1
|
Yue J, Bao X, Meng LF. PROTECTIVE ROLE OF MELATONIN FOR ACUTE KIDNEY INJURY: A SYSTEMATIC REVIEW AND META-ANALYSIS. Shock 2024; 61:167-174. [PMID: 38010077 DOI: 10.1097/shk.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Introduction : Acute kidney injury (AKI) is an important clinical issue that arouses global concerns, which puzzles clinicians and lacks effective drug treatment for AKI until the present. Melatonin has been well recognized to modulate the sleep-wake cycle and had the renal protective effect. However, there are still few clinical trials investigating the relationship between melatonin and AKI. The conclusions drawn in existing clinical studies are still inconsistent. The study systematically reviewed and assessed the efficacy of melatonin in preventing AKI. Methods : A systematic literature search was conducted in the PubMed, Embase, and Cochranelibrary on May 19, 2023. Eligible records were screened according to the inclusion and exclusion criteria. The risk ratio and the corresponding 95% confidence intervals were selected to evaluate the effects of melatonin on AKI. We pooled extracted data using a fixed- or random effects model based on a heterogeneity test. Results : Six randomized controlled trials regarding the use of melatonin in preventing kidney injury met our inclusion criteria. The pooled results showed that melatonin increased the estimated glomerular filtration rate, and effectively inhibited the occurrence of AKI. Melatonin tended to reduce the serum creatinine and urea nitrogen levels, but there was no statistical significance. Conclusions : Melatonin can increase the estimated glomerular filtration rate and effectively inhibit the occurrence of AKI. More well-designed randomized controlled trials are needed to verify the protective effect of melatonin in the future.
Collapse
Affiliation(s)
- Jing Yue
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Xin Bao
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ling-Fei Meng
- Department of Nephrology, Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Xie X, Lou H, Shi Y, Gan G, Deng H, Ma X, Meng M, Gao X. A network pharmacological-based study of the mechanism of Liuwei Dihuang pill in the treatment of chronic kidney disease. Medicine (Baltimore) 2023; 102:e33727. [PMID: 37171332 PMCID: PMC10174353 DOI: 10.1097/md.0000000000033727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease that poses a huge economic burden to society. Liuwei Dihuanng pill is an effective treatment for chronic kidney disease, but its treatment mechanism is unclear. The rapid development of network pharmacology has provided new strategies for studying Chinese medicine. METHOD The traditional Chinese medicine systems pharmacology database and analysis platform was used to obtain the bioactive components and targets of Liuwei Dihuanng pill. The sources for the CKD-related targets were then obtained from the Genecards, OMIM, TTD, and DisGeNET databases. R was used to identify the intersecting genes for Liuwei Dihuang pill and CKD-related targets. Analysis of protein-protein interactions (PPI) was performed using STRING, and PPI networks and drug-component-target networks were constructed using Cytoscape software. Kyoto encyclopedia of genes and genomes pathway and gene ontology enrichment analyses were performed using R. Finally, molecular docking was performed to determine the binding activity between bioactive components and the targets. RESULT After screening and data de-duplication of 74 active components, 209 drug targets, and 14,794 disease targets, a total of 204 drug-disease targets were acquired. Subsequently, a drug-component-target network and PPI network were established. The primary components of Liuwei Dihuang pill included quercetin, stigmasterol, kaempferol, beta-sitosterol, tetrahydroalstonine, kadsurenone, hederagenin, hancinone C, diosgenin, and sitosterol. In addition, JUN, AKT1, TP53, RELA, MAPK1, FOS, TNF, IL6, ESR1, and RXRA were identified as the main targets. Gene ontology function enrichment analysis revealed that these targets were involved in reactive oxygen species metabolic processes, responses to metal ions and to chemical stimuli, G protein-coupled amine receptor activity, and nuclear factor receptor activity. Kyoto encyclopedia of genes and genomes enrichment analysis showed that these targets were involved in the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. Molecular docking results indicated good binding activity between the core targets and core components. CONCLUSION The potential mechanism of Liuwei Dihuanng pill in the treatment of CKD was preliminarily discussed in this study, providing a theoretical basis and evidence for further experimental research.
Collapse
Affiliation(s)
- Xi Xie
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongjun Lou
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ye Shi
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Guang Gan
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hanqing Deng
- The First Clinical Medical College of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xinwei Ma
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingfang Meng
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xi Gao
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
4
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
5
|
Ashari S, Karami M, Shokrzadeh M, Bagheri A, Ghandadi M, Ranaee M, Dashti A, Mohammadi H. Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway. Toxicol Res (Camb) 2022; 11:272-285. [PMID: 35510228 PMCID: PMC9052324 DOI: 10.1093/toxres/tfac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to evaluate the possible protective effects of quercetin, a natural flavonoid, against nephrotoxicity induced by Di (2-ethylhexyl) phthalate (DEHP) in kidney tissue of rats and human embryonic kidney (HEK) 293 cell line. The HEK-293 cells were treated with different concentrations of quercetin 24 h before treatment with monoethylhexyl phthalate (MEHP). Male rats were treated with 200-mg/kg DEHP, 200-mg/kg DEHP plus quercetin (50 and 100 mg/kg), and 200-mg/kg DEHP plus vitamin E (20 mg/kg) for 45 days by gavage. Quercetin treatment reduced cytotoxicity and oxidative damage inducing by MEHP in HEK-293 cells. The in vivo findings showed that 100-mg/kg quercetin significantly suppressed DEHP-induced kidney damage. For exploring the involved mechanisms, the expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) genes were determined via real-time Polymerase chain reaction (PCR) assay. High dose of quercetin significantly decreased the gene expressions of NF-κB and TNFα, whereas the alternations of Nrf2 and HO-1 gene expressions were not significant in quercetin groups in compared with DEHP group. These findings suggested that the suppression of DEHP-induced nephrotoxicity via quercetin is correlated, at least in part, with its potential to regulate NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sorour Ashari
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ranaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran,Department of Pathology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Ayat Dashti
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Corresponding author: Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sea road, Payambar Azam University Complex. PO Box- 48175/861 Sari, Iran.
| |
Collapse
|
6
|
Salama A, Mahmoud HAA, Kandeil MA, Khalaf MM. Neuroprotective role of camphor against ciprofloxacin induced depression in rats: modulation of Nrf-2 and TLR4. Immunopharmacol Immunotoxicol 2021; 43:309-318. [PMID: 34032546 DOI: 10.1080/08923973.2021.1905658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depression affects people feeling to be anxious, worried, and restless. They also lose interest in activities, concentrating and appetite, they finally may attempt suicide. Depression is the second chronic disease, as a source of the global burden of disease, after heart disease. Its prevalence elevated seven times during the COVID-19. AIM The current study was designed to evaluate camphor neuroprotective role against rats' ciprofloxacin-induced depression. MATERIALS AND METHODS Depression was induced by administration of ciprofloxacin (50 mg/kg; orally) for 21 days. Wister albino male rats were divided into five groups. Group I (normal control): rats were given normal saline. Group II: rats received camphor (10 mg/kg; i.p.) for 21 days. Group III (depression control): rats received ciprofloxacin only. Groups IV and V: rats received camphor (5 and 10 mg/kg; i.p.) for 21 days concurrent with ciprofloxacin. Behavior tests as forced swimming test, activity cage, and rotarod were estimated. Oxidative stress and antioxidant biomarkers as malondialdehyde (MDA), nitric oxide (NO), catalase, and nuclear factor erythroid 2-related factor 2 (Nrf-2) besides inflammatory biomarkers as Toll-like receptor 4 (TLR4) and tumor necrosis factor alpha (TNF-α) as well as neurotransmitters were determined. Finally, histopathological examination was done. RESULTS Camphor increased catalase and Nrf-2 activities, decreased NO, MDA, TNF-α, TLR4 serum levels, and elevating brain contents of serotonin, dopamine, gamma-amino butyric acid (GABA) and P190-RHO GTP protein with normal neuronal cells of the frontal cortex. CONCLUSION Camphor has neuroprotective effect via modulation of Nrf-2 and TLR4 against ciprofloxacin-induced depression in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Mohamed Ahmed Kandeil
- Department of Biochemistry, Faculty of Veterinary medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa Mahmoud Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
7
|
