1
|
Rajpoot A, Yadav K, Yadav A, Mishra RK. Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signaling. J Ayurveda Integr Med 2024; 15:100930. [PMID: 39121783 PMCID: PMC11362644 DOI: 10.1016/j.jaim.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Medications, including chemotherapeutic drugs, contribute to male infertility as external factors by inducing oxidative stress in testicular cells. Shilajit is a naturally occurring bioactive antioxidant used in Ayurvedic medicine to treat a variety of ailments. OBJECTIVE This study examines the potential of Shilajit to counteract the negative effects of the chemotherapeutic drug cyclophosphamide (CPA) on testicular germ cell dynamics. MATERIAL AND METHODS Male Parkes mice received single intraperitoneal CPA injection (200 mg/kg BW) on day one, followed by daily supplementation of Shilajit (100 and 200 mg/kg BW) for one spermatogenic cycle. RESULTS CPA adversely affected testicular germ cell dynamics by inhibiting the conversion of spermatogonia-to-spermatids, altering testicular histoarchitecture, impairing Sertoli cell function and testicular steroidogenesis, and disturbing the testicular oxido-apoptotic balance. Shilajit supplementation restores testicular germ cell dynamics in CPA-exposed mice, as evidenced by improved histoarchitecture of the testis. Shilajit improves testicular daily production and sperm quality by promoting the conversion of spermatogonia (2C) into spermatids (1C), stimulating germ cell proliferation (PCNA), improving Sertoli cell function (N-Cadherin and β-Catenin), and maintaining the Bax/Bcl2 ratio. Additionally, Shilajit enhances testosterone biosynthesis by activating enzymes like 3β-HSD, and 17β-HSD. Shilajit also reduces testicular oxidative stress by increasing antioxidant enzyme activity (SOD) and decreasing lipid peroxidation (LPO). These effects are mediated by upregulation of the antioxidant protein Nrf-2 and downregulation of Keap-1. CONCLUSION The findings underscore the potent androgenic and antioxidant characteristics of Shilajit, as well as its ability to enhance fertility in cases of testicular damage caused by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Arti Rajpoot
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kiran Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Hu W, Zhao J, Hu Y, Song S, Chen X, Sun Y. Huangqi Jiuni decoction prevents acute kidney injury induced by severe burns by inhibiting activation of the TNF/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117344. [PMID: 37949330 DOI: 10.1016/j.jep.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Jiuni decoction (HQJND) is a prescription for the treatment of severe burns provided based on traditional Chinese and Western medicine, which is created by the First Affiliated Hospital of Anhui Medical University. It consists of 12 herbs and has been used clinically for decades. It has greatly shortened the course of the disease, but the mechanism by which HQJND treats the disease still remains unclear. AIM OF THE STUDY Hence, the objective of this investigation was to utilize modern pharmacological tools to demonstrate the efficacy and mechanism of HQJND in the treatment of acute kidney injury (AKI) caused by severe burns. MATERIALS AND METHODS In this study, the chemical constituents in HQJND were first examined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Then, by using network pharmacology, we screened the targets of drug and disease action, and predicted the signaling pathways acting in the course of drug treatment of disease. Finally, we attempted to verify the efficacy of the drug and explored its therapeutic mechanism after the establishment of an animal model, herbal gavage treatment, collection of rat kidneys and serum for renal function, quantitative real-time Polymerase Chain Reaction (RT-qPCR), Western Blotting (WB), Hematoxylin and eosin (HE) staining and Immunohistochemistry (IHC). RESULTS The 14 important active ingredients in HQJND was analyzed by liquid chromatography tandem mass spectrometry, while network pharmacology screening was performed to identify 353 disease-associated marker genes and 286 drug targets, finally identifying the TNF/NF-κB (tumor necrosis factor/nuclear factor kappa-B) signaling site: the key pathway of burn-induced acute kidney injury when HQJND intervened. The serum renal function and histopathology of rats demonstrated that the use of HQJND significantly improved the renal function in severe burns. RT-qPCR and WB confirmed that the TNF/NF-κB signaling pathway was activated in the Model group of rats, and HQJND could curb the signaling pathway because it moderated the expressions of key proteins in the process. CONCLUSION Based on modern pharmacology, we explored an effective herbal preparation to ameliorate the impairment of renal function after severe burns, which is most likely to function through the TNF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanxuan Hu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jie Zhao
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, 230032, PR China; Department of Chinese Integrative Medicine, Anhui Medical University, No. 80, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Yuxin Hu
- Department of Chinese Integrative Medicine, Anhui Medical University, No. 80, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Shuai Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Xulin Chen
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yexiang Sun
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
3
|
Feng Y, Zhang W, Xu X, Wang W, Xu Y, Wang M, Zhang J, Xu H, Fu F. Protective effect of Luffa cylindrica fermentation liquid on cyclophosphamide-induced premature ovarian failure in female mice by attenuating oxidative stress, inflammation and apoptosis. J Ovarian Res 2024; 17:24. [PMID: 38273341 PMCID: PMC10809788 DOI: 10.1186/s13048-024-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. The purpose of this study was to investigate the protective effects of Luffa cylindrica fermentation liquid (LF) on cyclophosphamide (CTX) -induced POF in mice and to preliminarily investigate the underlying mechanisms. Thirty-two Balb/c mice were divided into four groups randomly. One group served as the control, while the other three received CTX injections to establish POF models. A 14-day gavage of either 5 or 10 μL/g LF was administered to two LF pretreatment groups. To analyze the effects of LF, the ovarian index, follicle number, the levels of serum sex hormones, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), inflammatory factors, and apoptosis of the ovarian cells were measured. The effects of LF pretreatment on the expression of TLR4/NF-κB and apoptosis pathways were also evaluated. We found that LF pretreatment increased the ovarian index and the number of primordial and antral follicles while decreasing those of atretic follicles. LF pretreatment also increased the serum levels of estradiol (E2) and anti-Müllerian hormone (AMH), while decreasing those of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Furthermore, LF pretreatment increased the levels of SOD and GSH in the ovaries, while decreasing those of MDA, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). LF administration reduced the amount of TUNEL+ ovarian cells and the levels of TLR4 and NF-κB P65 protein expression. In conclusion, LF has antioxidant, anti-inflammatory as well as anti-apoptotic effects against CTX-induced POF, and the inhibition of TLR4/NF-κB and apoptosis pathways may be involved in its mechanisms.
Collapse
Affiliation(s)
- Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wei Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Xiaowei Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China.
| |
Collapse
|
4
|
Haggagy MG, Ahmed LA, Sharaky M, Elhefnawi MM, Omran MM. SIRT1 as a potential key regulator for mediating apoptosis in oropharyngeal cancer using cyclophosphamide and all-trans retinoic acid. Sci Rep 2024; 14:41. [PMID: 38167952 PMCID: PMC10761886 DOI: 10.1038/s41598-023-50478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Although cyclophosphamide (CTX) has been used for recurrent or metastatic head and neck cancers, resistance is usually expected. Thus, we conducted this study to examine the effect of adding all-trans retinoic acid (ATRA) to CTX, to increase efficacy of CTX and reduce the risk of resistance developed. In this study, we investigated the combined effect of ATRA and CTX on the expression of apoptotic and angiogenesis markers in oropharyngeal carcinoma cell line (NO3), and the possible involved mechanisms. ATRA and CTX in combination significantly inhibited the proliferation of NO3 cells. Lower dose of CTX in combination with ATRA exhibited significant cytotoxicity than that of CTX when used alone, implying lower expected toxicity. Results showed that ATRA and CTX modulated oxidative stress; increased NOx and MDA, reduced GSH, and mRNA expression of Cox-2, SIRT1 and AMPK. Apoptosis was induced through elevating mRNA expressions of Bax and PAR-4 and suppressing that of Bcl-xl and Bcl-2, parallel with increased caspases 3 and 9 and decreased VEGF, endothelin-1 and CTGF levels. The primal action of the combined regimen on inflammatory signaling highlights its impact on cell death in NO3 cell line which was mediated by oxidative stress associated with apoptosis and suppression of angiogenesis.
