1
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
2
|
Yadav K. Nanotechnology in diabetes Management: Revolutionizing treatment and diagnostics. J Mol Liq 2024; 414:126117. [DOI: 10.1016/j.molliq.2024.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Alharbi S, Aldubayan MA, Alhowail AH, Almogbel YS, Emara AM. Co-abuse of amphetamine and alcohol harms kidney and liver. Sci Rep 2024; 14:23400. [PMID: 39379507 PMCID: PMC11461853 DOI: 10.1038/s41598-024-74459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The prevalence of alcohol use disorder was found 75% higher among amphetamine dependent patients. Alcohol and amphetamine alone have nephrotoxicity and hepatoxicity. But, the degree of risk with coabuse of alcohol and amphetamine is unknown. The objective of this study was to assess toxic effects of amphetamine-alcohol co-abuse on the liver and kidney. he present study was a cross-sectional study conducted et al. Amal Hospital for Mental Health, Qassim region, KSA and include one hundred participants. Seventy-five participants were patients hospitalized for the treatment of abuse, and twenty-five participants, were healthy voluntaries, have no history of abuse. An experienced psychiatrist conducted patient interviews and assessed the patients using the DSM-5 criteria. The data from healthy participants were considered as a control. The abuse group was paired with the control group by age and lifestyle. Participants were split into: Group I: Control group (n = 25); Group II: Amphetamine (AMP) abuser group (n = 25); Group III: Alcohol abuser group (n = 25) and Group IV: Combined drug abuser group (AMP and alcohol) (n = 25). The socio-demographic data was collected. Complete medical examination, Body Mass Index and samples of blood and urine were collected from all participants for analytical tests; determination of alcohol and AMP levels, kidney functions and liver functions. The mean BMI values in groups II, III, and IV showed no significant change from the control group. The serum level of albumin and alkaline phosphatase showed significant decrease in all abuser groups. While, alanine transaminase (ALT), Aspartate transaminase (AST) and osteopontin levels showed significant increase in all abuser groups. Fasting blood sugar values showed significant increase in alcohol abusers. On the other hand, it revealed no significant change in AMP and combined groups. The mean values of urea showed no significant change in AMP and alcohol abusers and significant increase in combined drug abuser group. The serum creatinine and all abuser groups showed significant increase in Cystatin C. The alteration in the most of studied biochemical parameters were more than two folds in combined group compared with that of AMP or alcohol groups. Study reveals synergistic liver and kidney toxicity. Amphetamine-alcohol co-abuse significantly heightens kidney and liver toxicity.
Collapse
Affiliation(s)
- Sharifah Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Yasser S Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf M Emara
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia.
| |
Collapse
|
4
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Samad A, Shahid S, Mansoor S, Afzal S, Javed M, Zidan A, Shoaib A, Jaber F, Iqbal S, Saad M, Mahmood S, Awwad NS, Ibrahium HA. Fabrication of novel vildagliptin loaded ZnO nanoparticles for anti diabetic activity. Sci Rep 2024; 14:17893. [PMID: 39095369 PMCID: PMC11297240 DOI: 10.1038/s41598-024-67420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 μg/per ml and 42.94 μg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.
Collapse
Affiliation(s)
- Abdul Samad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sana Mansoor
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sehrish Afzal
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Abdullah Shoaib
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE.
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Saad
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait.
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
7
|
Deng LE, Guo M, Deng Y, Pan Y, Wang X, Maduraiveeran G, Liu J, Lu C. MOF-Based Platform for Kidney Diseases: Advances, Challenges, and Prospects. Pharmaceutics 2024; 16:793. [PMID: 38931914 PMCID: PMC11207304 DOI: 10.3390/pharmaceutics16060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases are important diseases that affect human health worldwide. According to the 2020 World Health Organization (WHO) report, kidney diseases have become the top 10 causes of death. Strengthening the prevention, primary diagnosis, and action of kidney-related diseases is of great significance in maintaining human health and improving the quality of life. It is increasingly challenging to address clinical needs with the present technologies for diagnosing and treating renal illness. Fortunately, metal-organic frameworks (MOFs) have shown great promise in the diagnosis and treatment of kidney diseases. This review summarizes the research progress of MOFs in the diagnosis and treatment of renal disease in recent years. Firstly, we introduce the basic structure and properties of MOFs. Secondly, we focus on the utilization of MOFs in the diagnosis and treatment of kidney diseases. In the diagnosis of kidney disease, MOFs are usually designed as biosensors to detect biomarkers related to kidney disease. In the treatment of kidney disease, MOFs can not only be used as an effective adsorbent for uremic toxins during hemodialysis but also as a precise treatment of intelligent drug delivery carriers. They can also be combined with nano-chelation technology to solve the problem of the imbalance of trace elements in kidney disease. Finally, we describe the current challenges and prospects of MOFs in the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan 523000, China
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
8
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
10
|
Nair VR, R V G, R P P. Aldose Reductase and Protein Glycation Inhibitory Activity of Dark Chocolate-Assisted Zinc Oxide Nanoparticles. Cureus 2023; 15:e48953. [PMID: 38111407 PMCID: PMC10726068 DOI: 10.7759/cureus.48953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction One of the most common health issues that the global population is dealing with is the associated complications of diabetes, which encompasses cataracts, peripheral neuropathy, vascular damage, impaired wound healing, retinal issues, and arterial wall stiffening. The present study is aimed to evaluate the effect of dark chocolate and its assisted zinc oxide nanoparticles against diabetes-associated complications. Materials and methods Zinc oxide nanoparticles were synthesized using commercially dark chocolate (DC-ZnO NP). The synthesized DC-ZnO NPs were evaluated against recombinant aldose reductase (AR) activity and the formation of advanced glycation end products (AGEs). Aminoguanidine and gallic acid were used as reference standards for AGE assay and sorbitol accumulation inhibition, respectively. Results The results of the present study showed that green synthesized DC-ZnO NP had a significant dose-dependent inhibitory activity on both AR and AGEs. The inhibitory activity was compared to that of quercetin and aminoguanidine, respectively. Conclusion Targeting the endogenous antioxidant systems like AGEs and AR enzymes seems to provide a promising therapeutic approach, thus concluding that ZnO-NP could be a promising agent for treating diabetes-related complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy that provide grounds for further clinical investigations and trials.