Fan M, Chen S, Weng Y, Li X, Jiang Y, Wang X, Bie M, An L, Zhang M, Chen B, Huang G, Wu J, Zhu M, Shi Q. Ciprofloxacin promotes polarization of CD86+CD206‑ macrophages to suppress liver cancer. Oncol Rep 2020; 44:91-102. [PMID: 32377744 PMCID: PMC7251753 DOI: 10.3892/or.2020.7602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota can promote tumor development by producing toxic metabolites and inhibiting the function of immune cells. Previous studies have demonstrated that gut microbiota can reach the liver through the circulation and promote the occurrence of liver cancer. Ciprofloxacin, an effective broad‑spectrum antimicrobial agent, can promote cell apoptosis and regulate the function of immune cells. As an important part of the tumor microenvironment, macrophages play an important role in tumor regulation. The present study demonstrated that the treatment of macrophages with ciprofloxacin was able to promote the production of interleukin‑1β, tumor necrosis factor‑α and the polarization of CD86+CD206‑ macrophages, while inhibiting the polarization of CD86‑CD206+ macrophages. This transformation may help macrophages promote tumor cell apoptosis, inhibit tumor cell proliferation, reduce metastasis and downregulate the phosphoinositide 3‑kinase/AKT signaling pathway in liver cancer cell lines. In vivo experiments demonstrated that macrophages treated with ciprofloxacin inhibited the growth of subcutaneous implanted tumors in nude mice. In conclusion, the findings of the present study indicated that ciprofloxacin may inhibit liver cancer by upregulating the expression of CD86+CD206‑ macrophages. This study further revealed the biological mechanism underlying the potential value of ciprofloxacin in antitumor therapy and provided new targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sicheng Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingjiu Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjun Bie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Menghao Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gaigai Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Farzipour S, Amiri FT, Mihandoust E, Shaki F, Noaparast Z, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J Bioenerg Biomembr 2019; 52:39-46. [PMID: 31853753 DOI: 10.1007/s10863-019-09820-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the radioprotective effect of diethylcarbamazine (DEC) against oxidative stress and acute lung injury induced by total body radiation (TBI) in mice. For study the optimum dose for radiation protection of DEC, mice were administrated with three dose of DEC (10, 50 and 100 mg/kg), once daily for eight consecutive days. Animals were exposed whole body to 5 Gy X-radiation on the 9 day. The radioprotective potential of DEC in lung tissues was assessed using oxidative stress examinations at 24 h after TBI and histopathological assay also was analyzed one week after TBI. Results from biochemical analyses demonstrated increased malonyldialdehyde (MDA), nitric oxide (NO) and protein carbonyl (PC) levels of lung tissues in only irradiated group. Histopathologic findings also showed an increase in the number of inflammatory cells and the acute lung injury in this group. DEC pretreatment significantly mitigated the oxidative stress biomarkers as well as histological damages in irradiated mice. The favorable radioprotective effect against lungs injury was observed at a dose of 10 mg/kg of DEC in mice as compared with two other doses (50 and 100 mg/kg). The data of this study showed that DEC at a dose of 10 mg/kg with having antioxidant and anti-inflammatory properties can be used as a therapeutic candidate for protecting the lung from radiation-induced damage.
Collapse
Affiliation(s)
- Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ehsan Mihandoust
- Department of Radiotherapy, Imam Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran.
| |
Collapse
|
9
|
Xie C, Bian Y, Feng H, Zhao Y, Wang L, Li Y, Zhang D, Tian Y, Li L, Chang S, Li H, Zhao X, Lv P. Reversal of ciprofloxacin-induced testosterone reduction by probiotic microbes in mouse testes. Gen Comp Endocrinol 2019; 284:113268. [PMID: 31491376 DOI: 10.1016/j.ygcen.2019.113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 12/31/2022]
Abstract
CPFX is a highly effective antibiotic, but it has been reported to significantly impair both testicular function and structure in rats. In this study, we assessed reversal of CPFX-induced variation in mice testicular structure and testosterone synthesis by probiotic microbes in the infected model and normal model. We detected testicular weight, testicular structure and Leydig cell variables in numbers. We detected the levels of serum testosterone and steroidogenic enzymes, as well as DBC1, Sirt1, NF-κB, and related redox state and inflammatory response in the testes. The results showed that probiotic microbes had significantly elevated serum testosterone levels and steroidogenic enzymes, higher Sirt1, anti-oxidative enzymes and anti-inflammatory cytokine expression, and lower NF-κB, DBC1, oxidative damage, pro-inflammatory cytokine expression. The results suggest that the testis-protective, antiinflammatory and antioxidation effects of probiotics largely resulted from its ability to decrease oxidative stress and preserve antioxidant activity by stabilizing antioxidant defense systems, reducing oxidative damage and inflammatory response.
Collapse
Affiliation(s)
- Congcong Xie
- Research Institute of Family Planning of Hebei Province, Key Laboratory for Family Planning and Birth Health of the National Health and Family Planning Committee, Shijiazhuang 050071, China
| | - Yanqing Bian
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Helin Feng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yu Zhao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lixuan Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaru Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yangyang Tian
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - Li Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - ShiYang Chang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hang Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiujun Zhao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, China.
| | - Pin Lv
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
10
|
Raza Z, Naureen Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrologia 2019; 40:12-25. [PMID: 31735377 DOI: 10.1016/j.nefro.2019.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Drug-induced nephrotoxicity is a frequent adverse event that can lead to acute or chronic kidney disease and increase the healthcare expenditure. It has high morbidity and mortality incidence in 40-70% of renal injuries and accounts for 66% cases of renal failure in elderly population. OBJECTIVE Amelioration of drug-induced nephrotoxicity has been long soughed to improve the effectiveness of therapeutic drugs. This study was conducted to review the melatonin potential to prevent the pathogenesis of nephrotoxicity induced by important nephrotoxic drugs. METHODS We analyzed the relevant studies indexed in Pubmed, Medline, Scielo and Web of science to explain the molecular improvements following melatonin co-administration with special attention to oxidative stress, inflammation and apoptosis as key players of drug-induced nephrotoxicity. RESULTS A robust consensus among researchers of these studies suggested that melatonin efficiently eradicate the chain reaction of free radical production and induced the endogenous antioxidant enzymes which attenuate the lipid peroxidation of cellular membranes and subcellular oxidative stress in drug-induced nephrotoxicity. This agreement was further supported by the melatonin role in disintegration of inflammatory process through inhibition of principle pro-inflammatory or apoptotic cytokines such as TNF-α and NF-κB. These studies highlighted that alleviation of drug-induced renal toxicity is a function of melatonin potential to down regulate the cellular inflammatory and oxidative injury process and to stimulate the cellular repair or defensive mechanisms. CONCLUSION The comprehensive nephroprotection and safer profile suggests the melatonin to be a useful adjunct to improve the safety of nephrotoxic drugs.
Collapse
Affiliation(s)
- Zohaib Raza
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zainab Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
11
|
Wu Y, Si F, Luo L, Jing F, Jiang K, Zhou J, Yi Q. The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:607-616. [PMID: 30402021 PMCID: PMC6205940 DOI: 10.4196/kjpp.2018.22.6.607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of TNF-α was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.
Collapse
Affiliation(s)
- Yao Wu
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feifei Si
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Luo
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Fengchuan Jing
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Kunfeng Jiang
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiwei Zhou
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Qijian Yi
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China.,Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
12
|
Mercantepe F, Mercantepe T, Topcu A, Yılmaz A, Tumkaya L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:915-931. [DOI: 10.1007/s00210-018-1514-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
|
13
|
Effects of Sleep Quality on Melatonin Levels and Inflammatory Response after Major Abdominal Surgery in an Intensive Care Unit. Molecules 2017; 22:molecules22091537. [PMID: 28895895 PMCID: PMC6151787 DOI: 10.3390/molecules22091537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
Abstract
Disruption of nocturnal sleep in an intensive care unit may remarkably affect production of melatonin, which is also known to have anti-inflammatory properties. In the present study, we aimed to investigate the effect of sleep quality on melatonin levels and inflammation after surgery. Thus, we compared the patients, who were screened in the side-rooms where the lights were dimmed and noise levels were reduced, with the patients who received usual care. Preoperative and postoperative urine 6-sulphatoxymelatonin, serum interleukin-1 (IL-1), interleukin-6 (IL-6), and c-reactive protein (CRP) levels were measured and data on sleep quality was collected using the Richards–Campbell Sleep Questionnaire. Postoperative CRP and IL-6 levels were greater in the control group than in the experimental group, whereas postoperative 24 h melatonin levels were greater than preoperative levels and the difference was steeper in the experimental group in concordance with sleep quality scores. Thus, the regulation of light and noise in ICUs may help the recovery after major surgeries in patients, potentially by increasing melatonin production, which has anti-inflammatory properties.
Collapse
|
14
|
Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31:625-635. [DOI: 10.1111/fcp.12303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mehdi Goudarzi
- Department of Toxicology; School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology; School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | | | | | - Iman Fatemi
- Physiology-Pharmacology Research Center; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Physiology and Pharmacology Department; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center; Iran University of Medical Sciences; Tehran Iran
- Health Promotion Research Center; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|