Collapse
Affiliation(s)
- Mahitab G Haggagy
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mahmoud M Elhefnawi
- Biomedical Informatics and Chemoinformatic Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
5
|
Shi M, Pei H, Sun L, Chen W, Zong Y, Zhao Y, Du R, He Z. Optimization of the Flavonoid Extraction Process from the Stem and Leaves of Epimedium Brevicornum and Its Effects on Cyclophosphamide-Induced Renal Injury. Molecules 2023; 29:207. [PMID: 38202790 PMCID: PMC10780727 DOI: 10.3390/molecules29010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclophosphamide (CTX) is a broad-spectrum alkylated antitumor drug. It is clinically used in the treatment of a variety of cancers, and renal toxicity is one of the adverse reactions after long-term or repeated use, which not only limits the therapeutic effect of CTX, but also increases the probability of kidney lesions. The total flavonoids of Epimedium stem and leaf (EBF) and Icariin (ICA) are the main medicinal components of Epimedium, and ICA is one of the main active substances in EBF. Modern pharmacological studies have shown that EBF has a variety of biological activities such as improving osteoporosis, promoting cell proliferation, antioxidant and anti-inflammatory properties, etc. However, few studies have been conducted on the nephrotoxicity caused by optimized CTX extraction, and protein-ligand binding has not been involved. This research, through the response surface optimization extraction of EBF, obtained the best extraction conditions: ethanol concentration was 60%, solid-liquid ratio of 25:1, ultrasonic time was about 25 min. Combined with mass spectrometry (MS) analysis, EBF contained ICA, ichopidin A, ichopidin B, ichopidin C, and other components. In this study, we adopted a computational chemistry method called molecular docking, and the results show that Icariin was well bound to the antioxidant target proteins KEAP1 and NRF2, and the anti-inflammatory target proteins COX-2 and NF-κB, with free binding energies of -9.8 kcal/mol, -11.0 kcal/mol, -10.0 kcal/mol, and -8.1 kcal/mol, respectively. To study the protective effect of EBF on the nephrotoxicity of CTX, 40 male Kunming mice (weight 18 ± 22) were injected with CTX (80 mg/kg) for 7 days to establish the nephrotoxicity model and were treated with EBF (50 mg/kg, 100 mg/kg) for 8 days by gavage. After CTX administration, MDA, BUN, Cre, and IL-6 levels in serum increased, MDA increased in kidney, GPT/ALT and IL-6 increased in liver, and IL-6 increased in spleen and was significant ((p < 0.05 or (p < 0.01)). Histopathological observation showed that renal cortex glomerular atrophy necrosis, medullary inflammatory cell infiltration, and other lesions. After administration of EBF, CTX-induced increase in serum level of related indexes was reduced, and MDA in kidney, GPT/ALT and IL-6 in liver, and IL-6 in spleen were increased. At the same time, histopathological findings showed that the necrosis of medullary and corticorenal tubular epithelium was relieved at EBF (50 mg/kg) dose compared with the CTX group, and the glomerular tubular necrosis gradually became normal at EBF (100 mg/kg) dose. Western blot analysis of Keap1 and Nrf2 protein expression in kidney tissue showed that compared with model CTX group, the drug administration group could alleviate the high expression of Keap1 protein and low expression of Nrf2 protein in kidney tissue. Conclusion: After the optimal extraction of total flavonoids from the stems and leaves of Epimedium, the molecular docking technique combined with animal experiments suggested that the effective component of the total flavonoids of Epimedium might activate the Keap1-Nrf2 signaling pathway after treatment to reduce the inflammation and oxidative stress of kidney tissue, so as to reduce kidney damage and improve kidney function. Therefore, EBF may become a new natural protective agent for CTX chemotherapy in the future.
Collapse
Affiliation(s)
- Meiling Shi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Hongyan Pei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Li Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
6
|
Abd El Salam ASG, Samaha MM, Abd Elrazik NA. Cytoprotective effects of cinnamaldehyde and adipoRon against cyclophosphamide-induced cardio-renal toxicity in rats: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 124:111044. [PMID: 37839279 DOI: 10.1016/j.intimp.2023.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Cyclophosphamide is an alkylating agent used in the treatment of various types of tumors and autoimmune diseases. Unfortunately, cyclophosphamide usage is limited in clinical situations due to its cardio-renal toxicity. The current study investigates the protective effects of cinnamaldehyde and adipoRon against cyclophosphamide-induced cardio-renal toxicity. 24 adult male Sprague-Dawley rats were assorted in a random manner into 4 groups; control, cyclophosphamide, cyclophosphamide+cinnamaldehyde (90 mg/kg) and cyclophosphamide+adipoRon (25 mg/kg), rats treated with cinnamaldehyde and adipoRon for 10 days and on the 7th day of the experiment, rats were given a single I.P. injection of cyclophosphamide (200 mg/kg). Thereafter, specimens of heart and kidney tissues were used for biochemical, immunohistochemical and histopathological analysis. Cinnamaldehyde and adipoRon attenuated the cardio-renal intoxication induced by cyclophosphamide which was manifested by a marked decrease in cardiac-renal injury markers (CK-MB, LDH, cTnI, serum creatinine and blood urea nitrogen) accompanied with normalization of histopathological changes. Moreover, cinnamaldehyde and adipoRon reversed cardio-renal oxidative stress, inflammation, and apoptosis as they have significantly decreased 8-OHdG levels, MDA contents, NF-κB, TNF-α and caspase-3 expression. On the other hand, cinnamaldehyde and adipoRon have upregulated antioxidant biomarkers; GSH concentration, Nrf2 expression as well as the anti-inflammatory cytokine; IL-10 and the antiapoptotic; BCL2. In conclusion, these cytoprotective effects of cinnamaldehyde and adipoRon suggesting the possibility of using them in combination with cyclophosphamide treatment protocols to minimize their unwanted side effects.
Collapse
Affiliation(s)
| | - Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Xing D, Ma Y, Lu M, Liu W, Zhou H. Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway. BMC Nephrol 2023; 24:314. [PMID: 37884904 PMCID: PMC10601317 DOI: 10.1186/s12882-023-03366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall. It exerts diverse therapeutic effects, including anti-inflammatory, antioxidative, antiapoptotic, and immunomodulatory properties; thus, it is considered valuable for treating several diseases. However, the effects of PF on H/R injury-induced AKI remain unknown. In this study, we established an in vitro H/R model using COCL2 and investigated the functions and underlying mechanisms of PF on H/R injury in HK-2 cells. The cell vitality was evaluated using the cell count kit-8 assay. The DCFH-DA fluorescence probe was used to measure the levels of reactive oxygen species (ROS). Oxidative damage was detected using superoxide dismutase (SOD) and malondialdehyde (MDA) assay kits. Apoptotic relative protein and Keap1/Nrf2/HO-1 signaling were evaluated by Western blotting. Our results indicated that PF increased cell viability and SOD activity and decreased the ROS and MDA levels in HK-2 cells with H/R injury. PF inhibits apoptosis by increasing Bcl-2 and decreasing Bax. Furthermore, PF significantly upregulated the expression of HO-1 and Nrf2, but downregulated the expression of HIF-1α and Keap1. PF considerably increased Nrf2 nuclear translocation and unregulated the HO-1 expression. The Nrf2 inhibitor (ML385) could reverse the abovementioned protective effects of PF, suggesting that Nrf2 can be a critical target of PF. To conclude, we found that PF attenuates H/R injury-induced AKI by decreasing the oxidative damage via the Nrf2/HO-1 pathway and inhibiting apoptosis.
