-mediated apoptosis appears to be the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| | - Rongyan Mao
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| | - Weiwei Chen
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Gu Y, Feng Y, Yu J, Yuan H, Yin Y, Ding J, Zhao J, Xu Y, Xu J, Che H. Fasudil attenuates soluble fms-like tyrosine kinase-1 (sFlt-1)-induced hypertension in pregnant mice through RhoA/ROCK pathway. Oncotarget 2017; 8:104104-104112. [PMID: 29262624 PMCID: PMC5732790 DOI: 10.18632/oncotarget.22017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/23/2017] [Indexed: 12/29/2022] Open
Abstract
Preeclampsia (PE) has become the leading cause of maternal and fetal morbidity and mortality in the world, which is characterized by a systemic maternal inflammatory response associated with endothelial dysfunction, hypertension, and proteinuria. The development of PE is still barely predictable and thus challenging to prevent and manage clinically. Fasudil (FSD), the first-generation Rho/ROCK inhibitor, has been studied widely and applied in clinical practice with high safety and efficacy in treating hypertension and other cardiovascular diseases. However, few studies have focused on the effect of fasudil on preeclampsia in vivo and in vitro. Therefore, the aim of this study is to investigate the effects of fasudil on hypoxia/reoxygenation injury in vitro and its role on preeclamptic animal model. Here, we found that RhoA/ROCK pathway was significantly activated in H/R-challenged endothelial cells and in placenta and umbilical vessel of PE mice. And fasudil pre-treatment can protect vascular endothelial cells from H/R-induced apoptosis. In addition, inhibition of RhoA/ROCK pathway with fasudil can reduce the high blood pressure and urine protein levels as well as the concentration of s-Flt in peripheral and umbilical blood in a dose-dependent manner, thus resulting in prevention of the development of PE. Thus, Fasudil attenuates soluble fms-like tyrosine kinase-1 (sFlt-1)-induced hypertension in pregnant mice through RhoA/ROCK pathway, which would become a potential strategy for PE therapy.
Collapse
Affiliation(s)
- Ying Gu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Yaling Feng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University (Wuxi Fourth People's Hospital), Wuxi, Jiangsu 214062, PR China
| | - Hua Yuan
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jian Ding
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Yaohui Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jianjuan Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Haisha Che
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| |
Collapse
|
21
|
Gao H, Hou F, Dong R, Wang Z, Zhao C, Tang W, Wu Y. Rho-Kinase inhibitor fasudil suppresses high glucose-induced H9c2 cell apoptosis through activation of autophagy. Cardiovasc Ther 2016; 34:352-9. [PMID: 27333569 DOI: 10.1111/1755-5922.12206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huikuan Gao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Fei Hou
- Department of Infection; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Ruiqing Dong
- Department of Cardiology; Hangzhou First People's Hospital; Zhejiang China
| | - Zefeng Wang
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Can Zhao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Wurina Tang
- Department of Cardiology; Baotou Central Hospital; Inner Mongolia China
| | - Yongquan Wu
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
22
|
Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice. Mediators Inflamm 2016; 2016:9154230. [PMID: 27057102 PMCID: PMC4761398 DOI: 10.1155/2016/9154230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is upregulated in patients with systemic inflammation and infection, but its functional role is unclear. We up- or downregulated UCP2 expression using UCP2 recombinant adenovirus or the UCP2 inhibitor, genipin, in lungs of mice, and investigated the mechanisms of UCP2 in ALI. UCP2 overexpression in mouse lungs increased LPS-induced pathological changes, lung permeability, lung inflammation, and lowered survival rates. Furthermore, ATP levels and mitochondrial membrane potential were decreased, while reactive oxygen species production was increased. Additionally, mitogen-activated protein kinases (MAPKs) activity was elevated, which increased the sensitivity to LPS-induced apoptosis and inflammation. LPS-induced apoptosis and release of inflammatory factors were alleviated by pretreatment of the Jun N-terminal kinase (JNK) inhibitor SP600125 or the p38 MAPK inhibitor SB203580, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 in UCP2-overexpressing mice. On the other hand, LPS-induced alveolar epithelial cell death and inflammation were attenuated by genipin. In conclusion, UCP2 increased susceptibility to LPS-induced cell death and pulmonary inflammation, most likely via ATP depletion and activation of MAPK signaling following ALI in mice.
