1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Baz AE, Mrabti HN, Ashmawy NS, Khan SA, Abdallah EM, Al-Mijalli SH, Alenazy R, Alshabrmi FM, Bouyahya A, El Hachlafi N, Ardianto C, ifadotunnikmah F, Hmimid F. Phytochemical characterization, antimicrobial properties and in silico modeling perspectives of Anacyclus pyrethrum essential oil. Heliyon 2024; 10:e35079. [PMID: 39220961 PMCID: PMC11365356 DOI: 10.1016/j.heliyon.2024.e35079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Medicinal plants are used widely in the treatment of various infectious diseases. One of these medical plants is Moroccan plants such as Anacyclus pyrethrum. In this study, the essential oil isolated from the leaves of Anacyclus pyrethrum (APEO) by the hydrodistillation method was analyzed using (GC/MS) analysis. A total of forty-four compounds were identified form the oil and the oxygenated monoterpenes were the most abundant class of compounds. The major identified compound is santolina alcohol (40.7 %), followed by germacrene-D (8.9 %). The in-vitro assessment of the antimicrobial efficacy of APEO encompassed an investigation involving six microbial strains, including two Gram-positive bacteria, four Gram-negative bacteria, and three fungal strains. The findings revealed noteworthy antibacterial and antifungal properties against all examined microorganisms, with inhibitory zone diameters ranging from 25.67 ± 0.06 mm to 25.19 ± 0.03 mm for Gram-positive bacteria and from 22.34 ± 0.01 mm to 14.43 ± 0.02 mm for Gram-negative bacteria, as determined through the disc-diffusion assay. In the case of antifungal activity, inhibitory zones ranged from 24.57 ± 0.04 mm to 18.37 ± 0.06 mm. Further evaluation revealed that the MIC values of Gram-positive bacteria were at the concentration 0.25 % v/v, while MBC values ranged from 0.25 % to 1.0 % v/v. The Gram-negative bacteria exhibited MIC values spanning from 0.5 % to 2.0 % v/v, with MBC values in the range of 0.5 %-2.0 % v/v. For the fungal strains, MIC values ranged from 0.5 % to 1.0 % v/v, while the MFC consistently remained at 1.0 % for all tested fungal strains. The assessment of the MBC/MIC and MFC/MIC ratios collectively indicates that A. pyrethrum EO possesses bactericidal and fungicidal attributes. The in silico study of bioavailability predictions for compounds in APEO based on six physicochemical properties show optimal physiochemical properties including size, lipophilicity, solubility, flexibility, and saturation. α-Pinene, limonene, germacrene D, and (E)-β-farnesene are non-polar due to their lack of polar groups, and the ADME profile indicates desirable properties for considering these compounds in drug development. Molecular docking investigation indicates that all the compounds of APEO reside well into the binding site of the DNA gyrase B enzyme of Staphylococcus aureus by mediating a number of significant interactions with the binding site residues. The ADME analysis suggested that the major compounds APEO possess desirable properties for further consideration in drug development. In light of these findings, APEO could serve as a natural source for the elaboration of new and active antimicrobial drugs.
Collapse
Affiliation(s)
- Aziza El Baz
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL—CNRST n° 10, Faculty of Sciences, Chouaib Doukkali University, P.O. Box 20, El Jadida, 24000, Morocco
- High Institute of Nursing Professions and Health Techniques, Casablanca, Morocco
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques, Casablanca, Morocco
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, UEMF, 30030 Fes, Morocco
| | - Naglaa S. Ashmawy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, P.O. Box 4184, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland
| | - Emad M. Abdallah
- Department of Biology, College of Science, Qassim University, Qassim, 51452, Saudi Arabia
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco
| | - Naoufal El Hachlafi
- Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Farida ifadotunnikmah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Fouzia Hmimid
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL—CNRST n° 10, Faculty of Sciences, Chouaib Doukkali University, P.O. Box 20, El Jadida, 24000, Morocco
- Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20100, Morocco
| |
Collapse
|
3
|
Ji F, Wang P, Li Z, Ji K, Wang D, Ma Q. Cu superparticle-based aggregation induced enhancement strategy with PVDF-HFP/CeVO 4 NP sensing interface for miR-103a detection. Talanta 2024; 276:126289. [PMID: 38776779 DOI: 10.1016/j.talanta.2024.126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.