Collapse
Affiliation(s)
- Di Xing
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Yihua Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China.
| |
Collapse
|
8
|
Zhu L, Luo C, Ma C, Kong L, Huang Y, Yang W, Huang C, Jiang W, Yi J. Inhibition of the NF-κB pathway and ERK-mediated mitochondrial apoptotic pathway takes part in the mitigative effect of betulinic acid on inflammation and oxidative stress in cyclophosphamide-triggered renal damage of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114150. [PMID: 36215883 DOI: 10.1016/j.ecoenv.2022.114150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Betulinic acid (BA), an occurring pentacyclic triterpenoid, has various biological activities, such as anti-inflammation and antioxidation. Previous studies found that BA attenuated cyclophosphamide (CYP)-induced intestinal mucosal damage by inhibiting intestinal mucosal barrier dysfunctions and cell apoptosis. However, the effects and regulation mechanisms of BA on CYP-induced renal damage has not been reported in literature. Here, we found that BA pretreatment alleviated the elevation of serum urea level and inhibited the increase in serum neutrophil gelatinase-associated lipocalin level induced by CYP. Meanwhile, BA ameliorated renal tubular epithelial cell edema, and vacuolization of renal cortical tubular and renal glomerulus. Moreover, pretreatment with BA inhibited the mRNA expressions of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and increased mRNA expressions of anti-inflammatory cytokines such as IL-10 and transforming growth factor-β by inactivation nuclear factor kappa-B. Simultaneously, BA decreased the accumulation of reactive oxygen species and malondialdehyde, and lowered the levels of superoxide dismutase and glutathione, while increased the activity of glutathione peroxidase in CYP-induced kidney damage mice. Besides, BA reduced the phosphorylation of extracellular signal-regulated kinases (ERK), inhibited the ratio of Bcl-2/Bax and cell apoptosis in CYP-triggered kidney damage. Furthermore, BA and/or PD98059 (an inhibitor of ERK) regulated mitigation of CYP-elicited renal injury and deactivation of the ERK pathway and mitochondrial apoptotic pathway, indicating that the protective effect of BA on CYP-induced renal damage may be associated with the down-regulation of ERK-mediated mitochondrial apoptotic pathway. Thus, BA could be a candidate agent against chemotherapy drug-induced nephrotoxicity by reducing inflammation and oxidative stress through suppression of ERK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Weiwei Jiang
- College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang 421005, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Alshahrani S, Ali Thubab HM, Ali Zaeri AM, Anwer T, Ahmed RA, Jali AM, Qadri M, Nomier Y, Moni SS, Alam MF. The Protective Effects of Sesamin against Cyclophosphamide-Induced Nephrotoxicity through Modulation of Oxidative Stress, Inflammatory-Cytokines and Apoptosis in Rats. Int J Mol Sci 2022; 23:ijms231911615. [PMID: 36232918 PMCID: PMC9569534 DOI: 10.3390/ijms231911615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cyclophosphamide is an anticancer drug with a wide spectrum of clinical uses, but its typical side effects are multiple complications, including nephron toxicity. The possible molecular mechanism of the nephroprotective action of sesamin (SM) against cyclophosphamide (CP) induced renal toxicity was investigated in rats by understanding oxidative stress and inflammatory cytokines. In this study, rats were arbitrarily grouped into the following four groups: a normal control group (CNT); a CP-induced toxicity group; a treatment group with two doses of sesamin SM10 and SM20; a group with sesamin (SM20) alone. A single dose of CP (150 mg/kg body, i.p.) was administered on day 4 of the experiments, while treatment with SM was given orally for seven days from day 1. The group treated with SM showed a significant protective effect against CP-induced renal damage in rats. Treatment with SM significantly increased the antioxidant enzymes (GSH, CAT, and SOD) and reduced malondialdehyde (MDA) levels. Thus, SM significantly overcame the elevated kidney function markers (creatinine, blood urea nitrogen, and uric acid) by attenuating oxidative stress. The SM also significantly reduced the elevated cytokines (IL-1β and TNFα) and caspase-3 in the treated group. Histopathological studies confirmed the protective effect of sesamin (SM) on CP-induced nephrotoxicity. In conclusion, the current findings support the nephroprotective effect of sesamin against CP-induced renal injury.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.); (M.F.A.)
| | - Hani M. Ali Thubab
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman M. Ali Zaeri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad F. Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.); (M.F.A.)
| |
Collapse
|
10
|
Hu J, Tong C, Zhou J, Gao C, Olatunji OJ. Protective Effects of Shorea roxburghii Phenolic Extract on Nephrotoxicity Induced by Cyclophosphamide: Impact on Oxidative Stress, Biochemical and Histopathological Alterations. Chem Biodivers 2022; 19:e202200053. [PMID: 35352457 DOI: 10.1002/cbdv.202200053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022]
Abstract
Cyclophosphamide (CTX) is one of the most commonly used alkylating agents for the treatment of various cancers; however, CTX-induced nephrotoxicity is one of the most prevailing side effects of the drug. Shorea roxburghii is a plant with diverse bioactivities including antioxidant, anti-inflammatory and renoprotective effects. This study investigated the nephroprotective effect of Shorea roxburghii phenolic extract (SRPF) against CTX-induced nephrotoxicity in rats. The rats were treated with SRPF (100 and 400 mg/kg) for 5 weeks and were concomitantly administered with CTX. The results indicated that treatment with SRPF significantly decreased serum creatinine, blood urea nitrogen (BUN), uric acid as well as renal MDA, IL-6, TNF-α, IL-1β, NF-kB and caspase-3 levels. Furthermore, SRPF augmented the activities of renal SOD, CAT, GSH and GPx. SRPF also improved renal histopathological damages caused by CTX administration. In conclusion, these results suggested that SRPF showed substantial protective effects against CTX-mediated renal toxicity via its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jun Hu
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Changjun Tong
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Jiajun Zhou
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Chaoqing Gao
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
11
|
Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022; 13:859723. [PMID: 35370668 PMCID: PMC8964350 DOI: 10.3389/fphar.2022.859723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of muscle atrophy. The aim of this study was to explore the effects and mechanisms of paeoniflorin on CKD skeletal muscle atrophy. We demonstrated that paeoniflorin significantly improved renal function, calcium/phosphorus disorders, nutrition index and skeletal muscle atrophy in the 5/6 nephrectomized model rats. Paeoniflorin ameliorated the expression of proteins associated with muscle atrophy and muscle differentiation, including muscle atrophy F-box (MAFbx/atrogin-1), muscle RING finger 1 (MuRF1), MyoD and myogenin (MyoG). In addition, paeoniflorin modulated redox homeostasis by increasing antioxidant activity and suppressing excessive accumulation of reactive oxygen species (ROS). Paeoniflorin alleviated mitochondrial dysfunction by increasing the activities of electron transport chain complexes and mitochondrial membrane potential. Furthermore, paeoniflorin also regulates mitochondrial dynamics. Importantly, paeoniflorin upregulated the expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and phosphorylation of AMP-activated protein kinase (AMPK). Similar results were observed in C2C12 myoblasts treated with TNF-α and paeoniflorin. Notably, these beneficial effects of paeoniflorin on muscle atrophy were abolished by inhibiting AMPK and SIRT1 and knocking down PGC-1α. Taken together, this study showed for the first time that paeoniflorin has great therapeutic potential for CKD skeletal muscle atrophy through AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qiang Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lingyu Liu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Yang C, Duan Y, Jiang L, Jin D, Lian F, Tong X. Naoxintong capsule delay the progression of diabetic kidney disease: A real-world cohort study. Front Endocrinol (Lausanne) 2022; 13:1037564. [PMID: 36440227 PMCID: PMC9686849 DOI: 10.3389/fendo.2022.1037564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a severe and growing health problem, associated with a worse prognosis and higher overall mortality rates than non-diabetic renal disease. Chinese herbs possess promising clinical benefits in alleviating the progression of DKD due to their multi-target effect. This real-world retrospective cohort trial aimed to investigate the efficacy and safety of Naoxintong (NXT) capsules in the treatment of DKD. Our study is the first real-world study (RWS) of NXT in the treatment of DKD based on a large database, providing a basis for clinical application and promotion. METHODS The data was collected from Tianjin Healthcare and Medical Big Data Platform. Patients with DKD were enrolled from January 1, 2011, to March 31, 2021. NXT administration was defined as the exposure. The primary outcome was the change in estimated glomerular filtration rate (eGFR). We employed the propensity score matching (PSM) method to deal with confounding factors. RESULTS A total of 1,798 patients were enrolled after PSM, including 899 NXT users (exposed group) and 899 non-users (control group). The eGFR changes from baseline to the end of the study were significantly different in the exposed group compared to the control group (-1.46 ± 21.94 vs -5.82 ± 19.8 mL/(min·1.73m2), P< 0.01). Patients in the NXT group had a lower risk of composite renal outcome event (HR, 0.71; 95%CI, 0.55 to 0.92; P = 0.009) and deterioration of renal function (HR, 0.74; 95% CI, 0.56 to 0.99; P = 0.039). CONCLUSION NXT can significantly slow the decline of eGFR and reduce the risk of renal outcomes. However, large cohort studies and RCTs are needed to further confirm our results.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Jiang