Collapse
|
23
|
Zhang Y, Liu Y, Zhang J. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. J Surg Res 2015; 198:41-9. [PMID: 26004495 DOI: 10.1016/j.jss.2015.04.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Acute lung injury induced by lipopolysaccharides (LPSs) is caused by pulmonary inflammation and pulmonary vascular permeability. Activation of p38 mitogen-activated protein kinase causes inflammation, and proinflammatory cytokines and oxidative stress induce autophagy, a catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. If not controlled, excessive autophagy responses can result in cell death. MATERIALS AND METHODS In this study, we pretreated rats with saturated hydrogen saline, and examined the molecular mechanism by which saturated hydrogen saline attenuates LPS-induced acute lung dysfunction. Sixty-four male Sprague-Dawley rats were randomly assigned to one of three groups--a control group, an LPS group, or an LPS plus saturated hydrogen saline (LPS + H2) group. RESULTS Treatment with saturated hydrogen saline prolonged the median survival time of rats and reduced lung dysfunction induced by LPS. Moreover, saturated hydrogen saline significantly attenuated LPS-mediated induction of serum tumor necrosis factor α, interleukin 6, myeloperoxidase, and malondialdehyde (P < 0.05). CONCLUSIONS Autophagosomes were found in the cytoplasm of type II alveolar epithelial cells of LPS-treated rats, and light chain 3 protein (LC3)I/II was increased by LPS treatment. In contrast, saturated hydrogen saline decreased the number of autophagosomes and LC3I/II expression. Saturated hydrogen saline also attenuated the LPS-mediated increase in apoptosis and p38 expression. Taken together, saturated hydrogen saline may attenuate LPS-induced acute lung dysfunction in rats by reducing inflammation, autophagy, and apoptosis involving the p38 mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, PR China
| | - Yiming Liu
- Department of Anesthesiology, Shengjing Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
24
|
Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci 2015; 131:37-43. [PMID: 25896660 DOI: 10.1016/j.lfs.2015.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/18/2015] [Accepted: 03/20/2015] [Indexed: 11/21/2022]
Abstract
AIMS Hyperphosphatemia is an independent risk factor of cardiovascular events in the patients with chronic kidney disease. High phosphate can induce endothelial cell apoptosis, but the exact mechanism is not clear. This study fills this knowledge gap. MATERIALS AND METHODS Microarray analysis was used to identify differentially expressed gene profiles in human umbilical vein endothelial cells (HUVECs) in high phosphate (3.0mM) and normal phosphate (1.0mM) medium. Microarray informatics analysis was used to explore key pathways and genes. High phosphate-induced apoptosis is marked by annexin V-FITC/PI staining and cleavage of caspase-3. Immunoblotting and quantitative real-time PCR were performed to identify the microarray analysis. KEY FINDINGS Our microarray informatics analysis reveals that the mitogen-activated protein kinase (MAPK) plays a key role. As suggested by gene coexpression network analysis, bone morphogenetic protein 4 (BMP4) gene is a potential key regulatory gene in high phosphate environment. Both the expressions of BMP4 protein and mRNA are decreased. Extracellular regulated protein kinases (ERKs) are activated, while the inhibition of ERK by U0126 increases the expression of BMP4. Both recombinant BMP4 protein pretreatment and U0126 pretreatment reduce the apoptosis of endothelial cells in simulated hyperphosphatemia. However, BMP4 protein pretreatment had no effect on the activation of ERK MAPK pathway. SIGNIFICANCE Our results indicate that the inhibition of ERK MAPK pathway protects endothelial cells from apoptosis by upregulating bone morphogenetic protein 4 in endothelial cells exposed to hyperphosphatemia. Our study provides potential molecular targets for developing new strategies to reduce the endothelial cell apoptosis induced by high phosphate.
Collapse
|
25
|
Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase through ERK1/2 and p38 MAPK. Arch Oral Biol 2015; 60:488-95. [DOI: 10.1016/j.archoralbio.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023]
|
26
|
Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage. J Trauma Acute Care Surg 2015; 77:906-12; discussion 912. [PMID: 25051383 DOI: 10.1097/ta.0000000000000345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5 per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis. Real-time polymerase chain reaction was used to verify the key microarray findings. RESULTS A total of 1,668 probe sets mapping to 370 known genes were differentially expressed between the HEX and HEX + VPA groups. Expression of apoptotic genes differed between groups, and biologic function analysis predicted a significant downregulation of apoptosis (p = 1.29 × 10), cell death (p = 8.46 × 10), and necrosis (p = 9.07 × 10). Pathway analysis indicated a significant modulation of pathways involved in cell signaling, dendritic cell response, and the complement system. CONCLUSION This is the first high-throughput analysis of cerebral gene profiling following TBI + HS. It shows that treatment with VPA significantly alters early transcription of pathways related to cell survival, which may explain its neuroprotective effects.
Collapse
|