Collapse
Affiliation(s)
- Vedha R Nair
- Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Geetha R V
- Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Parameswari R P
- Pharmacology, Centre for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technial Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
11
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
12
|
Martín-Pardillos A, Martin-Duque P. Cellular Alterations in Carbohydrate and Lipid Metabolism Due to Interactions with Nanomaterials. J Funct Biomater 2023; 14:jfb14050274. [PMID: 37233384 DOI: 10.3390/jfb14050274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Nanoparticles (NPs) have unique physicochemical properties that are useful for a broad range of biomedical and industrial applications; nevertheless, increasing concern exists about their biosafety. This review aims to focus on the implications of nanoparticles in cellular metabolism and their outcomes. In particular, some NPs have the ability to modify glucose and lipid metabolism, and this feature is especially interesting to treat diabetes and obesity and to target cancer cells. However, the lack of specificity to reach target cells and the toxicological evaluation of nontargeted cells can potentially induce detrimental side effects, closely related to inflammation and oxidative stress. Therefore, identifying the metabolic alterations caused by NPs, independent of their application, is highly needed. To our knowledge, this increase would lead to the improvement and safer use with a reduced toxicity, increasing the number of available NPs for diagnosis and treatment of human diseases.
Collapse
Affiliation(s)
- Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos lll, 28029 Madrid, Spain
- Surgery Department, Medicine Medical School, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Kambale EK, Katemo FM, Quetin-Leclercq J, Memvanga PB, Beloqui A. "Green"-synthesized zinc oxide nanoparticles and plant extracts: A comparison between synthesis processes and antihyperglycemic activity. Int J Pharm 2023; 635:122715. [PMID: 36773728 DOI: 10.1016/j.ijpharm.2023.122715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have shown antidiabetic activity in multiple studies and can be produced by different plant-mediated ("green") methods. This study aimed to compare ZnONPs prepared via different "green" approaches (heating at high temperatures (400 °C) vs. low temperature (70 °C)). The low temperature method involved addition of suspending agents (Tween 80 or gum arabic) and pH variations followed by lyophilization. The study evaluated the hypoglycemic potential of ZnONPs with the best properties (quantity of capped agents and stability) compared to the plant extract per se. The ZnONP synthesis involved a mixture of zinc nitrate hexahydrate as the zinc precursor and a plant extract with high antioxidant activity as the capping agent supplier. The results of the studies showed that the procedure using high-temperature heating resulted in almost uncapped nanoparticles with phytocompounds (0.01 % of phenolic compounds) and nanoparticle sizes larger than 300 nm. The low-temperature method produced ZnONPs with high retention of capping agents (92.90 % of phenolic compounds) and a size of approximately 200 nm. The use of Tween 80 with pH adjustment between 9 and 10 resulted in more stable nanoparticles than with gum arabic. These nanoparticles prepared with Tween 80, exhibited a pronounced in vivo antihyperglycemic activity at a much lower dose (10 mg ZnO/kg capped by 0.31 mg phenolic compounds per kg) than the extracts alone (400 mg extract/kg) following an oral glucose tolerance test. These results demonstrated that green-synthesized ZnONPs with a high retention rate of phytochemicals can induce antihyperglycemic effects at a low dose.
Collapse
Affiliation(s)
- Espoir K Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Frederick M Katemo
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Kisangani, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier, 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo; Centre de Recherche et d'Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium; WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
14
|
Rajeshkumar S, Parameswari RP, Sandhiya D, Al-Ghanim KA, Nicoletti M, Govindarajan M. Green Synthesis, Characterization and Bioactivity of Mangifera indica Seed-Wrapped Zinc Oxide Nanoparticles. Molecules 2023; 28:molecules28062818. [PMID: 36985789 PMCID: PMC10056584 DOI: 10.3390/molecules28062818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several advantages, including optical and biological properties, which provide them a significant competitive advantage in clinical and biological applications. In the current investigation, we used an aqueous Mangifera indica seed extract to synthesize nanoparticles of zinc oxide (ZnO NPs). UV-Vis spectroscopy, Fourier transform infrared spectroscopy analysis, atomic force spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the synthesized ZnO NPs. The nanoparticles were assessed for their potential to inhibit bacterial growth and protect cells from free radical damage. According to the current study's findings, zinc oxide nanoparticles that had been modified with the aid of mango seeds were very efficient in preventing the development of the tested bacteria and were also powerful antioxidants.
Collapse
Affiliation(s)
- Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai 600077, TN, India
| | | | - Dayalan Sandhiya
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, TN, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, TN, India
| |
Collapse
|
15
|
Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer's properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Metal and metal oxide nanostructures applied as alternatives of antibiotics. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Rigi F, Yavari Z. Biosynthesize of Zinc Oxide Nanoparticles and Their Promoter Actions in the Application of Pd/ZnO Catalyst for Electro-Oxidation of Ethanol. Catal Letters 2023. [DOI: 10.1007/s10562-022-04159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Kumari V, Kumar R, Dubey KK, Kumar V. Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. MATERIALS ADVANCES 2023; 4:3091-3113. [DOI: 10.1039/d3ma00159h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review aims to provide an overview of nanoparticles for diabetes mellitus therapy. It explores the properties, synthesis and/or functionalization, mechanistic aspects, and therapeutics for diabetes and its complications.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Vandana Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
19
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
20
|
Rahman F, Majed Patwary MA, Bakar Siddique MA, Bashar MS, Haque MA, Akter B, Rashid R, Haque MA, Royhan Uddin AKM. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220858. [PMID: 36425517 PMCID: PMC9682308 DOI: 10.1098/rsos.220858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been successfully prepared using Cocos nucifera leaf extract and their antimicrobial, antioxidant and photocatalytic activity investigated. The structural, compositional and morphological properties of the NPs were recorded and studied systematically to confirm the synthesis. The aqueous suspension of NPs showed an ultraviolet-visible (UV-Vis) absorption maxima of 370 nm, indicating primarily its formation. X-ray diffraction analysis identified the NPs with a hexagonal wurtzite structure and an average particle size of 16.6 nm. Fourier transform infrared analysis identified some biomolecules and functional groups in the leaf extract as responsible for the encapsulation and stabilization of ZnO NPs. Energy-dispersive X-ray analysis showed the desired elemental compositions in the material. A flower-shaped morphology of ZnO NPs was observed by scanning electron microscopy, with a grain size of around 15 nm. The optical properties of the NPs were studied by UV-Vis spectroscopy, and the band gap was calculated as 3.37 eV. The prepared ZnO NPs have demonstrated antimicrobial activity against T. harzianum and S. aureus, with a zone of inhibition of 14 and 10 mm, respectively. The photocatalytic behaviour of ZnO NPs showed absorbance degradation at around 640 nm and it discoloured methylene blue dye after 1 h, with a degradation maximum of 84.29%. Thus, the prepared ZnO NPs could potentially be used in antibiotic development and pharmaceutical industries, and as photocatalysts.
Collapse
Affiliation(s)
- Farjana Rahman
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | | | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Beauty Akter
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | - Rimi Rashid
- Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md. Anamul Haque
- Department of Pharmacy, Comilla University, Cumilla 3506, Bangladesh
| | | |
Collapse
|
21
|
Shaban EE, Abd El-Aziz ME, Ibrahim KS, Nasr SM, Desouky HM, Elbakry HF. Effect of zinc oxide nanoparticles on diabetes development and complications in diabetic rats compared to conventional zinc sulfate and metformin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM, Lahlouh IK. Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond) 2022; 17:1281-1303. [PMID: 36254841 DOI: 10.2217/nnm-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research on ZnO nanoparticles (NPs) has broad medical applications. However, the green synthesis of ZnO NPs involves a wide range of properties requiring optimization. ZnO NPs show toxicity at lower doses. This toxicity is a function of NP properties and pharmacokinetics. Moreover, NP toxicity and pharmacokinetics are affected by the species type and age of the animals tested. Physiologically based pharmacokinetic (PBPK) modeling offers a mechanistic platform to scrutinize the colligative effect of the interplay between these factors, which reduces the need for in vivo studies. This review provides a guide to choosing green synthesis conditions that result in minimal toxicity using a mechanistic tool, namely PBPK modeling.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Anwar E Abu Alkahsi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Khetam M Korshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ishraq K Lahlouh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
23
|
Elbandrawy MM, Sweef O, Elgamal D, Mohamed TM, EhabTousson, Elgharabawy RM. Ellagic acid regulates hyperglycemic state through modulation of pancreatic IL-6 and TNF- α immunoexpression. Saudi J Biol Sci 2022; 29:3871-3880. [PMID: 35844391 PMCID: PMC9280239 DOI: 10.1016/j.sjbs.2022.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Background Objective Methods Results Conclusion
Collapse
|
24
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
25
|
Minocycline-Derived Silver Nanoparticles for Assessment of Their Antidiabetic Potential against Alloxan-Induced Diabetic Mice. Pharmaceutics 2021; 13:pharmaceutics13101678. [PMID: 34683970 PMCID: PMC8541160 DOI: 10.3390/pharmaceutics13101678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.
Collapse
|
26
|
Pehlivanoglu S, Acar CA, Donmez S. Characterization of green synthesized flaxseed zinc oxide nanoparticles and their cytotoxic, apoptotic and antimigratory activities on aggressive human cancer cells. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Cigdem Aydin Acar
- Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Soner Donmez
- Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
27
|
A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
|
28
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
29
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10070884. [PMID: 34356805 DOI: 10.3389/fphy.2021.641481] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 05/22/2023]
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Anastasia A Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
30
|
Elassy N, El-Dafrawy S, Abd El-Azim AO, El-Khawaga OAY, Negm A. Zinc oxide nanoparticles augment CD4, CD8, and GLUT-4 expression and restrict inflammation response in streptozotocin-induced diabetic rats. IET Nanobiotechnol 2021; 14:680-687. [PMID: 33108324 DOI: 10.1049/iet-nbt.2020.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol-gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type-4 (GLUT-4), tumour necrosis factor, and interleukin-6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non-toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin-secreting granules. This shows the therapeutic application of ZnONPs as a safe anti-diabetic agent and to have a potential for the control of diabetes.
Collapse
Affiliation(s)
- Norhan Elassy
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Shady El-Dafrawy
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Amira O Abd El-Azim
- Zoology Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Om Ali Y El-Khawaga
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia.
| |
Collapse
|
31
|
Kavaz D, Abubakar AL, Rizaner N, Umar H. Biosynthesized ZnO Nanoparticles Using Albizia lebbeck Extract Induced Biochemical and Morphological Alterations in Wistar Rats. Molecules 2021; 26:molecules26133864. [PMID: 34202852 PMCID: PMC8270351 DOI: 10.3390/molecules26133864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Nano-based particles synthesized via green routes have a particular structure that is useful in biomedical applications as they provide cheap, eco-friendly, and non-toxic nanoparticles. In the present study, we reported the effect of various concentrations of Zinc oxide nanoparticles synthesized using A. lebbeck stem bark extract (ZnO NPsAL) as stabilizing agent on rat biochemical profiles and tissue morphology. Adult Wistar rats weighing 170 ± 5 g were randomly classified into eight groups of five rats each; Group A served as a control fed with normal diet and water. Groups B1, B2, C1, C2, D1, D2, and E were treated with 40 mg/kg and 80 mg/kg of the 0.01, 0.05, and 0.1 M biosynthesized ZnO NPsAL and zinc nitrate daily by the gavage method, respectively. The rats were anesthetized 24 h after the last treatment, blood samples, kidney, heart, and liver tissues were collected for biochemical and histopathological analysis. The rats mean body weight, serum alkaline phosphatase, alanine aminotransferase, creatinine, urea, bilirubin, protein, albumin, globulin, total cholesterol, triacylglycerol, and high-density lipoprotein were significantly altered with an increased concentration of biosynthesized ZnO NPsAL when compared with the control group (p < 0.05; n ≥ 5). Furthermore, histopathological analysis of treated rats' kidney, heart, and liver tissue revealed vascular congestion, tubular necrosis, inflammation, and cytoplasmic vacuolation. Biosynthesized ZnO NPsAL showed significant alteration in biochemical parameters and tissue morphology in rats with increasing concentrations of the nanoparticles.
Collapse
Affiliation(s)
- Doga Kavaz
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
- Correspondence: ; Tel.: +90-3926711111
| | - Amina Lawan Abubakar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Department of Biochemistry, Kano State University of Science and Technology, Wudil, Kano P.M.B 3244, Nigeria
| | - Nahit Rizaner
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| | - Huzaifa Umar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| |
Collapse
|
32
|
Alkazazz FF, Taher ZA. A Review on nanoparticles as a promising approach to improving diabetes mellitus. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012056. [DOI: 10.1088/1742-6596/1853/1/012056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Diabetes mellitus (DM) is a chronic disease condition that causes multiple complications in various organs such as kidney, reproductive system, and liver. It is mainly characterized by high blood glucose, insulin secretion deficiency or insulin resistance. In conventional diabetes, medications of insulin production and increased insulin sensitivity usually cause undesirable side effects and lead to poor adherence and therapy failure. In addition to insulin and oral hypoglycemic agents, there are different healthy ways to treat diabetes. Nanoparticles (NPs) such as zinc oxide (ZnO) NPs, selenium (Se) NPs, magnesium oxide (MgO) NPs, Copper (Cu) NPs, and cerium oxide (CeO2) NPs play an important role in controlling diabetes. The results reviewed here presented antidiabetic activity of CeO2 NPs, Se NPs, ZnO NPs, Cu NPs, and MgO NPs with fewer side effects when compared to antioxidant enzymes, glucose use, or increased insulin sensitivity, as these showed complications with diabetes.
Collapse
|
33
|
Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330:618-640. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia driven by insulin deficiency or resistance, imposing a significant global burden affecting 463 million people worldwide in 2019. This review has comprehensively summarized the application of nanomedicine with accurate, patient-friendly, real-time properties in the field of diabetes diagnosis and monitoring, and emphatically discussed the unique potential of various nanomedicine carriers (e.g., polymeric nanoparticles, liposomes, micelles, microparticles, microneedles, etc.) in the management of diabetes and complications. Novel delivery systems have been developed with improved pharmacokinetics and pharmacodynamics, excellent drug biodistribution, biocompatibility, and therapeutic efficacy, long-term action safety, as well as the improved production methods. Furthermore, the effective nanomedicine for the treatment of several major diabetic complications with significantly improved life qualities of diabetic patients were discussed in detail. Going through the literature review, several critical issues of the nanomedicine-based strategies applications need to be addressed such as stabilities and long-term safety effects in vivo, the deficiency of standard for formulation administration, feasibility of scale-up, etc. Overall, the review provides an insight into the design, advantages and limitations of novel nanomedicine application in the diagnostics, monitoring, and therapeutics of DM.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Keyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| |
Collapse
|
34
|
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16:62-76. [PMID: 33613730 PMCID: PMC7878460 DOI: 10.1016/j.ajps.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
There are several therapeutic approaches in type 2 diabetes mellitus (T2DM). When diet and exercise fail to control hyperglycemia, patients are forced to start therapy with antidiabetic agents. However, these drugs present several drawbacks that can affect the course of treatment. The major disadvantages of current oral modalities for the treatment of T2DM are mainly depicted in the low bioavailability and the immediate release of the drug, generating the need for an increase in frequency of dosing. In conjugation with the manifestation of adverse side effects, patient compliance to therapy is reduced. Over the past few years nanotechnology has found fertile ground in the development of novel delivery modalities that can potentially enhance anti-diabetic regimes efficacy. All efforts have been targeted towards two main vital steps: (a) to protect the drug by encapsulating it into a nano-carrier system and (b) efficiently release the drug in a gradual as well as controllable manner. However, only a limited number of studies published in the literature used in vivo techniques in order to support findings. Here we discuss the current disadvantages of modern T2DM marketed drugs, and the nanotechnology advances supported by in vivo in mouse/rat models of glucose homeostasis. The generation of drug nanocarriers may increase bioavailability, prolong release and therefore reduce dosing and thus, improve patient compliance. This novel approach might substantially improve quality of life for diabetics. Application of metal nanoformulations as indirect hypoglycemic agents is also discussed.
Collapse
Affiliation(s)
- Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
35
|
Influence of surfactant-tailored Mn-doped ZnO nanoparticles on ROS production and DNA damage induced in murine fibroblast cells. Sci Rep 2020; 10:18062. [PMID: 33093462 PMCID: PMC7582184 DOI: 10.1038/s41598-020-74816-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
The present study concerns the in vitro oxidative stress responses of non-malignant murine cells exposed to surfactant-tailored ZnO nanoparticles (NPs) with distinct morphologies and different levels of manganese doping. Two series of Mn-doped ZnO NPs were obtained by coprecipitation synthesis method, in the presence of either polyvinylpyrrolidone (PVP) or sodium hexametaphosphate (SHMTP). The samples were investigated by powder X-ray Diffraction, Transmission Electron Microscopy, Fourier-Transform Infrared and Electron Paramagnetic Resonance spectroscopic methods, and N2 adsorption-desorption analysis. The observed surfactant-dependent effects concerned: i) particle size and morphology; ii) Mn-doping level; iii) specific surface area and porosity. The relationship between the surfactant dependent characteristics of the Mn-doped ZnO NPs and their in vitro toxicity was assessed by studying the cell viability, intracellular reactive oxygen species (ROS) generation, and DNA fragmentation in NIH3T3 fibroblast cells. The results indicated a positive correlation between the specific surface area and the magnitude of the induced toxicological effects and suggested that Mn-doping exerted a protective effect on cells by diminishing the pro-oxidative action associated with the increase in the specific BET area. The obtained results support the possibility to modulate the in vitro toxicity of ZnO nanomaterials by surfactant-controlled Mn-doping.
Collapse
|
36
|
Barman S, Srinivasan K. Diabetes and zinc dyshomeostasis: Can zinc supplementation mitigate diabetic complications? Crit Rev Food Sci Nutr 2020; 62:1046-1061. [PMID: 33938330 DOI: 10.1080/10408398.2020.1833178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc present in the islet cells of the pancreas is crucial for the synthesis, storage, and secretion of insulin. The excretion of large amounts of zinc from the body is reported in diabetic situations. Zinc depletion and increased oxidative stress have a major impact on the pathogenesis of diabetic complications. It would be most relevant to ascertain if intervention with supplemental zinc compensating for its depletion would beneficially mitigate hyperglycemia and the attendant metabolic abnormalities, and secondary complications in diabetes. An exhaustive literature search on this issue indicates: (1) Concurrent hypozincemia and decreased tissue zinc stores in diabetes as a result of its increased urinary excretion and/or decreased intestinal absorption, (2) Several recent experimental studies have documented that supplemental zinc has a potential hypoglycemic effect in the diabetic situation, and also beneficially modulate the attendant metabolic abnormalities and compromised antioxidant status, and (3) Supplemental zinc also alleviates renal lesions, cataract and the risk of cardiovascular disease accompanying diabetes mellitus, and help restore gastrointestinal health in experimental diabetes. These studies have also attempted to identify the precise mechanisms responsible for zinc-mediated beneficial effects in diabetic situation. The evidence discussed in this review highlights that supplemental zinc may significantly contribute to its clinical application in the management of diabetic hyperglycemia and related metabolic abnormalities, and in the alleviation of secondary complications resulting from diabetic oxidative stress.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| | - Krishnapura Srinivasan
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
37
|
Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, Castro-Sánchez L, Jesús Castillo S, Dagnino-Acosta A, Bonales-Alatorre E, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending On the Dose and Route of Administration in Healthy and Diabetic Rats. NANOMATERIALS 2020; 10:nano10102005. [PMID: 33053624 PMCID: PMC7599450 DOI: 10.3390/nano10102005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Different studies in experimental diabetes models suggest that zinc oxide nanoparticles (ZnONPs) are useful as antidiabetic agents. However, this evidence was performed and measured in long-term treatments and with repeated doses of ZnONPs. This work aimed to evaluate the ZnONPs acute effects on glycemia during the next six h after an oral or intraperitoneal administration of the treatment in healthy and diabetic rats. In this study, the streptozotocin-nicotinamide intraperitoneal administration in male Wistar rats were used as a diabetes model. 10 mg/kg ZnONPs did not modify the baseline glucose in any group. Nevertheless, the ZnONPs short-term administration (100 mg/kg) induced a hyperglycemic response in a dose and route-dependent administration in healthy (130 ± 2 and 165 ± 10 mg/dL with oral and intraperitoneal, respectively) and diabetic rats (155 ± 2 and 240 ± 20 mg/dL with oral, and intraperitoneal, respectively). The diabetic rats were 1.5 fold more sensitive to ZnONPs effect by the intraperitoneal route. In conclusion, this study provides new information about the acute response of ZnONPs on fasting glycemia in diabetic and healthy rat models; these data are essential for possible future clinical approaches.
Collapse
Affiliation(s)
- Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
- Correspondence:
| | - Alejandro Apolinar-Iribe
- Departamento de Física, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Hortensia Parra-Delgado
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán, Colima C.P. 28400, Mexico;
| | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, URS, Universidad de Sonora, Navojoa, Sonora C.P. 85880, Mexico;
| | - Enrique Alejandro Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Santos Jesús Castillo
- Departamento de Investigación en Física, A.P. 5-088, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | | |
Collapse
|
38
|
Barakat LAA, Barakat N, Zakaria MM, Khirallah SM. Protective role of zinc oxide nanoparticles in kidney injury induced by cisplatin in rats. Life Sci 2020; 262:118503. [PMID: 33007311 DOI: 10.1016/j.lfs.2020.118503] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
Cisplatin used as chemotherapy for various cancers may leads to accumulation of platinum within the kidney and disturb its function. Zinc oxide nanoparticles (ZnO-NPs) are of low toxicity nanomaterials and have many medical fields so this study aims to indicate ZnO-NPs effect in kidney injury induced by cisplatin. Adult male rats were pre-injected with one dose of ZnO-NPs (5 mg/kg IP) and after 2 h from injection, the rats were injected with also only one dose of cisplatin (6 mg/kg IP) and two additional groups were served as controls treated with either ZnO-NPs or cisplatin only, respectively, and normal control was involved and euthanization occurred after 7 and 12 days. Cisplatin-induced nephropathy increased kidney function parameters; serum creatinine, blood urea nitrogen and microalbuminuria. Conversely, these parameters were down regulated after ZnO-NPs treatment. ZnO-NPs reversed the decrease of renal superoxide dismutase, catalase and glutathione reductase and the increase of renal malondialdehyde induced by cisplatin. In addition, the annexin V demonstrated that the proportion of viable cells was significantly elevated and the proportion of apoptotic and necrotic cells significantly reduced. Also, the level of renal transforming growth factor beta 1 decreased in group pre-treated with ZnO-NPs. The Nuclear factor-E2-related factor, heme oxygenase-1 and endothelial nitric oxide synthase expression genes were up regulated while Bcl-2-associated X protein expression was down regulated in kidney tissue via ZnO-NPs. Histopathological and immunohistochemical observations were context with these findings. In conclusion, ZnO-NPs treatment revealed renoprotective effect against cisplatin drug, probably via its antioxidant, anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Lamiaa A A Barakat
- Department of Biochemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Salma M Khirallah
- Department of Biochemistry, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
39
|
Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, Zheng X. Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000796. [PMID: 32633072 DOI: 10.1002/smll.202000796] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Piezoelectric materials can produce electrical power from the mechanical stimulation and thus, they may accelerate electroactive tissue healing as a promising treatment for traumatic peripheral nerve injuries. In this study, a piezoelectric zinc oxide nanogenerator scaffold is manufactured by 3D injectable multilayer biofabrication. The piezoelectric polymeric scaffold displays desirable mechanical and physical characteristics, such as aligned porosity, high elasticity, scaffold stiffness, surface energy, and excellent shear behavior. In addition, its biocompatibility supplies Schwann cells with an adhesive, proliferative, and angiogenic interface, as is reflected by higher expression of functional proteins including nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). In vivo mechanical stimuli by treadmill practice contribute to the comprehensive reparative therapy. The piezoelectric conduit accelerates nerve conducting velocity, promotes axonal remyelination, and restores motor function by recovering endplate muscles. Moreover, the piezoelectric nanogenerator scaffold creates biomimetic electrically conductive microenvironment without causing noticeable toxicity to functioning organs and improves peripheral nerve restoration by the multifunctional characteristics. Therefore, the mechano-informed biomimetic piezoelectric scaffold may have enormous potential in the neuroengineering for regenerative medicine.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jialin Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yang Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Xianyou Zheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
40
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
41
|
Fakharzadeh S, Argani H, Torbati PM, Dadashzadeh S, Kalanaky S, Nazaran MH, Basiri A. DIBc nano metal-organic framework improves biochemical and pathological parameters of experimental chronic kidney disease. J Trace Elem Med Biol 2020; 61:126547. [PMID: 32460199 DOI: 10.1016/j.jtemb.2020.126547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The growing morbidity and mortality rate of chronic kidney disease (CKD) has forced researchers to find more efficient strategies for controlling this disease. Studies have proven the important role of alteration in iron, zinc and selenium metabolism in CKD pathological process. Nanotechnology, through synthetizing nano metal-organic framework (NMOF) structures, can be employed as a valuable strategy for using these trace elements as the key for modification and improvement of CKD-related pathological events. After proving the anti-diabetic property of DIBc NMOF (which contains selenium and zinc) in the previous study, the impact of this NMOF on some important biochemical and pathological parameters of CKD was evaluated in the current study. METHODS Knowing that diabetic nephropathy (DN) is the leading cause of CKD, male wistar rats were selected and given a high fat diet for 2 weeks and then were injected with streptozotocin (35 mg/kg) to induce DN. Six weeks after streptozotocin injection, DIBc or metformin treatment started and continued for 8 weeks. RESULTS Eight weeks of DIBc treatment decreased plasma fasting blood glucose, blood urea nitrogen, uric acid, malondialdehyde (MDA) and HOMA-IR index compared to DN control and metformin groups. This NMOF significantly reduced urinary albumin excretion rate, MDA and 8-isoprostane, while it increased creatinine clearance in comparison to the above-mentioned groups. Renal histo-pathological images indicated that DIBc ameliorated glomerular basement membrane thickening and wrinkling, mesangial matrix expansion and hypercellularity and presence of intra-cytoplasmic hyaline droplets in proximal cortical tubules of kidney samples. CONCLUSION The results showed the therapeutic effect of DIBc on important biochemical and histo-pathological parameters of CKD, so this NMOF could be regarded as a promising novel anti-CKD agent.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Hossain Z, Yasmeen F, Komatsu S. Nanoparticles: Synthesis, Morphophysiological Effects, and Proteomic Responses of Crop Plants. Int J Mol Sci 2020; 21:E3056. [PMID: 32357514 PMCID: PMC7246787 DOI: 10.3390/ijms21093056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Plant cells are frequently challenged with a wide range of adverse environmental conditions that restrict plant growth and limit the productivity of agricultural crops. Rapid development of nanotechnology and unsystematic discharge of metal containing nanoparticles (NPs) into the environment pose a serious threat to the ecological receptors including plants. Engineered nanoparticles are synthesized by physical, chemical, biological, or hybrid methods. In addition, volcanic eruption, mechanical grinding of earthquake-generating faults in Earth's crust, ocean spray, and ultrafine cosmic dust are the natural source of NPs in the atmosphere. Untying the nature of plant interactions with NPs is fundamental for assessing their uptake and distribution, as well as evaluating phytotoxicity. Modern mass spectrometry-based proteomic techniques allow precise identification of low abundant proteins, protein-protein interactions, and in-depth analyses of cellular signaling networks. The present review highlights current understanding of plant responses to NPs exploiting high-throughput proteomics techniques. Synthesis of NPs, their morphophysiological effects on crops, and applications of proteomic techniques, are discussed in details to comprehend the underlying mechanism of NPs stress acclimation.
Collapse
Affiliation(s)
- Zahed Hossain
- Department of Botany, University of Kalyani, West Bengal 741235, India
| | - Farhat Yasmeen
- Department of Botany, Women University, Swabi 23340, Pakistan
| | - Setsuko Komatsu
- Department of Environmental and Food Science, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
43
|
Abdel-Magied N, Shedid SM. Impact of zinc oxide nanoparticles on thioredoxin-interacting protein and asymmetric dimethylarginine as biochemical indicators of cardiovascular disorders in gamma-irradiated rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:430-442. [PMID: 31749214 DOI: 10.1002/tox.22879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticle is a microscopic particle that has been existed in a wide range of biotechnological purposes. Zinc oxide nanoparticles (ZnO-NPs) have fewer environmental hazards and have shown positive impacts in the medical field. This work aimed to observe the effects of low and high doses of ZnO-NPs on heart injury induced by ionizing radiation (IR). Animals were irradiated by 8 Gy of gamma rays and ZnO-NPs (10 and 300 mg/Kg/day) were orally delivered to rats 1 hour after irradiation. Animals were dissected on 15th day postirradiation. Data showed that the oxidative damage resulted from radiation exposure, appeared by marked increments in the malondialdehyde (MDA) content and the level and protein expression of thioredoxin-interacting protein (TXNIP) with a noticeable decline in the level and expression of thioredoxin 1 (Trx-1) and thioredoxin reductase (TrxR), as well as glutathione (GSH) level and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, radiation-induced inflammation, manifested by a noticeable elevation in the level of tumor necrotic factor-alpha (TNF-α), interleukin-18 (IL-18), and C-reactive protein (CRP). Additionally, endothelial dysfunction marked with a high level of asymmetric dimethylarginine (ADMA), total nitrite/nitrate (NOx), intercellular adhesion molecule 1 (ICAM-1), homocysteine (Hcy), creatine kinase (CK-MB), cardiac troponin-I (cTn-I), and lactate dehydrogenase (LDH). In addition, a decrease of zinc (Zn) level in the cardiac tissue was recorded. ZnO-NPs treatment (10 mg/kg) mitigated the oxidative stress and inflammation effects on the cardiovascular tissue through the positive modulations in the studied parameters. In contrast, ZnO-NPs treatment (300 mg/kg) induced cardiovascular toxicity of normal rats and elevated the deleterious effects of radiation. In conclusion, ZnO-NPs at a low dose could mitigate the adverse effects on cardiovascular tissue induced by radiation during its applications, while the high dose showed morbidity and mortality in normal and irradiated rats.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
44
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
45
|
Pinho AR, Rebelo S, Pereira MDL. The Impact of Zinc Oxide Nanoparticles on Male (In)Fertility. MATERIALS 2020; 13:ma13040849. [PMID: 32069903 PMCID: PMC7078810 DOI: 10.3390/ma13040849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 01/31/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are among nanoscale materials, attracting increasing attention owing to their exceptional set of characteristics, which makes these engineered nanoparticles a great option for improving the quality and effectiveness of diagnosis and treatment. The capacity of ZnO NPs to induce reactive oxygen species (ROS) production, DNA damage, and apoptosis represents a promise for their use in both cancer therapy and microbial treatment. However, their intrinsic toxicity together with their easy entrance and accumulation in organism have raised some concerns regarding the biomedical use of these NPs. Several studies have reported that ZnO NPs might induce cytotoxic effects on the male reproductive system, compromising male fertility. Despite some advances in this area, the knowledge of the effects of ZnO NPs on male fertility is still scarce. Overall, a brief outline of the major ZnO NPs biomedical applications and promises in terms of diagnostic and therapeutic use will also be explored. Further, this review intends to discuss the effect of ZnO NPs exposure on the male reproductive system and speculate their effects on male (in)fertility.
Collapse
Affiliation(s)
- Ana Rita Pinho
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), 3810-193 Aveiro, Portugal
- Correspondence: (S.R.); (M.d.L.P.); Tel.: +351-924-406-306 (S.R.); +351-962702438 (M.d.L.P.); Fax: +351-234-372-587 (S.R.)
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (S.R.); (M.d.L.P.); Tel.: +351-924-406-306 (S.R.); +351-962702438 (M.d.L.P.); Fax: +351-234-372-587 (S.R.)
| |
Collapse
|
46
|
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E292. [PMID: 32050443 PMCID: PMC7075170 DOI: 10.3390/nano10020292] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Daniela Gomes
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Ana Laura Lopez-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Maria L. Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother 2019; 122:109712. [PMID: 31918281 DOI: 10.1016/j.biopha.2019.109712] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human multiple myeloma (MM) is a malignant and incurable B cell tumor. Zinc oxide nanoparticles (ZnO NPs) have been widely used in biomedical fields including anti-bacterial and anti-tumor. However, the influence of ZnO NPs on MM cells is still unclear. The present study aimed to investigate the effect of ZnO NPs on MM cell (a human myeloma-derived RPMI8226 cell line) death in vitro and the underlying mechanism. METHODS The morphology of ZnO NPs was characterized by transmission electron microscopy (TEM), and the inhibitory and apoptotic effect of ZnO NPs on human MM cells was monitored by a CCK-8 method and an Annexin V-FITC/PI assay. Meanwhile, the morphological change in the cells after exposure to ZnO NPs was observed by a light field microscope. Moreover, the effects of ZnO NPs on the ATP level, reactive oxygen species (ROS) generation, and apoptosis were separately explored by the DCFH-DA fluorescent probe, flow cytometry, and ATP bioluminescence assay. Moreover, the expression of cytochrome C (Cyt-C), Apaf-1, Caspase-9 and Caspase-3 at mRNA and protein levels was further determined by using quantitative PCR (Q-PCR) and western blotting. In the present study, the human peripheral blood mononuclear cells (PBMCs) were used as normal control samples for the relevant experiment. RESULTS The results indicated that ZnO NPs could significantly inhibit human MM cell proliferation and cell death in a time- and dose-dependent manner in vitro, and this outcome can be confirmed by cell morphology and apoptosis assay. Meanwhile, the results also showed that ZnO NPs could effectively increase ROS production and decrease ATP levels in human MM cells. ZnO NPs could also significantly elevate the expression of Cyt-C, Apaf-1, Caspase-9 and Caspase-3 at mRNA and protein levels, leading to cell death. By contrast, ZnO NPs showed little cytotoxic influence on PBMCs. CONCLUSION ZnO NPs can significantly induce human MM cell death in a time- and dose-dependent manner in vitro, decrease the ATP production and enhance the ROS generation. ZnO NPs can also increase Cyt-C, Apaf-1, Caspase-9 and Caspase-3 expression at mRNA and protein levels in human MM cells, and initiate MM cell apoptosis, indicating that Cyt-C, Apaf-1, Caspase-9 and Caspase-3 play crucial roles in ZnO NPs-induced, mitochondria-mediated apoptosis in human MM cells. Overall, ZnO NPs may be a potential agent in treating human multiple myeloma in clinical practice.
Collapse
|
48
|
Jin SE, Jin HE. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019; 11:E575. [PMID: 31689932 PMCID: PMC6921052 DOI: 10.3390/pharmaceutics11110575] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical characterization is required to identify the biological and toxicological effects of ZnO nanoparticles. These nanoparticles have variable morphologies and can be molded into three-dimensional structures to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid in wound healing and can be used for imaging tools and sensors. In this review, we discuss the synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate three-dimensional structures, and the various biomedical applications of ZnO nanoparticles.
Collapse
Affiliation(s)
- Su-Eon Jin
- College of Pharmacy, Yonsei University, Incheon 21983, Korea.
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
49
|
Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 2019; 239:117011. [PMID: 31669241 DOI: 10.1016/j.lfs.2019.117011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a multifaceted and costly disease, which requires serious attention. Finding a cheaper anti-diabetic alternative that can act on multiple disease-related targets and pathways is the ultimate treatment goal for DM. Nanotechnology has offered some exciting possibilities in biomedical and drug delivery applications. Zinc oxide nanoparticles (ZnO-NPs), a novel agent to deliver zinc, have great implications in many disease therapies including DM. This review summarizes the pharmacological mechanisms by which ZnO-NPs alleviate DM and diabetic complications. Research implications and future perspectives were also discussed.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
50
|
Nazir S, Rabbani A, Mehmood K, Maqbool F, Shah GM, Khan MF, Sajid M. Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int J Nanomedicine 2019; 14:7809-7822. [PMID: 31576125 PMCID: PMC6767875 DOI: 10.2147/ijn.s203351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Nanoparticles (NPs) can be toxic due to their nano-range sizes. Zinc oxide (ZnO) has good biocompatibility and is commercially used in cosmetics. Moreover, ZnO NPs have potential biomedical uses, but their safety remains unclear. METHODS A range of doped ZnO NPs was evaluated for antileishmanial activity and in vitro toxicity in brine shrimp and human macrophages, and N-doped ZnO NPs were evaluated for in vivo toxicity in male BALB/C mice. N-doped ZnO NPs were administered via two routes: intra-peritoneal injection and topically as a paste. The dosages were 10, 50, and 100 mg/kg/day for 14 days. RESULTS Topical administration was safe at all dosages, but intra-peritoneal injection displayed toxicity at higher doses, namely, 50 and 100 mg/kg/day. The pathological results for the i.p. dose groups were mild to severe degenerative changes in parenchyma cells, increases in Kupffer cells, disappearance of hepatic plates, increases in cell size, ballooning, cytoplasmic changes, and nuclear pyknosis in the liver. Kidney histology was also altered in the i.p. administration group (dose 100 mg/kg/day), with inflammatory changes in the focal area. We associate pathological abnormalities with the presence of doped ZnO NPs at the diseased site, which was verified by PIXE analysis of the liver and kidney samples of the treated and untreated mice groups. CONCLUSION The toxicity of the doped ZnO NPs can serve as an essential determinant for the effects of ZnO NPs on environmental toxicity and can be used for guidelines for safer use of ZnO-based nanomaterials in topical treatment of leishmaniasis and other biomedical applications.
Collapse
Affiliation(s)
- Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Atiya Rabbani
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Khalid Mehmood
- Medical Centre, Quaid-e-Azam University, Islamabad, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | | | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|