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Fengmei Lian
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| |
Collapse
|
13
|
Effect of a Low Dose of Carvedilol on Cyclophosphamide-Induced Urinary Toxicity in Rats—A Comparison with Mesna. Pharmaceuticals (Basel) 2021; 14:ph14121237. [PMID: 34959638 PMCID: PMC8708009 DOI: 10.3390/ph14121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 01/28/2023] Open
Abstract
One of the major side effects of cyclophosphamide (CPX)—an alkylating anticancer drug that is still clinically used—is urotoxicity with hemorrhagic cystitis. The present study was designed to evaluate the ability of carvedilol to protect rats from cyclophosphamide-induced urotoxicity. Rats were injected intraperitoneally (i.p.) with CPX (200 mg/kg) and administered carvedilol (2 mg/kg) intragastrically a day before, at the day and a day after a single i.p. injection of CPX, with or without mesna (40, 80, and 80 mg/kg i.p. 20 min before, 4 h and 8 h after CPX administration, respectively). Pretreatment with carvedilol partly prevented the CPX-induced increase in urinary bladder and kidney index, and completely protects from CPX-evoked alterations in serum potassium and creatinine level, but did not prevent histological alterations in the urinary bladder and hematuria. However, carvedilol administration resulted in significant restoration of kidney glutathione (GSH) level and a decrease in kidney interleukin 1β (IL-1β) and plasma asymmetric dimethylarginine (ADMA) concentrations. Not only did mesna improve kidney function, but it also completely reversed histological abnormalities in bladders and prevented hematuria. In most cases, no significant interaction of carvedilol with mesna was observed, although the effect of both drugs together was better than mesna given alone regarding plasma ADMA level and kidney IL-1β concentration. In conclusion, carvedilol did not counteract the injury caused in the urinary bladders but restored kidney function, presumably via its antioxidant and anti-inflammatory properties.
Collapse
|
14
|
ÇETİK YILDIZ S, KESKİN C, ŞAHİNTÜRK V, AYHANCI A. Wistar albino sıçanlarında Hypericum triquetrifolium Turra. tohum metanol ekstraktlarının siklofosfamid-nedenli mesane hemorajik sistiti ve nefrotoksisitesi üzerine üroprotektif etkilerinin incelenmesi. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.730817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Wang Y, Fan S, Yang M, Shi G, Hu S, Yin D, Zhang Y, Xu F. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113020. [PMID: 32592886 DOI: 10.1016/j.jep.2020.113020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-Shaoyao-San (DSS), a well-known classic Traditional Chinese medicine (TCM) formula for enhancing Qi (vital energy and spirit), invigorating blood circulation and promoting diuresis, has been widely used in the treatment of nephrotic syndrome (NS). Previously, we have reported some protective effects of DSS against NS, but the in-depth mechanisms remain unclear. AIM OF THE STUDY In this study, an ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS)-based urinary metabonomics coupled with bioinformatics method was employed to evaluate the mechanisms of DSS in treating NS from the perspective of metabolism. MATERIALS AND METHODS The rat models of NS were established using adriamycin injection. The regulative effects of DSS on NS in rats were first assessed by non-targeted metabonomics, which was based on UPLC-Q/TOF-MS. A series of target prediction models were used to predict the target of components identified in DSS and potential metabolites in NS, combined with the experimental results of metabonomics, to construct the biological network. RESULTS A total of 16 potential metabolites were screened in NS, of which 13 were significantly regulated by DSS. Metabolic pathway analysis showed that the therapeutic effect of DSS on NS was mainly involved in regulating the amino acid metabolism and energy metabolism. The component-target-metabolites-pathway network revealed 29 targets associated with metabolites that were linked to 27 components of DSS. Bioinformatics analysis showed that the potential targets have various molecular functions (especially serine-type endopeptidase inhibitor activity) and biological process (such as positive regulation of peptidyl-tyrosine phosphorylation or autophosphorylation). CONCLUSIONS The regulation of disrupted metabolic pathways and the relative targets may be the mechanism for DSS in the treatment of NS. Notably, metabonomics coupled with bioinformatics would be useful to explore the mechanism of DSS against NS and provide better insights on DSS for clinical use.
Collapse
Affiliation(s)
- Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Shengnan Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Siyao Hu
- The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, PR China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei, 230051, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| |
Collapse
|
16
|
Jiang X, Ren Z, Zhao B, Zhou S, Ying X, Tang Y. Ameliorating Effect of Pentadecapeptide Derived from Cyclina sinensis on Cyclophosphamide-Induced Nephrotoxicity. Mar Drugs 2020; 18:md18090462. [PMID: 32916975 PMCID: PMC7551019 DOI: 10.3390/md18090462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
Cyclophosphamide (CTX) is a widely used anticancer drug with severe nephrotoxicity. The pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) has been shown to affect immunity and to protect the liver. Hence, the purpose of this study was to investigate the ameliorating effect of SCSP on CTX-induced nephrotoxicity in mice. We injected male ICR mice with CTX (80 mg/kg·day) and measured the nephrotoxicity indices, levels of antioxidant enzymes, malondialdehyde (MDA), inflammatory factors, as well as the major proteins of the NF-κB and apoptotic pathways. Cyclophosphamide induced kidney injury; the levels of kidney-injury indicators and cytokines recovered remarkably in mice after receiving SCSP. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) increased, while there was a significant decrease in MDA levels. The kidney tissue damage induced by CTX was also repaired to a certain extent. In addition, SCSP significantly inhibited inflammatory factors and apoptosis by regulating the NF-κB and apoptotic pathways. Our study shows that SCSP has the potential to ameliorate CTX-induced nephrotoxicity and may be used as a therapeutic adjuvant to ameliorate CTX-induced nephrotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoguo Ying
- Correspondence: (X.Y.); (Y.T.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-254-781 (Y.T.)
| | - Yunping Tang
- Correspondence: (X.Y.); (Y.T.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-254-781 (Y.T.)
| |
Collapse
|
17
|
Regulation of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Activity of Advanced Cooling Composition (ACC) in UVB-Irradiated Human HaCaT Keratinocytes. Int J Mol Sci 2020; 21:ijms21186527. [PMID: 32906658 PMCID: PMC7555985 DOI: 10.3390/ijms21186527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
We recently demonstrated that advanced cooling composition (ACC) has effective ingredients that exhibit anti-inflammatory effects in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and exhibit strong antimicrobial effects on Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. To further investigate whether ACC has beneficial effects in ultraviolet B (UVB)-irradiated human keratinocytes (HaCaT cells), HaCaT cells were pretreated with ACC prior to UVB irradiation. Our data showed that ACC, which is effective at 100 µg/mL, is nontoxic and has an antioxidative effect against UVB-induced intracellular reactive oxygen species (ROS) in HaCaT cells. In addition, ACC exerts cytoprotective effects against UVB-induced cytotoxicity in HaCaT cells by inhibiting abnormal inflammation and apoptosis through the regulation of mitogen-activated protein kinase (MAPK) signals, such as jun-amino-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). Therefore, these results indicate that ACC is a potentially beneficial raw material that possesses antioxidative, anti-inflammatory, and antiapoptotic effects against UVB-induced keratinocytes and may have applications in skin health.
Collapse
|
18
|
Jiang S, Zhang Z, Huang F, Yang Z, Yu F, Tang Y, Ding G. Protective Effect of Low Molecular Weight Peptides from Solenocera crassicornis Head against Cyclophosphamide-Induced Nephrotoxicity in Mice via the Keap1/Nrf2 Pathway. Antioxidants (Basel) 2020; 9:antiox9080745. [PMID: 32823691 PMCID: PMC7465301 DOI: 10.3390/antiox9080745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The major component of the Solenocera crassicornis head protein hydrolysates-fraction 1 (SCHPs-F1) are low molecular weight peptides (MW < 1 kDa). In this study, we investigated the potential renoprotective effects of SCHPs-F1 in a cyclophosphamide (CTX) toxicity mouse model. In brief, 40 male mice were randomly divided into 5 groups and received either saline or 80 mg/kg body weight (BW) CTX by intraperitoneal injection for 5 days, followed by either saline or SCHPs-F1 (100, 200, and 400 mg/kg BW) by intragastric administration for 15 days. SCHPs-F1 treatment significantly reversed the CTX-induced decreases in the levels of blood urea nitrogen (BUN), creatinine (CRE), and cytochrome P450 (CYP450), as well as the renal histological lesions. Furthermore, the results indicated that SCHPs-F1 potentially alleviated CTX-induced nephrotoxicity through mitigating inflammatory responses, oxidative stress, and apoptosis status of the kidneys, as evidenced by decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ and increased levels of total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, overexpression of pro-apoptotic proteins pair B-cell lymphoma-2 (Bcl-2)-associated X (Bax)/Bcl-2, cysteinyl aspartate specific proteinase (caspase)-3 and caspase-9 in renal tissues were suppressed by treatment with SCHPs-F1. In addition, the protein levels of the antioxidant factor nuclear factor erythroid-2 related factor 2 (Nrf2) and the expression levels of its downstream target genes heme-oxygenase (HO-1), glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H dehydrogenase (quinone) 1 (NQO-1) were stimulated by treatment with SCHPs-F1 in the CTX-induced renal injury model. Taken together, our data suggested that SCHPs-F1 could provide a novel potential strategy in mitigating the nephrotoxicity caused by CTX.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunping Tang
- Correspondence: (Y.T.); (G.D.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-818-6396 (Y.T.)
| | - Guofang Ding
- Correspondence: (Y.T.); (G.D.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-818-6396 (Y.T.)
| |
Collapse
|
19
|
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112913. [PMID: 32371143 DOI: 10.1016/j.jep.2020.112913] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (PRA, called baishao in China), the root of Paeonia lactiflora Pall., has shown a rich medicinal value for more than 2000 years. PRA is used in local medicine and traditional medicine for autoimmune diseases associated with inflammation. At present, total glucosides of paeony (TGP), the main active ingredient of PRA, has been developed into a preparation for the treatment of autoimmune diseases, as TGP exhibits the effect of regulating immunity, anti-inflammatory, and analgesic effects. AIM OF THE REVIEW TGP was developed and applied to inflammation-related autoimmune diseases in modern clinical practice. Based on its application in traditional prescriptions, this article reviews PRA's botany and phytochemistry (including its extraction process and quality control), and discusses the clinical application and pharmacological research of TGP as an anti-inflammatory drug from the perspective of ethnopharmacology. Additionally, we review modern pharmacological and molecular-target research on TGP and discuss the mechanisms of TGP in treating autoimmune diseases. Through a systematic literature review, we also highlight the clinical efficacy of TGP in the treatment of immune diseases, and provide a reference for the continued scientific development and quality control of TGP so that its wider application and clinical value can be fully realized. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Total glucosides of paeony", "Paeonia lactiflora Pall. ", "Paeonia veitchii Lynch", "Paeoniae Radix Alba or white peony", "Paeoniae Radix Rubra or red peony", "Paeoniflorin", "Albiflorin", "Autoimmune diseases", and their combinations. In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS Approximately 15 compounds have been identified in TGP, of which paeoniflorin and albiflorin are the most common constituents. In recent years, studies have found that TGP and its main chemical components are effective in the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, oral lichen planus, and Sjogren's syndrome. TGP has a variety of pharmacological effects related to PRA traditional effects, including anti-organ-damage, anti-inflammatory, analgesic, antioxidant, cardiovascular, and nervous-system protection. Previously published reports on TGP treatment of autoimmune diseases have shown that TGP regulates intracellular pathways, such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways. However, there is no standardized preparation method for TGP, and there is insufficient quality control of formulations. Many related pharmacological studies have not tested TGP components, and the validity of such pharmacological results requires further verification. CONCLUSIONS Modern pharmacological research on TGP is based on the traditional usage of PRA, and its folk medicinal value in the treatment of autoimmune diseases has now been verified. In particular, TGP has been developed into a formulation used clinically for the treatment of autoimmune diseases. The combination of TGP capsules and chemicals to treat autoimmune diseases has the effect of increasing efficacy and reducing toxicity. Based on further research on its preparation, quality control, and mechanisms of action, TGP is expected to eventually play a greater role in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Huajuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Jie Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Lin Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Shengju Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Xin Nie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yi Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Qiang Fu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Maoyuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yao He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Fang Y, Li F, Qi C, Mao X, Wang F, Zhao Z, Chen JK, Zhang Z, Wu H. Metformin effectively treats Tsc1 deletion-caused kidney pathology by upregulating AMPK phosphorylation. Cell Death Discov 2020; 6:52. [PMID: 32566257 PMCID: PMC7295815 DOI: 10.1038/s41420-020-0285-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by hamartomatous lesions in multiple organs, with most patients developing polycystic kidney disease and leading to a decline of renal function. TSC is caused by loss-of-function mutations in either Tsc1 or Tsc2 gene, but currently, there is no effective treatment for aberrant kidney growth in TSC patients. By generating a renal proximal tubule-specific Tsc1 gene-knockout (Tsc1 ptKO) mouse model, we observed that Tsc1 ptKO mice developed aberrantly enlarged kidneys primarily due to hypertrophy and proliferation of proximal tubule cells, along with some cystogenesis, interstitial inflammation, and fibrosis. Mechanistic studies revealed inhibition of AMP-activated protein kinase (AMPK) phosphorylation at Thr-172 and activation of Akt phosphorylation at Ser-473 and Thr-308. We therefore treated Tsc1 ptKO mice with the AMPK activator, metformin, by daily intraperitoneal injection. Our results indicated that metformin increased the AMPK phosphorylation, but decreased the Akt phosphorylation. These signaling modulations resulted in inhibition of proliferation and induction of apoptosis in the renal proximal tubule cells of Tsc1 ptKO mice. Importantly, metformin treatment effectively prevented aberrant kidney enlargement and cyst growth, inhibited inflammatory response, attenuated interstitial fibrosis, and protected renal function. The effects of metformin were further confirmed by in vitro experiments. In conclusion, this study indicates a potential therapeutic effect of metformin on Tsc1 deletion-induced kidney pathology, although currently metformin is primarily prescribed to treat patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yili Fang
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Fang Li
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Chenyang Qi
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Xing Mao
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Feng Wang
- Department of Nephrology, Shanghai 6th People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032 PR China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Jian-Kang Chen
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, 200032 PR China
| |
Collapse
|
21
|
Zhu X, Yu M, Wang K, Zou W, Zhu L. FoxM1 affects adhesive, migratory, and invasive abilities of human retinoblastoma Y-79 cells by targeting matrix metalloproteinase 2. Acta Biochim Biophys Sin (Shanghai) 2020; 52:294-301. [PMID: 32152631 DOI: 10.1093/abbs/gmz160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Forkhead box protein M1 (FoxM1) is an important transcription factor involved in various pathological processes including tumor metastasis. The changes of adhesive, migratory, and invasive abilities are considered as crucial events in tumor metastasis progression. In this study, we aimed to investigate the correlation between FoxM1 and retinoblastoma (Rb) metastasis and to explore the detailed mechanism. Wound healing, cell adhesion, and invasion assays showed that FoxM1 overexpression induced epithelial-mesenchymal transition in Y-79 cells and inhibited adhesion and subsequently promoted metastasis of Y-79 cells, while FoxM1 knockdown showed the opposite effects. A luciferase reporter assay and chromatin immunoprecipitation assay provided evidence that FoxM1 promoted matrix metalloproteinase 2 (MMP2) transcription by directly binding to and promoting MMP2 promoter. MMP2 knockdown by siRNA transfection attenuated cell metastasis of Y-79 cells induced by FoxM1 overexpression. Furthermore, the FoxM1-binding site mapped between -1167 and -1161 bp of the MMP2 promoter was identified. Our results suggested that the FoxM1-MMP2 axis plays an important role in Rb metastasis, which may be a novel target for designing therapeutic regimen to control Rb metastasis.
Collapse
Affiliation(s)
- Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Mengxi Yu
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Wenjun Zou
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Ling Zhu
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| |
Collapse
|
22
|
Woo YK, Park J, Ryu JH, Cho HJ. The anti-inflammatory and anti-apoptotic effects of advanced anti-inflammation composition (AAIC) in heat shock-induced human HaCaT keratinocytes. J Cosmet Dermatol 2019; 19:2114-2124. [PMID: 31868297 DOI: 10.1111/jocd.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The development of natural cosmetic materials without side effects to protect skin from heat shock is necessary. We recently reported that advanced cooling composition (ACC) has anti-inflammatory effect in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and strong anti-microbial effect against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. AIMS To further investigate whether advanced anti-inflammation composition (AAIC), newly developed from existing ACC has beneficial effects in heat shock-induced immortalized human keratinocytes (HaCaT cells), HaCaT cells were pretreated with AAIC before heat shock treatment. METHODS Cell viability for heat shock treatment and different concentrations of AAIC in HaCaT cells were assessed by MTT assay. Anti-oxidative activity of AAIC was measured using the DPPH assay. The protein expression in heat shock-induced HaCaT cells treated with AAIC was evaluated by immunofluorescence staining and western blot analysis. RESULTS AAIC, which is effective at 100 µg/mL concentration, was nontoxic in HaCaT cells and had an anti-oxidative effect demonstrated by scavenging DPPH free radicals. AAIC treatment significantly attenuated the aberrant levels of pro-inflammatory and pro-apoptotic signaling molecules in heat shock-induced HaCaT cells compared with control cells. CONCLUSION AAIC potentially includes effective anti-oxidative activity, anti-inflammatory, and anti-apoptotic properties against heat shock-induced keratinocytes, suggesting that it can be provided as a raw material for imparting skin health.
Collapse
Affiliation(s)
| | | | | | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| |
Collapse
|
23
|
Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:325-337. [PMID: 31620822 DOI: 10.1007/s00210-019-01741-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022]
Abstract
Cyclophosphamide (CYP) is a chemotherapeutic agent used in the treatment of autoimmune disorders and malignant diseases. However, its usage is restricted due to its severe side effects, especially hepatotoxicity and nephrotoxicity. This study aimed to investigate the protective role of chrysin (CH) against CYP-induced hepatotoxicity and nephrotoxicity in rats. In the present study, 35 male Wistar rats were randomly divided into 5 groups with each group consisting of 7 rats. The rats were pretreated with CH orally in doses of 25- and 50-mg/kg body weight for 7 consecutive days, and CYP (200-mg/kg body weight, i.p.) was administrated on the 7th day 1 h after the last dose of CH. It was found that CH could ameliorate CYP-induced elevations of ALT, ALP, AST, urea, creatinine, MDA, and hepatorenal deterioration, and enhance antioxidant enzymes' activities such as SOD, CAT, and GPx, and GSH's level. Furthermore, CH reversed the changes in levels of inflammatory, apoptotic, and autophagic parameters such as NF-κB, TNF-α, IL-1β, IL-6, iNOS, COX-2, Bax, Bcl-2, and LC3B in liver and kidney tissues. To conclude, the findings of this study demonstrated that CH has a protective effect against CYP-induced hepatorenal toxicity.
Collapse
|
24
|
Wang X, Yuan Z, Zhu L, Yi X, Ou Z, Li R, Tan Z, Pozniak B, Obminska-Mrukowicz B, Wu J, Yi J. Protective effects of betulinic acid on intestinal mucosal injury induced by cyclophosphamide in mice. Pharmacol Rep 2019; 71:929-939. [PMID: 31450028 DOI: 10.1016/j.pharep.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Betulinic acid (BA) is a plant-derived pentacyclic triterpenoid with a variety of biological activities. The purpose of this study was to assess the potential protective role of BA against intestinal mucosal injury induced by cyclophosphamide (CYP) treatment. METHODS Mice were pretreated with BA daily (0.05, 0.5, and 5.0 mg/kg) for 14 days, then injected intraperitoneally with CYP (50 mg/kg) for 2 days. RESULTS BA pretreatment reduced the contents of malondialdehyde (MDA) and glutathione (GSH), decreased the activity of superoxide dismutase (SOD) in small intestine, increased villus hight/crypt depth ratio and restored the morphology of intestinal villi in CYP-induced mice. Moreover, BA pretreatment could significantly down-regulate the levels of pro-inflammatory cytokines interleukin-5 (IL-5), IL-17, IL-12 (P70) and tumor necrosis factor α (TNF-α), reduced production of chemokines macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β) and regulated upon activation, normal T-cell expressed and secreted (RANTES), and enhanced the levels of anti-inflammatory such as IL-2 and IL-10 in serum, and decreased the mRNA expressions of IL-1β and TNF-α in intestine of CYP-induced mice. Furthermore, RT-PCR demonstrated that BA improved intestinal physical and immunological barrier in CYP-stimulated mice by enhancing the mRNA expressions of zonula occluden 1 (ZO-1) and Claudin-1. CONCLUSIONS BA might be considered as an effective agent in the amelioration of the intestinal mucosal resulting from CYP treatment.
Collapse
Affiliation(s)
- Xihong Wang
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhaoping Ou
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhuliang Tan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Blazej Pozniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bozena Obminska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| |
Collapse
|
25
|
Yang S, Chen Y, Duan Y, Ma C, Liu L, Li Q, Yang J, Li X, Zhao B, Wang Y, Qian K, Liu M, Zhu Y, Yang X, Han J. Therapeutic potential of NaoXinTong Capsule on the developed diabetic nephropathy in db/db mice. Biomed Pharmacother 2019; 118:109389. [PMID: 31545275 DOI: 10.1016/j.biopha.2019.109389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
The current treatment for diabetic nephropathy (DN) is still limited. NaoXinTong Capsule (NXT) is a Chinese Medicine prescribed to patients with cardiovascular disease. It can also ameliorate metabolic syndromes in patients indicating its anti-diabetic properties. Herein we report the therapeutic effects of NXT on the developed DN. The db/db diabetic mice at ˜12 weeks old, the age with DN at middle/advanced stages, were treated with NXT for 12 weeks. We found NXT treatment reduced diabetes-induced hyperglycemia and dyslipidemia, thereby substantially reduced DN progress. In the kidney, NXT reduced mesangial matrix expansion and glomerulosclerosis by inhibiting extracellular matrix accumulation through activation of matrix metalloproteinase 2/9 and inactivating transforming growth factor β1 expression. NXT reduced podocyte injury by reducing renal inflammation and expression of adhesion molecules. Mechanically, NXT potently activated AMPKα in multiple tissues thereby enhancing energy metabolism. In the liver, NXT increased glucokinase expression and insulin sensitivity by increasing insulin receptor substrate 1/2 and protein kinase B (AKT) 1/2 expression/phosphorylation. In skeletal muscle, NXT activated expression of glucose transporter type 4, AKT, glycogen synthase and peroxisome proliferator activated receptor α/γ. In adipose tissue, NXT reduced fatty acid synthase while activating hormone-sensitive lipase expression. Taken together, our study demonstrates that NXT reduced progress of the developed DN by ameliorating glucose, lipid and energy metabolism, maintaining renal structural and functional integrity. Our study also indicates the potential application of NXT for DN treatment in clinics.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lipei Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qi Li
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | | | - Yong Wang
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Ke Qian
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Mengyang Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Yang
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
26
|
Yu X, Man R, Li Y, Yang Q, Li H, Yang H, Bai X, Yin H, Li J, Wang H. Paeoniflorin protects spiral ganglion neurons from cisplatin-induced ototoxicity: Possible relation to PINK1/BAD pathway. J Cell Mol Med 2019; 23:5098-5107. [PMID: 31207045 PMCID: PMC6653418 DOI: 10.1111/jcmm.14379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/24/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to elucidate whether paeoniflorin (PF) exerted an effect on cisplatin‐induced spiral ganglion neuron (SGN) damage, with special attention given to the role of PINK1/BAD pathway in this process. Middle cochlear turn culture and C57BL/6 mice were utilized to identify the character of PF in vitro and in vivo. We found that cisplatin treatment led to SGN damage, in which reactive oxygen species (ROS) generation increased, PINK1 expression decreased, BAD accumulation on mitochondria raised and mitochondrial apoptotic pathway activated. Conversely, we demonstrated that PF pre‐treatment obviously mitigated cisplatin‐induced SGN damage. Mechanistic studies showed that PF could reduce ROS levels, increase PINK1 expression, decrease the BAD accumulation on mitochondria and, thus, alleviate the activated mitochondrial apoptosis in SGNs caused by cisplatin. Overall, the findings from this work reveal the important role of PF and provide another strategy against cisplatin‐induced ototoxicity.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Rongjun Man
- Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, China
| | - Yanan Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Qianqian Yang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Hongrui Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Huiming Yang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Haiyan Yin
- Department of Histology and Embryology, College of basic Medicine, Jining Medical University, Jinan, China
| | - Jianfeng Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
27
|
The Ameliorating Effect of Plasma Protein from Tachypleus tridentatus on Cyclophosphamide-Induced Acute Kidney Injury in Mice. Mar Drugs 2019; 17:md17040227. [PMID: 30991714 PMCID: PMC6521031 DOI: 10.3390/md17040227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
In the study, the protective effect of plasma protein from Tachypleus tridentatus (PPTT) on acute kidney injury (AKI) and the related molecular mechanisms were first investigated by Western blotting analyses, TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, and immunohistochemistry. It was found that PPTT had an obviously inhibitory effect on Reactive oxygen species (ROS) in cyclophosphamide (CTX)-exposed mice. Furthermore, results demonstrated that the renal cell death mode is due to inducing apoptosis and autophagy inhibited by dose-dependent PPTT in mice treated with CTX by decreasing the protein expression of bax, beclin-1, and LC3 and increasing the expression of bcl-2. Moreover, the p38 MAPK and PI3K/Akt signaling pathways were observed to take part in the PPTT-induced renal cell growth effect by enhancing the upregulation of the expression of Akt and p-Akt as well as the downregulation of the expression of p38 and p-p38, which indicated a PPTT ameliorating effect on AKI CTX-induced in mice through p38 MAPK and PI3K/Akt signaling pathways. Briefly, this article preliminarily studies the mechanism of the PPTT ameliorating effect on AKI CTX-induced in mice, which helps to provide a reference for PPTT clinical application in AKI therapy.
Collapse
|
28
|
Fouad AA, Abdel-Gaber SA, Abdelghany MI. Hesperidin opposes the negative impact of cyclophosphamide on mice kidneys. Drug Chem Toxicol 2019; 44:223-228. [PMID: 30889984 DOI: 10.1080/01480545.2018.1560467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present investigation examined the prospective nephroprotective effect of hesperidin (HSN) in mice challenged with a single i.p. injection of cyclophosphamide (CPE) at a dose of 200 mg/kg. HSN (100 and 200 mg/kg/day, p.o.) was given for 10 days, starting 5 days prior to CPE administration. HSN significantly reduced the CPE-induced increments of serum creatinine and cystatin C. HSN also significantly reduced malondialdehyde, nitric oxide, Bax/Bcl-2 ratio, and caspase-3, and significantly raised total antioxidant capacity, and interleukin-10/tumor necrosis factor-α ratio in kidneys of mice received CPE. In addition, HSN significantly prevented the histopathological injury, and kidney injury molecule-1 expression in kidneys of mice given CPE. It was concluded that HSN guarded against nephrotoxic effect of CPE in mice by tackling oxidative/nitrative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Manal I Abdelghany
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
29
|
Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, Wang X, Körner H, Wei W. The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6'-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases. Front Pharmacol 2019; 10:57. [PMID: 30804784 PMCID: PMC6370653 DOI: 10.3389/fphar.2019.00057] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
The plant extract "total glucosides of peony" (TGP) constitutes a mixture of glycosides that is isolated from the roots of the well-known traditional Chinese herb Paeonia lactiflora Pall. Paeoniflorin (Pae) is the most abundant component and the main biologically active ingredient of TGP. Pharmacologically, Pae exhibits powerful anti-inflammatory and immune regulatory effects in some animal models of autoimmune diseases including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). Recently, we modified Pae with an addition of benzene sulfonate to achieve better bioavailability and higher anti-inflammatory immune regulatory effects. This review summarizes the pharmacological activities of Pae and the novel anti-inflammatory and immunomodulatory agent Paeoniflorin-6'-O-benzenesulfonate (CP-25) in various chronic inflammatory and autoimmune disorders. The regulatory effects of Pae and CP-25 make them promising agents for other related diseases, which require extensive investigation in the future.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yawei Guo
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Dafei Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Gunes S, Sahinturk V, Uslu S, Ayhanci A, Kacar S, Uyar R. Protective Effects of Selenium on Cyclophosphamide-Induced Oxidative Stress and Kidney Injury. Biol Trace Elem Res 2018; 185:116-123. [PMID: 29290051 DOI: 10.1007/s12011-017-1231-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
Abstract
Cyclophosphamide (CP) is a common anticancer drug, but its use in cancer treatment is limited due to its severe toxicities induced mainly by oxidative stress in normal cells. Reactive oxygen species (ROS) lead to multiple organ injuries, including the kidneys. Selenium (Se) is a nutritionally essential trace element with antioxidant properties. In the present study, the possible protective effect of Se on CP-induced acute nephrotoxicity was investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats in each. The control group received saline, and other groups were injected with CP (150 mg/kg), Se (0.5 or 1 mg/kg), or CP + Se intraperitoneally. Total antioxidant capacity (TAC), total oxidant state (TOS), oxidative stress index (OSI), creatinine, and cystatin C (Cys C) levels were measured in the sera. In addition, kidney tissues were examined histologically. In the CP alone treated rats, creatinine, Cys C, TOS, and OSI levels increased, while TAC level decreased. CP-induced histological damages were decreased by co-treatment of Se and biochemical results supported the microscopic observations. In conclusion, our study points to the therapeutic potential of Se and indicates a significant role of ROS in CP-induced kidney toxicity.
Collapse
Affiliation(s)
- Sibel Gunes
- Faculty of Arts and Science Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Sahinturk
- Faculty of Medicine Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sema Uslu
- Faculty of Medicine Department of Biochemistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Adnan Ayhanci
- Faculty of Arts and Science Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Faculty of Medicine Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ruhi Uyar
- Faculty of Medicine Department of Physiology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
31
|
Hu PF, Sun FF, Jiang LF, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced MMP secretion via the NF-κB pathway in chondrocytes. Exp Ther Med 2018; 16:1513-1519. [PMID: 30116400 PMCID: PMC6090372 DOI: 10.3892/etm.2018.6325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/26/2018] [Indexed: 01/25/2023] Open
Abstract
Paeoniflorin serves important cellular roles, exerting anti-cancer, anti-inflammatory and anti-pulmonary fibrosis effects and possesses immune-modulatory properties. However, the exact role of paeoniflorin in the pathogenesis of osteoarthritis (OA) remains unclear. The aim of the present study was to investigate the effects of paeoniflorin on articular surfaces in vitro. Rat chondrocytes were cultured in vitro and an MTT assay was performed to assess chondrocyte survival. Following treatment with interleukin (IL)-1β and paeoniflorin, the production of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) was examined using reverse transcription-quantitative polymerase chain reaction and western blotting. The interleukin (IL)-1β-induced nuclear factor (NF)-κB pathway activation was also investigated. The results demonstrated that paeoniflorin was able to downregulate the expression of MMP and increase the expression of TIMP-1ntmRNA and protein in IL-1β-induced rat chondrocytes. Furthermore, treating chondrocytes with paeoniflorin blocked the activation of NF-κB. These results suggest that paeoniflorin may serve am anti-catabolic role in the progression of OA and may be an effective preventative treatment for OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Fang-Fang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Feng Jiang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
32
|
Yu X, Fan Z, Han Y, Zhang D, Xu L, Wang M, Yang Q, Li H, Zhou M, Zhang L, Sun G, Bai X, Li J, Wang H. Paeoniflorin reduces neomycin-induced ototoxicity in hair cells by suppression of reactive oxygen species generation and extracellularly regulated kinase signalization. Toxicol Lett 2017; 285:9-19. [PMID: 29292089 DOI: 10.1016/j.toxlet.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
The present study was designed to investigate the effect of paeoniflorin (PF) on neomycin-induced ototoxicity in hair cells (HCs). Here, we took advantage of C57BL/6 mice and cochlear explants culture to determine the role of PF in vivo and in vitro. We demonstrated that neomycin exposure induced severe hearing loss and HC damage, which was mediated by activated mitochondrial apoptosis pathway, promoted extracellular signal-regulated kinase (ERK) signaling as well as enhanced reactive oxygen species (ROS) generation in HCs. Interestingly, we found that PF pretreatment significantly alleviated neomycin-induced hearing loss, attenuated HC injury and decreased HC apoptosis caused by neomycin. Mechanistic studies revealed that PF could decrease cellular ROS levels, suppress the activation of ERK signaling and, subsequently, mitigate the imbalance of mitochondrial apoptotic pathway, thus protecting HCs from neomycin-induced apoptosis. This study indicates that PF may serve as an antioxidative and anti-apoptotic agent to prevent hearing loss caused by neomycin.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Zhaomin Fan
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Yuechen Han
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Daogong Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Xu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mingming Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qianqian Yang
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Hongrui Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Meijuan Zhou
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Lili Zhang
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Gaoying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China.
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China; Shandong Institute of Otolaryngology, Jinan, China.
| |
Collapse
|
33
|
Lu R, Zhou J, Liu B, Liang N, He Y, Bai L, Zhang P, Zhong Y, Zhou Y, Zhou J. Paeoniflorin ameliorates Adriamycin-induced nephrotic syndrome through the PPARγ/ANGPTL4 pathway in vivo and vitro. Biomed Pharmacother 2017; 96:137-147. [PMID: 28972886 DOI: 10.1016/j.biopha.2017.09.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Paeoniflorin (PF), an effective composition that is extracted from Radix Paeoniae Alba, plays a role in protecting against various kidney diseases. However, the mechanism of PF on nephrotic syndrome (NS) remains unclear. The aim of this study was to investigate the protective role of PF on Adriamycin (ADR)-induced NS in vivo and vitro as well as its potential mechanism. In animal study, PF significantly decreased the levels of 24-h urine protein, blood urea nitrogen, serum creatinine, total cholesterol and triglycerides in NS rats, but increased the total protein and albumin levels. Hematoxylin-eosin (HE) staining revealed that the kidney lesion was resolved upon PF treatment. After treatment with PF, the morphology and number of podocytes in renal tissue were restored to normal. PF increased expression of synaptopodin and decreased expression of desmin, demonstrating a protective effect in podocyte injury. Further studies revealed that PF upregulated Peroxisome proliferator-activated receptor gamma (PPARγ) and restrained Angiopointin-like 4 (ANGPTL4) in kidney tissue. In vitro study, PF reduced Caspase3 and Bax and increased Bcl-2, indicating that the apoptosis rate of podocytes induced by ADR was reduced by PF. Furthermore, PF ameliorated podocyte injury by upregulating synaptopodin and reducing desmin. In accordance with animal study, PF downregulated ANGPTL4 by activating PPARγ. However, the therapeutic effects of PF were reversed by GW9662 (PPARγ inhibitor), likely by suppressing ANGPTL4 degradation. In general, these results demonstrate that PF has a good therapeutic effect on NS by activating PPARγ and subsequently inhibiting ANGPTL4.
Collapse
Affiliation(s)
- Ruirui Lu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jie Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Bihao Liu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ning Liang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu He
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Lixia Bai
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peichun Zhang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yanchun Zhong
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yuan Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jiuyao Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
34
|
Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens 2017; 26:375-383. [DOI: 10.1097/mnh.0000000000000349] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Li Y, Gong L, Qi R, Sun Q, Xia X, He H, Ren J, Zhu O, Zhuo D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2481-2491. [PMID: 28860718 PMCID: PMC5574596 DOI: 10.2147/dddt.s134518] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paeoniflorin (PF) is an active monoterpene glycoside extracted from Paeonia lactiflora Pall. PF has exhibited antitumor effects in various cancer types. However, the effects of PF in pancreatic cancer are largely unexplored. Here, we showed that PF suppressed growth of pancreatic cancer cell lines Capan-1 and MIAPaCa-2 and profoundly sensitized these cells to X-ray irradiation. Through microarray analysis, we identified HTRA3, a tumor-suppressor candidate gene, as the most increased gene upon PF treatment in Capan-1 cells. Ectopic expression of HTRA3 led to reduced cell proliferation and increased expression of apoptotic protein Bax, suggesting a tumor suppressive role of HTRA3 in pancreatic cancer cells. Together, our results provide a set group of genetic proofs and biological proofs that PF inhibited pancreatic cancer growth by upregulating HTRA3.
Collapse
Affiliation(s)
- Yuejun Li
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Ruili Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, People's Republic of China
| | - Haihui He
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Jianshu Ren
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Ouning Zhu
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Debin Zhuo
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| |
Collapse
|
36
|
Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31:625-635. [DOI: 10.1111/fcp.12303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mehdi Goudarzi
- Department of Toxicology; School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology; School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | | | | | - Iman Fatemi
- Physiology-Pharmacology Research Center; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Physiology and Pharmacology Department; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center; Iran University of Medical Sciences; Tehran Iran
- Health Promotion Research Center; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
37
|
Hong C, Schüffler A, Kauhl U, Cao J, Wu CF, Opatz T, Thines E, Efferth T. Identification of NF-κB as Determinant of Posttraumatic Stress Disorder and Its Inhibition by the Chinese Herbal Remedy Free and Easy Wanderer. Front Pharmacol 2017; 8:181. [PMID: 28428751 PMCID: PMC5382210 DOI: 10.3389/fphar.2017.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure to traumatic events. Although psychotherapy reveals some therapeutic effectiveness, clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported to work well clinically against mental diseases in Asian countries, but the safety and their mode of action are still unclear. In this study, we investigated the mechanisms of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse pharmacology approach combining clinical data to search for mechanisms of PTSD with subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2) by investigating the effect of FAEW and the antidepressant control drug fluoxetine on the transcription factor NF-κB using reporter cell assays and western blotting; (3) by performing molecular docking and literature data mining based on phytochemical constituents of FAEW. The results suggest an involvement of inflammatory processes mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro and inhibited NF-κB activity and p65 protein expression. FAEW's anti-inflammatory compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin, baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in clinical trials, which might be the active ingredients for FAEW against PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|