Collapse
Affiliation(s)
- Fangyan Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Kaixiang Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Huang YC, Sung MY, Lin TK, Kuo CY, Hsu YC. Chinese herbal medicine compound of flavonoids adjunctive treatment for oral cancer. J Formos Med Assoc 2024; 123:830-836. [PMID: 37919197 DOI: 10.1016/j.jfma.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Oral cancer is a prevalent global issue, with oral squamous cell carcinoma constituting the majority of cases. Standard treatments like surgery, radiotherapy, and chemotherapy are available but may have adverse effects. Molecular gene therapy, focusing on genetic mutations linked to oral cancer, presents a promising alternative.In this study, we evaluated 27 chemotherapeutic drugs and 63 Chinese herbal medicines for their effectiveness, categorized them by their cellular mechanisms, and identified potential adjuvant therapy candidates for oral cancer. Our findings highlight the impact of natural flavonoids on oral cancer cells, inducing apoptosis, and confirming their potential in molecular genetic analysis. In conclusion, the natural compounds present in Chinese herbal medicine, particularly flavonoids, offer a promising avenue to target specific genetic mutations in oral cancer cells. This approach may reduce the risks associated with oral cancer treatment and pave the way for innovative adjuvant therapies.
Collapse
Affiliation(s)
- Yi-Chao Huang
- Health Services Training Center HSTC, National Defense Medical Center, Taipei, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Min-Yi Sung
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Tsung-Kun Lin
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Pharmaceutical Management Division, Medical Affairs Bureau, Ministry of National Defense, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan; Center for Astronautical Physics and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Li M, Yang J, Li J, Zhou Y, Li X, Ma Z, Li X, Ma H, Ye X. Epiberberine induced p53/p21-dependent G2/M cell cycle arrest and cell apoptosis in gastric cancer cells by activating γ-aminobutyric acid receptor- β3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155198. [PMID: 38006806 DOI: 10.1016/j.phymed.2023.155198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -β3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.
Collapse
Affiliation(s)
- Mengmeng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaye Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuan Zhou
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J, Farnia P. Non-coding RNAs/DNMT3B axis in human cancers: from pathogenesis to clinical significance. J Transl Med 2023; 21:621. [PMID: 37705098 PMCID: PMC10500757 DOI: 10.1186/s12967-023-04510-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer is a complex disease with many contributing factors, and researchers have gained extensive knowledge that has helped them understand the diverse and varied nature of cancer. The altered patterns of DNA methylation found in numerous types of cancer imply that they may play a part in the disease's progression. The human cancer condition involves dysregulation of the DNA methyltransferase 3 beta (DNMT3B) gene, a prominent de novo DNA methyltransferase, and its abnormal behavior serves as an indicator for tumor prognosis and staging. The expression of non-coding RNAs (ncRNAs), which include microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), is critical in controlling targeted gene expression and protein translation and their dysregulation correlates with the onset of tumors. NcRNAs dysregulation of is a critical factor that influences the modulation of several cellular characteristics in cancerous cells. These characteristics include but are not limited to, drug responsiveness, angiogenesis, metastasis, apoptosis, proliferation, and properties of tumor stem cell. The reciprocal regulation of ncRNAs and DNMT3B can act in synergy to influence the destiny of tumor cells. Thus, a critical avenue for advancing cancer prevention and treatment is an inquiry into the interplay between DNMT3B and ncRNAs. In this review, we present a comprehensive overview of the ncRNAs/DNMT3B axis in cancer pathogenesis. This brings about valuable insights into the intricate mechanisms of tumorigenesis and provides a foundation for developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Paniz Azizi
- Department of Psychological and Brain Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Lv Y, Zhang J, Li C, Wang L, Lei L, Huang X. Network pharmacological analysis to reveal the mechanism governing the effect of Qin Xi Tong on osteoarthritis and rheumatoid arthritis. Clin Rheumatol 2023:10.1007/s10067-023-06625-5. [PMID: 37162694 DOI: 10.1007/s10067-023-06625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Qin Xi Tong (QXT), produced by water extracts of Caulis Sinomenii, is clinically effective in the therapy of rheumatoid arthritis (RA). It is also a complementary agent for osteoarthritis (OA). This study aimed to screen the candidate targets and identify the potential mechanisms of QXT against RA and OA. METHOD The active ingredients contained in QXT were queried from the TCMSP database. Their predicted targets were obtained through web-based databases, including TCMSP, BATMAN-TCM, CTD, and PharmMapper. The OA and RA targets were collected from the Genecards database and the GSE55235 dataset. Based on the DAVID database, GO and KEGG enrichment analyses of disease-drug common targets predicted potential signaling pathways for QXT. In addition, core targets were identified by mapping component-target-disease interaction networks with Cytoscape 3.9.1 and STRING. The Swissdock and Pymol tools further validate the predicted results. RESULTS A total of 161 genes were put forward as potential targets for treating RA and OA. These genes might be involved in joint inflammation, including the IL-17 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. They also regulated the progression of joint injuries, such as apoptosis, Th17 cell differentiation, and osteoclast differentiation. In addition, we identified 12 core targets of QXT. Molecular docking results showed that QXT has a high affinity with these core targets. CONCLUSIONS This study reveals the mechanism governing the effect of QXT on RA and OA, predicts the direct target, and provides new ideas for clinical treatment. Key Points • Our study reveals the underlying mechanism of QXT in the treatment of RA and OA. • Further research into the effects of compounds in QXT alone would be of interest.
Collapse
Affiliation(s)
- Yanyan Lv
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Jie Zhang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Chao Li
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Li Wang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Lei Lei
- School of Life Sciences and Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, China
| | - Xiaoqiang Huang
- Department of Orthopedics, Xi'an No.5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China.
| |
Collapse
|
10
|
Roglia V, Potestà M, Minchella A, Bruno SP, Bernardini R, Lettieri-Barbato D, Iacovelli F, Gismondi A, Aquilano K, Canini A, Muleo R, Colizzi V, Mattei M, Minutolo A, Montesano C. Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism. Front Mol Biosci 2022; 9:1012359. [PMID: 36465560 PMCID: PMC9715436 DOI: 10.3389/fmolb.2022.1012359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 09/21/2023] Open
Abstract
A balanced diet is critical for human health, and edible plants play an important role in providing essential micronutrients as well as specific microRNAs (miRNAs) that can regulate human gene expression. Here we present the effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism. Through in silico studies we identified the potential genes involved in lipid metabolism targeted by mol-miRs. To this end, we tested the efficacy of an aqueous extract of MO seeds (MOES), as suggested in traditional African ethnomedicine, or its purified miRNAs. The biological properties of MO preparations were investigated using a human derived hepatoma cell line (HepG2) as a model. MOES treatment decreased intracellular lipid accumulation and induced apoptosis in HepG2. In the same cell line, transfection with mol-miRs showed similar effects to MOES. Moreover, the effect of the mol-miR pool was investigated in a pre-obese mouse model, in which treatment with mol-miRs was able to prevent dysregulation of lipid metabolism.
Collapse
Affiliation(s)
- Valentina Roglia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Potestà
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | | | - Stefania Paola Bruno
- Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | - Maurizio Mattei
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| |
Collapse
|
11
|
Pseudogene MSTO2P Interacts with miR-128-3p to Regulate Coptisine Sensitivity of Non-Small-Cell Lung Cancer (NSCLC) through TGF-β Signaling and VEGFC. JOURNAL OF ONCOLOGY 2022; 2022:9864411. [PMID: 35794983 PMCID: PMC9251142 DOI: 10.1155/2022/9864411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022]
Abstract
Background Coptisine has been widely used for treating a variety of cancer types. To date, whether pseudogene is implicated in coptisine resistance of NSCLC remains unknown. Methods We performed MTT to assess the cell viability of A549 and Calu-1 cells. The transwell assay was used to examine the invasion of cells. TUNEL was used to determine apoptosis. Results Our data showed that coptisine treatment suppressed cell viability and invasion of NSCLC cells while contributing to apoptosis. MiR-128-3p negatively regulated MSTO2P. miR-128-3p reverted MSTO2P knockdown-attenuated cell viability and invasion, as well as promoted cell apoptosis of A549 cells. Moreover, we identified TGF-β signaling and VEGFC as key downstream effectors for MSTO2P and miR-128-3p in A549 cells. MiR-128-3p mimic inhibited TGF-β pathway-associated genes (TGFBR1, Smad2, Smad5, and Smad9), whereas miR-128-3p inhibitor exerted opposite effect. MSTO2P knockdown led to attenuated expression levels of TGFBR1, Smad2, Smad5 and Smad9. VEGFC overexpression greatly rescued miR-128-3p-modulated cell viability, invasion, and apoptosis of A549 cells. Conclusion MSTO2P plays a role in coptisine therapy of NSCLC through miR-128-3p. The findings will advance our understanding of NSCLC treatment.
Collapse
|
12
|
Park MN, Jeon HW, Rahman MA, Park SS, Jeong SY, Kim KH, Kim SH, Kim W, Kim B. Daemonorops draco Blume Induces Apoptosis Against Acute Myeloid Leukemia Cells via Regulation of the miR-216b/c-Jun. Front Oncol 2022; 12:808174. [PMID: 35356209 PMCID: PMC8959842 DOI: 10.3389/fonc.2022.808174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Daemonorops draco Blume (DD), also called dragon’s blood, has been used as a traditional Korean medicine, especially for relieving pain caused by wound infection. Recently, it has been described that DD has antibacterial and analgesic effects. In this study, the underlying anticancer effect of DD associated with apoptosis was investigated in acute myeloid leukemia cell lines U937 and THP-1. DD exhibited cytotoxic effects and induced apoptosis in U937 and THP-1 cells. Moreover, DD treatment significantly reduced mitochondrial membrane potential (ΔΨ). The protein expression of cleaved poly(ADP-ribose) polymerase, cleaved caspase-3, p-H2A.X, CCAAT/enhancer-binding protein (CHOP), and activating transcription factor 4 was upregulated by DD treatment. Consistently, DD-treated cells had increased reactive oxygen species (ROS) level in a concentration-dependent manner via miR-216b activation in association with c-Jun inhibition. N-acetyl-L-cysteine pretreatment reversed the cytotoxic effect of DD treatment as well as prevented ROS accumulation. Collectively, the results of this study suggest that the anticancer effect of DD in AML was mediated by CHOP-dependent apoptosis along with ROS accumulation and included upregulation of miR-216b followed by a decrease in c-Jun.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Pala M, Meral I, Pala Acikgoz N, Gorucu Yilmaz Ş, Taslidere E, Okur SK, Acar S, Akbas F. Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurol Res 2022; 44:726-737. [DOI: 10.1080/01616412.2022.2051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mukaddes Pala
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Ismail Meral
- Faculty of Medicine, Department of Physiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nilgun Pala Acikgoz
- Faculty of Medicine, Department of Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şenay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Elif Taslidere
- Faculty of Medicine, Department of Histology and Embryology, Inonu University, Malatya, Turkey
| | - Sema Karaca Okur
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seyma Acar
- Sancaktepe No. 1 Family Health Center, Istanbul, Turkey
| | - Fahri Akbas
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
14
|
Park MN, Park H, Rahman MA, Kim JW, Park SS, Cho Y, Choi J, Son SR, Jang DS, Shim BS, Kim SH, Ko SG, Cheon C, Kim B. BK002 Induces miR-192-5p-Mediated Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulation of PI3K/CHOP. Front Oncol 2022; 12:791365. [PMID: 35321434 PMCID: PMC8936126 DOI: 10.3389/fonc.2022.791365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
BK002 consists of Achyranthes japonica Nakai (AJN) and Melandrium firmum Rohrbach (MFR) that have been used as herbal medicines in China and Korea. AJN and MFR have been reported to have anti-inflammatory, anti-oxidative, and anti-cancer activities, although the synergistic targeting multiple anti-cancer mechanism in castration-resistant prostate cancer (CRPC) has not been well reported. However, the drug resistance and transition to the androgen-independent state of prostate cancer contributing to CRPC is not well studied. Here, we reported that BK002 exerted cytotoxicity and apoptosis in CRPC PC3 cell lines and prostate cancer DU145 cell lines examined by cytotoxicity, western blot, a LIVE/DEAD cell imaging assay, reactive oxygen species (ROS) detection, quantitative real-time polymerase chain reaction (RT-PCR), and transfection assays. The results from our investigation found that BK002 showed more cellular cytotoxicity than AJN and MFR alone, suggesting that BK002 exhibited potential cytotoxic properties. Consistently, BK002 increased DNA damage, and activated p-γH2A.X and depletion of survivin-activated ubiquitination of pro-PARP, caspase9, and caspase3. Notably, live cell imaging using confocal microscopy found that BK002 effectively increased DNA-binding red fluorescent intensity in PC3 and DU145 cells. Also, BK002 increased the anti-proliferative effect with activation of the C/EBP homologous protein (CHOP) and significantly attenuated PI3K/AKT expression. Notably, BK002-treated cells increased ROS generation and co-treatment of N-Acetyl-L-cysteine (NAC), an ROS inhibitor, significantly preventing ROS production and cellular cytotoxicity, suggesting that ROS production is essential for initiating apoptosis in PC3 and DU145 cells. In addition, we found that BK002 significantly enhanced miR-192-5p expression, and co-treatment with BK002 and miR-192-5p inhibitor significantly reduced miR-192-5p expression and cellular viability in PC3 and DU145 cells, indicating modulation of miR-192-5p mediated apoptosis. Finally, we found that BK002-mediated CHOP upregulation and PI3K downregulation were significantly reduced and restrained by miR-192-5p inhibitor respectively, suggesting that the anti-cancer effect of BK002 is associated with the miR-192-5p/PI3K/CHOP pathway. Therefore, our study reveals that a combination of AJN and MFR might be more effective than single treatment against apoptotic activities of both CRPC cells and prostate cancer cells.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunmin Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Woo Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yongmin Cho
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ri Son
- Collage of Science in Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Sik Jang
- Collage of Science in Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bum-Sang Shim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- *Correspondence: Bonglee Kim,
| |
Collapse
|
15
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
16
|
Anticancer Effects of Herbal Medicine Compounds and Novel Formulations: a Literature Review. J Gastrointest Cancer 2021; 51:765-773. [PMID: 32140897 DOI: 10.1007/s12029-020-00385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many agents disrupt the cell cycle and its signaling circuits leading to cancer progress. Cancer therapy is performed by surgery, radiation, and chemical drugs remaining some side effects. OBJECTIVE To evaluate the anticancer traits of herbal medicines. METHODS We collected previously published data in searching engines (Web of Science, PubMed, Medline, and SCOPUS) by searching key words "herbal medicine," "anticancer effect," "compounds," and "fractions." RESULTS Herbal medicines have unraveled anticancer effects mostly through cancer cells apoptosis via blocking NF-κB pathway by curcumin and terpenoides; CD95 signaling and enhancement of CD95L expression by resveratrol; and inhibiting tyrosine kinas, angiogenesis, and cell cycle arrest in G2/M phase by β-lapachone-genistein and cytochrome-c release into the cytosol and caspase-9 activation by biocalein and quercetin. Additionally, impeding cell cycle in the G1 phase in ovarian cancer cells by 7-hydroxystaurosporine, immune cells enrichment (neutrophils and NK cells activation by Viscum album L., T cells and NK cells activation and cytokines such as tumor necrosis factor release by Ganoderma lucidum and microRNAs regulation (by Sinomeniumacutum, shikonin, Oleaeuropaea, curcumin and ginseng). These effects have implications for proper cancer cells elimination. It has been revealed that cytotoxic effects of herbal compounds (mostly those secondary metabolites) have exerted anticancer properties against several cancer cell lines. In addition, targeting microRNAs, nanoparticle-assisted herbal synergism, and novel drug delivery systems and combination chemotherapies have also emerged exerting higher efficacies for specific cell targeting as novel cancer therapy approaches. CONCLUSION Considering side effects, toxicity, and higher costs of common cancer therapy approaches, application of novel herbal medicine-based therapies will confer promising insights for health outcomes.
Collapse
|
17
|
Muniyandi K, George B, Parimelazhagan T, Abrahamse H. Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules 2020; 25:E4102. [PMID: 32911753 PMCID: PMC7570746 DOI: 10.3390/molecules25184102] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the greatest life-threatening diseases conventionally treated using chemo- and radio-therapy. Photodynamic therapy (PDT) is a promising approach to eradicate different types of cancers. PDT requires the administration of photosensitisers (PSs) and photoactivation using a specific wavelength of light in the presence of molecular oxygen. This photoactivation exerts an anticancer effect via apoptosis, necrosis, and autophagy of cancer cells. Recently, various natural compounds that exhibit photosensitising potentials have been identified. Photoactive substances derived from medicinal plants have been found to be safe in comparison with synthetic compounds. Many articles have focused on PDT mechanisms and types of PSs, but limited attention has been paid to the phototoxic activities of phytocompounds. The reduced toxicity and side effects of natural compounds inspire the researchers to identify and use plant extracts or phytocompounds as a potent natural PS candidate for PDT. This review focusses on the importance of common photoactive groups (furanocoumarins, polyacetylenes, thiophenes, curcumins, alkaloids, and anthraquinones), their phototoxic effects, anticancer activity and use as a potent PS for an effective PDT outcome in the treatment of various cancers.
Collapse
Affiliation(s)
- Kasipandi Muniyandi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| | - Thangaraj Parimelazhagan
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| |
Collapse
|
18
|
Gharehdaghchi Z, Baradaran B, Salehzadeh A, Kazemi T. miR-486-5p regulates cell proliferation and migration in breast cancer. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21. Exp Mol Pathol 2019; 110:104285. [DOI: 10.1016/j.yexmp.2019.104285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 11/19/2022]
|
20
|
MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int Urol Nephrol 2019; 51:1771-1779. [DOI: 10.1007/s11255-019-02210-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
|
21
|
Mansoori B, Mohammadi A, Amin Doustvandi M, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B, Hamblin MR. Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn Ther 2019; 26:395-404. [PMID: 31063860 PMCID: PMC6579671 DOI: 10.1016/j.pdpdt.2019.04.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is a promising modality for the treatment of cancer. PDT involves administering a photosensitizing dye, i.e. photosensitizer, that selectively accumulates in tumors, and shining a light source on the lesion with a wavelength matching the absorption spectrum of the photosensitizer, that exerts a cytotoxic effect after excitation. The reactive oxygen species produced during PDT are responsible for the oxidation of biomolecules, which in turn cause cell death and the necrosis of malignant tissue. PDT is a multi-factorial process that generally involves apoptotic death of the tumor cells, degeneration of the tumor vasculature, stimulation of anti-tumor immune response, and induction of inflammatory reactions in the illuminated lesion. Numerous compounds with photosensitizing activity have been introduced commercially. Although many papers have been published with regard to PDT in the last decade, there has been relatively little focus on natural medicinal plant extracts and compounds derived therefrom. Herbal plants and their extracts are natural substances, and in comparison with synthetic chemicals are considered "green". This review focuses on the different mechanisms of PDT and discusses the role of various plant extracts and natural compounds either alone or in combination for carrying out PDT on different types of cancers.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
| | | | | | - Farzin Kamari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Esmailpoor A, Ghasemian A, Dehnavi E, Peidayesh H, Teimouri M. Physalis alkekengi hydroalcoholic extract enhances the apoptosis in mouse model of breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Shikonin derivatives for cancer prevention and therapy. Cancer Lett 2019; 459:248-267. [PMID: 31132429 DOI: 10.1016/j.canlet.2019.04.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.
Collapse
|
24
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Wang Y, Chen H, Zhang H. Kaempferol promotes proliferation, migration and differentiation of MC3T3-E1 cells via up-regulation of microRNA-101. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1050-1056. [PMID: 30942633 DOI: 10.1080/21691401.2019.1591428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Orthopaedics, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Hanyang Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Wang K, Tan SL, Lu Q, Xu R, Cao J, Wu SQ, Wang YH, Zhao XK, Zhong ZH. Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1357-1368. [PMID: 30149755 DOI: 10.1142/s0192415x18500714] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bladder cancer has a high recurrence rate and requires adjuvant intravesical management after surgery. The use of traditional agents for bladder cancer therapy is constrained by their toxicity and limited efficacy. This emphasizes the need for the development of safer, more effective compounds such as instillation agents. Curcumin is the major component of turmeric, the powdered root of Curcuma longa, which is known for its anti-inflammatory, anti-oxidant and anticancer properties. First, a microarray profiling and qPCR analysis were conducted in the T24 and SV-HUC-1 cell lines. Then, we examined the potential tumorigenicity of miR-7641 in the T24 and SV-HUC-1 cell lines with or without curcumin. Western blot analysis showed that p16 is a target of miR-7641 in T24 cells. We found that, for the first time, curcumin directly downregulates a tumor-promoting microRNA (miRNA), miR-7641, in bladder cancer, which has tumor-promoting characteristics. Curcumin induces the downregulation of miR-7641 and subsequent upregulation of p16 which is a target of miR-7641 at the post-transcriptional level, which leads to the decreased invasion and increased apoptosis of bladder cancer cells. This is the first report to show a direct effect of curcumin on inducing changes in a miRNA suppressor with direct anticancer consequences in bladder cancer. Our study shows that curcumin may be a candidate agent for the clinical management of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Kai Wang
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China.,‡ Department of Pharmacy, Hunan Provincial People's Hospital, Changsha, Hunan 410011, P. R. China
| | - Sheng-Lan Tan
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Qiong Lu
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Ran Xu
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Jian Cao
- § Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P. R. China
| | - Shui-Qing Wu
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Yin-Huai Wang
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Xiao-Kun Zhao
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Zhao-Hui Zhong
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| |
Collapse
|
27
|
Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, Pichika MR, Tekade RK. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond) 2018; 13:1187-1220. [DOI: 10.2217/nnm-2017-0397] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Collapse
Affiliation(s)
- Hardi Jogi
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kaushik Kuche
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kit-Kay Mak
- School of Postgraduate Studies & Research, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| |
Collapse
|
28
|
Coptisine from Rhizoma coptidis exerts an anti-cancer effect on hepatocellular carcinoma by up-regulating miR-122. Biomed Pharmacother 2018; 103:1002-1011. [PMID: 29710498 DOI: 10.1016/j.biopha.2018.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023] Open
Abstract
With increasing incidence and mortality, hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. In this study, microRNA-122 (miR-122) mimics and relevant control oligonucleotides were transfected into HepG2 cells in vitro, followed by coptisine (COP) and sorafenib treatments. Cell proliferation, migration, and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay, wound-healing assay, Hoechst 33258 staining and flow cytometry, respectively. Histopathology and miR-122 were analyzed by haemotoxylin and eosin (H&E) staining and real-time RT-PCR, respectively; whereas, the relevant protein expressions were detected by western blot. In vivo, COP enhanced the expression of miR-122 by 160% compared to control in male BALB/c nude mice; COP not only protected the liver morphology but also showed a significant anti-cancer effect. Further, there was no remarkable difference between the tumor weights in the COP and sorafenib groups, but there was a striking difference to the tumor control group (p < 0.05). