1
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
3
|
Chen J, Zhang J, Chen T, Bao S, Li J, Wei H, Hu X, Liang Y, Liu F, Yan S. Xiaojianzhong decoction attenuates gastric mucosal injury by activating the p62/Keap1/Nrf2 signaling pathway to inhibit ferroptosis. Biomed Pharmacother 2022; 155:113631. [PMID: 36122518 DOI: 10.1016/j.biopha.2022.113631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 02/09/2023] Open
Abstract
Gastric mucosal injury is the initial stage of the occurrence and development of gastric diseases. Oxidative stress and ferroptosis caused by the imbalance of redox and iron dynamics in gastric mucosal epithelial cells are present throughout the occurrence and development of gastric mucosal injury. Therefore, the inhibition of oxidative stress and ferroptosis is a potential target for the treatment of the gastric mucosal injury. Xiaojianzhong decoction (XJZ), which consists of six Chinese herbal medicines and extracts, is used for the treatment of diseases related to gastrointestinal mucosal injury; however, its specific mechanism of action has yet to be clarified. In this study, we clarified the protective effect of XJZ on gastric mucosa and revealed its underlying mechanism. We established a gastric mucosal injury model using aspirin and administered XJZ. Furthermore, we systematically evaluated the mucosal injury and examined the expression of genes related to oxidative stress, ferroptosis, and inflammation. The study found that XJZ significantly counteracted aspirin-induced gastric mucosal injury and inhibited oxidative stress and ferroptosis in mice. Upon examining SQSTM1/p62(p62)/Kelch-like ECH-associated protein 1 (Keap1)/Nuclear Factor erythroid 2-Related Factor 2 (Nrf2), a well-known signaling pathway involved in the regulation of oxidative stress and ferroptosis, we found that its activation was significantly inhibited by aspirin treatment and that this signaling pathway was activated after XJZ intervention. Our study suggests that XJZ may inhibit aspirin induced oxidative stress and ferroptosis via the p62/Keap1/Nrf2 signaling pathway, thereby attenuating gastric mucosal injury.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jingtao Li
- Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Hailiang Wei
- Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin 719000, PR China.
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
4
|
Tian L, Wang Y, Qing J, Zhou W, Sun L, Li R, Li Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Kidney diseases are common health problems worldwide. Various etiologies ultimately lead to the development of chronic kidney disease and end-stage renal disease. Natural compounds from herbs or medicinal plants are widely used for therapy and prevention of various ailments, among which is Inonotus obliquus. I. obliquus is rich in triterpenoids and the main active ingredients include betulinic acid, trametenolic acid, inotodiol, and ergosterol. New evidence suggests that I. obliquus triterpenes may be an effective drug for the treatment and protection of various kidney diseases. The aim of this review is to highlight the pharmacological activities and potential role of I. obliquus triterpenes in the kidney disease treatment and protection.
Collapse
Affiliation(s)
- Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- The Fifth Clinical Medical College of Shanxi Medical University , Taiyuan , Shanxi, 030001 , China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Lin Sun
- College of Taditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University ; Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan, 030012 , Shanxi , China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030012, Shanxi , China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Academy of Microbial Ecology, Shanxi Medical University , Taiyuan , 030001 , China
| |
Collapse
|
5
|
Wang L, Wang P, Li X, Dong Y, Wu S, Xu M, Chen X, Wang S, Zheng C, Zou C. Combination CTLA-4 immunoglobulin treatment and ultrasound microbubble-mediated exposure improve renal function in a rat model of diabetic nephropathy. Aging (Albany NY) 2021; 13:8524-8540. [PMID: 33714204 PMCID: PMC8034886 DOI: 10.18632/aging.202664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study explored the therapeutic impact of combined cytotoxic T lymphocyte-associated antigen 4 immunoglobulin (CTLA-4-Ig) treatment and microbubble-mediated exposure in a rat model of diabetic nephropathy (DN). METHOD We treated rats using CTLA-4-Ig and/or microbubble exposure. At 8 weeks post-intervention, key parameters were evaluated including blood biochemistry, damage to renal tissue, renal parenchymal elasticity, ultrastructural changes in podocytes, and renal parenchymal expression of CD31, CD34, IL-6, Fn, Collagen I, Talin, Paxillin, α3β1, podocin, nephrin, and B7-1. RESULT We found that renal function in the rat model of DN can be significantly improved by CTLA-4-Ig and CTLA-4-Ig + ultrasound microbubble treatment. Treatment efficacy was associated with reductions in renal parenchymal hardness, decreases in podocyte reduction, decreased IL-6, Fn and Collagen I expression, increased Talin, Paxillin and α3β1 expression, elevated podocin and nephrin expression, and decreased B7-1 expression. In contrast, these treatments did not impact CD31 or CD34 expression within the renal parenchyma. CONCLUSION These findings clearly emphasize that CTLA-4-Ig can effectively prevent podocyte damage, inhibiting inflammation and fibrosis, and thereby treating and preventing DN. In addition, ultrasound microbubble exposure can improve the ability of CTLA-4-Ig to pass through the glomerular basement membrane in order to access podocytes such that combination CTLA-4-Ig + microbubble exposure treatment is superior to treatment with CTLA-4-Ig only.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Pengfei Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiuyun Li
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yanyan Dong
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Senmin Wu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Maosheng Xu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiu Chen
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shijia Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunpeng Zou
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
6
|
Chen Y, Wu X, Liu C, Zhou Y. Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochem Funct 2020; 38:702-709. [PMID: 32283563 PMCID: PMC7496801 DOI: 10.1002/cbf.3537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent types of malignancies. Betulinic acid (BA) is a natural pentacyclic triterpene with a lupine structure. However, to the best of our knowledge, there is no research study on the anti‐tumour and anti‐metastasis effect of BA on GC. In this study, we assessed the anti‐cancer effect of BA on human GC cells in vitro and in vivo. We first investigated the cytotoxicity and anti‐proliferation effect of BA on GC cells of SNU‐16 and NCI‐N87. The results indicated that BA had significant cytotoxic and inhibitory effects on GC cells in a dose‐ and time‐dependent manner. To further study the cytotoxic action of BA on GC cells, we assessed the apoptotic induction effect of BA on SNU‐16 cells and found that BA distinctly induced apoptosis in SNU‐16 cells. In addition, BA inhibited the migratory and invasive abilities of SNU‐16 cells. Western‐blot analysis revealed that BA suppressed the migration and invasion of GC cells by impairing epithelial‐mesenchymal transition progression. Furthermore, in vivo experiments showed that BA could delay tumour growth and inhibit pulmonary metastasis, which is consistent with the results of in vitro studies. Overall, we evaluated the anti‐cancer effect of BA on human GC cells in vivo and in vitro, and the present study provides new evidence on the use of BA as a potential anti‐cancer drug for GC treatment. Significance of the study BA significantly suppressed proliferation and triggered apoptosis in GC cells. Additionally, BA remarkably inhibited migration and invasion of GC cells by impairing the epithelial‐mesenchymal transition signalling pathway. It is worth noting that BA drastically retarded tumour growth in the xenograft mouse model of GC. Our results indicated that BA can be considered a candidate drug for GC therapy.
Collapse
Affiliation(s)
- Yun Chen
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Xiongjian Wu
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Chi Liu
- School of Medical & Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yun Zhou
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
7
|
Chen R, Zhang L. Morin inhibits colorectal tumor growth through inhibition of NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2019; 41:622-629. [PMID: 31724445 DOI: 10.1080/08923973.2019.1688344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui Chen
- Department of Traditional Chinese Medicine, Daqing Longnan Hospital, Daqing, China
| | - Li Zhang
- Department of Oncology, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
8
|
Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorg Med Chem 2019; 27:2546-2552. [PMID: 30910472 DOI: 10.1016/j.bmc.2019.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/11/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoids extracted from birch with a wide range of biological properties. Recent studies have shown that BA has significant cytotoxicity to various types of human cancer cells, and shows potential in cancer treatment. However, the efficacy of BA on human colorectal cancer tumor cells is still unclear. The purpose of our study was to evaluate the anti-cancer activity of BA in human colorectal cancer cells in vitro and in vivo to investigate the possible mechanism. In this experiment, we found that BA inhibited colorectal cancer cell lines in vitro with a time-dependent and dose-dependent manner. Moreover, BA could induce cell apoptosis by upregulating expression of Bax and cleaved caspase-3 and downregulating protein of Bcl-2. BA could increase the production of reactive oxygen species and reduce mitochondrial membrane potential of cancer cell, suggesting that BA induced cancer cells apoptosis by mitochondrial mediated pathways. Furthermore, BA significantly inhibited the migration and invasion of colorectal cancer cells, reduced the expression of matrix metalloproteinase (MMPs) and increased the expression of MMPs inhibitor (TIMP-2). In addition, the growth of tumor was significantly suppressed by intraperitoneal administration of 20 mg/kg/day of BA in a xenograft tumor mouse model of HCT-116. Histopathological and immunohistochemical analysis showed that MMP-2+ cells and Ki-67+ cells were reduced and cleaved caspase-3+ cells were increased in tumor tissues of mice after BA administration. The results showed that BA not only promoted the apoptosis of colorectal cancer cells, but also inhibited the metastasis of cancer cells. Our results suggest that BA can be a potential natural drug to inhibit the growth and metastasis of colorectal cancer.
Collapse
|
9
|
Zeng AQ, Yu Y, Yao YQ, Yang FF, Liao M, Song LJ, Li YL, Yu Y, Li YJ, Deng YL, Yang SP, Zeng CJ, Liu P, Xie YM, Yang JL, Zhang YW, Ye TH, Wei YQ. Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models. Oncotarget 2017; 9:3794-3804. [PMID: 29423083 PMCID: PMC5790500 DOI: 10.18632/oncotarget.23376] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common female cancer with considerable metastatic potential, explaining the need for new candidates that inhibit tumor metastasis. In our study, betulinic acid (BA), a kind of pentacyclic triterpenoid compound derived from birch trees, was evaluated for its anti-metastasis activity in vitro and in vivo. BA decreased the viability of three breast cancer cell lines and markedly impaired cell migration and invasion. In addition, BA could inhibit the activation of stat3 and FAK which resulted in a reduction of matrix metalloproteinases (MMPs), and increase of the MMPs inhibitor (TIMP-2) expression. Moreover, in our animal experiment, intraperitoneal administration of 10 mg/kg/day BA suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without obvious side effects. Furthermore, histological and immunohistochemical analyses showed a decrease in MMP-9 positive cells, MMP-2 positive cells and Ki-67 positive cells and an increase in cleaved caspase-3 positive cells upon BA administration. Notably, BA reduced the number of myeloid-derived suppressor cells (MDSCs) in the lungs and tumors. Interestingly, in our caudal vein model, BA also obviously suppressed 4T1 tumor pulmonary metastases. These findings suggested that BA might be a potential agent for inhibiting the growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- An-Qi Zeng
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yan Yu
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu-Qin Yao
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Fang-Fang Yang
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Mengya Liao
- Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Lin-Jiang Song
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ya-Li Li
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Yu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital Affiliated to the Capital Medical University, Beijing 100038, China
| | - Yu-Jue Li
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuan-Le Deng
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Shu-Ping Yang
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chen-Juan Zeng
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.,Sichuan Scientist Biotechnology Co., Ltd, Chengdu 610041, China
| | - Ping Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-Mei Xie
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jin-Liang Yang
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi-Wen Zhang
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ting-Hong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu-Quan Wei
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
10
|
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- pNO 2 ameliorated diabetic nephropathy through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8:114506-114525. [PMID: 29383098 PMCID: PMC5777710 DOI: 10.18632/oncotarget.23016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. This study aimed to determine the effects and potential mechanism of caffeic acid para-nitro phenethyl ester (CAPE-pNO2), a derivative of caffeic acid phenethyl ester (CAPE), on DN; In vivo, intraperitoneal injections of streptozotocin (STZ) were used to induce diabetes in mice; then, the mice were intraperitoneally injected daily with CAPE or CAPE-pNO2 for 8 weeks. The mice were sacrificed, and blood samples and kidney tissues were collected to measure biological indexes. The results showed that CAPE and CAPE-pNO2 could lower serum creatinine, blood urea nitrogen, 24-h albumin excretion, malondialdehyde and myeloperoxidase levels and increase superoxide dismutase activity in diabetic mice. According to HE, PAS and Masson staining, these two compounds ameliorated structural changes and fibrosis in the kidneys. In addition, the immunohistochemical and western blot results showed that CAPE and CAPE-pNO2 inhibited inflammation through the Akt/NF-κB pathway and prevented renal fibrosis through the TGF-β/Smad pathway. In vitro, CAPE and CAPE-pNO2 inhibited glomerular mesangial cell (GMC) proliferation, arrested cell cycle progression and suppressed ROS generation. These compounds also inhibited ECM accumulation via regulating the TGF-β1, which was a similar effect to that of the NF-κB inhibitor PDTC. More importantly, CAPE and CAPE-pNO2 could up-regulate nitric oxide synthase expression in STZ-induced diabetic mice and HG-induced GMCs. CAPE-pNO2 had stronger effects than CAPE both in vivo and in vitro. These data suggest that CAPE-pNO2 ameliorated DN by suppressing oxidative stress, inflammation, and fibrosis via the Akt/NF-κB/ iNOS pathway.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lu Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Qianhan Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
11
|
Wang S, Zhao X, Yang S, Chen B, Shi J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem Biol Interact 2017; 278:48-53. [PMID: 29031534 DOI: 10.1016/j.cbi.2017.10.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/30/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
Abstract
Diabetic nephropathy (DN) is a metabolic disease characterized by mesangial cell proliferation and extracellular matrix (ECM) accumulation. Salidroside (SAL) is the major ingredient in Rhodiola rosea and possesses beneficial effects on DN. This study aimed to evaluate the effect of SAL on high glucose (HG)-induced oxidative stress and ECM accumulation and the underlying mechanism. Rat glomerular mesangial cells HBZY-1 were induced by high glucose (HG) in the presence or absence of SAL. Cell proliferation was measured by CCK-8 assay. The reactive oxygen species (ROS) level, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected to evaluate oxidative stress. The expression levels of ECM proteins including fibronectin (FN) and type IV collagen (Coll IV) were detected by qRT-PCR and western blot analysis. The expressions of thioredoxin-interacting protein (TXNIP), nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 were assessed by western blot. Si-TXNIP or si-NC was transfected into HBZY-1 cells to inhibit TXNIP-NLRP3 inflammasome pathway. The results showed that SAL treatment alleviated HG-induced cell proliferation. SAL reduced the levels of ROS and MDA, and induced the SOD activity. Besides, the mRNA and protein expressions of FN and Coll IV were decreased by SAL. The expression levels of TXNIP, NLRP3, ASC, and caspase-1 were reduced in the SAL treated cells. In addition, TXNIP knockdown inhibited TXNIP-NLRP3 inflammasome activation and suppressed HG-induced cell proliferation, oxidative stress, and ECM accumulation. In conclusion, SAL alleviated HG-induced oxidative stress and ECM accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Shiying Wang
- Nephrology Department, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Xinxin Zhao
- Nephrology Department, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Suxia Yang
- Nephrology Department, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Baoping Chen
- Nephrology Department, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Jun Shi
- Nephrology Department, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China.
| |
Collapse
|
12
|
Gao L, Hu Y, Li J. Pigment epithelium-derived factor protects human glomerular mesangial cells from diabetes via NOXO1-iNOS suppression. Mol Med Rep 2017; 16:7855-7863. [DOI: 10.3892/mmr.2017.7563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
|
13
|
Nan L, Huang M, Lai W, Jia R, Zheng Y, Yang L, Xie Q, Peng W. Impacts of the serum containing total flavonoids of Ajuga on rat glomerular mesangial cells. Mol Med Rep 2017; 16:4895-4902. [PMID: 28791415 DOI: 10.3892/mmr.2017.7194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to investigate the impacts and possible mechanisms of total flavonoids of Ajuga (TFA) on glomerular mesangial cells (GMC) through in vitro observations of the impacts of TFA‑containing serum on GMC proliferation and extracellular matrix (ECM) secretion in lipopolysaccharides (LPS)‑induced rats. Rat GMC was cultured in vitro, using LPS to stimulate the proliferation of GMC and the secretion of ECM; meanwhile, TFA‑containing serum (TFA‑S) was used for the intervention. Methyl thiazolyl tetrazolium (MTT) assay was performed to test the proliferation of GMC; enzyme‑linked immunosorbent assay (ELISA) was used to detect the expressions of fibronectin (FN) and collagen IV (Col‑IV) in cell supernatant, flow cytometry was performed to detect the cell cycle, and reverse transcription-polymerase chain reaction was performed to detect the expression levels of matrix metalloproteinase 9 (MMP‑9) mRNA and transforming growth factor β1 (TGF‑β1) mRNA. The GMC proliferation and the expressions of FN and Col‑IV in cell supernatant were significantly reduced after 24 and 48 h TFA‑S intervention (P<0.05 or 0.01). A total of 48 h subsequent to the intervention, the proportion of GMC in the G1 phase and the relative expression of MMP‑9 mRNA were significantly increased (P<0.05 or 0.01), however the proportion of GMC in S phase and the relative expression of TGF‑β1 mRNA were significantly reduced (P<0.05 or 0.01). TFA‑S can inhibit LPS‑induced GMC proliferation and ECM accumulation, and its roles are associated with regulating the cell cycle and the expression levels of TGF‑β1 and MMP‑9.
Collapse
Affiliation(s)
- Lihong Nan
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Mei Huang
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenfang Lai
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ru Jia
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanfang Zheng
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lan Yang
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qingqing Xie
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weihua Peng
- Department of Nephrology, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
14
|
Sharma A, Thakur R, Lingaraju MC, Kumar D, Mathesh K, Telang AG, Singh TU, Kumar D. Betulinic acid attenuates renal fibrosis in rat chronic kidney disease model. Biomed Pharmacother 2017; 89:796-804. [DOI: 10.1016/j.biopha.2017.01.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
|
15
|
Ying C, Chen L, Wang S, Mao Y, Ling H, Li W, Zhou X. Zeaxanthin ameliorates high glucose-induced mesangial cell apoptosis through inhibiting oxidative stress via activating AKT signalling-pathway. Biomed Pharmacother 2017; 90:796-805. [PMID: 28431381 DOI: 10.1016/j.biopha.2017.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is a critical factor in the pathophysiology of diabetic kidney disease. Previous study shows that hyperglycaemia aggravates renal injury through oxidative stress in diabetic model, and antioxidants have beneficial effect on diabetic kidney disease. However, the role of antioxidants in the progression of diabetic kidney disease is poorly understood. The aim of this study was to clarify whether zeaxanthin, an antioxidant, could ameliorate mesangial cell injury and if so, identify the related mechanism underlying this protective effect. To that end, superoxide dismutase (SOD) activity and methane dicarboxylic aldehyde (MDA) levels were measured by an assay kit, and mesangial cell apoptosis and ROS levels were assessed using flow cytometry analysis. Furthermore, The levels of a phosphorylated ser/thr protein kinase (p-AKT), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β), Bcl-2 associated X protein (Bax) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were detected by western blot. We found that zeaxanthin decreases MDA levels and increased SOD activity, as well as inhibits apoptosis and decreases ROS levels in mesangial cells in a high sugar environment. Furthermore, zeaxanthin increased p-AKT levels while decreased the levels of p-GSK-3β, Bax and cleaved-caspase-3. In addition, LY294002 reversed the protective effect of zeaxanthin on mesangial cells. In conclusion, zeaxanthin ameliorated mesangial cell apoptosis may be involved in inhibiting oxidative stress through activating of the AKT signalling pathway.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
16
|
Shen H, Liu L, Yang Y, Xun W, Wei K, Zeng G. Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncol Res 2017; 25:1141-1152. [PMID: 28109089 PMCID: PMC7841107 DOI: 10.3727/096504017x14841698396784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the head and neck. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid. The present study was designed to explore the effects of BA on OSCC KB cell proliferation in vitro and on implanted tumor growth in vivo and to examine the possible molecular mechanisms. The results showed that BA dose-dependently inhibited KB cell proliferation and decreased implanted tumor volume. In addition, BA significantly promoted mitochondrial apoptosis, as reflected by an increase in TUNEL+ cells and the activities of caspases 3 and 9, an increase in Bax expression, and a decrease in Bcl-2 expression and the mitochondrial oxygen consumption rate. BA significantly increased cell population in the G0/G1 phase and decreases the S phase cell number, indicating the occurrence of G0/G1 cell cycle arrest. ROS generation was significantly increased by BA, and antioxidant NAC treatment markedly inhibited the effect of BA on apoptosis, cell cycle arrest, and proliferation. BA dose-dependently increased p53 expression in KB cells and implanted tumors. p53 reporter gene activity and p53 binding in the promoters of Bax were significantly increased by BA. Knockdown of p53 blocked BA-induced increase in apoptosis, cell cycle arrest, and inhibition of cell proliferation. NAC treatment suppressed BA-induced increase in p53 expression. Furthermore, phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased by BA. Taken together, the data demonstrated that ROS–p53 signaling was crucial for BA-exhibited antitumor effect in OSCC. BA may serve as a potential drug for the treatment of oral cancer.
Collapse
|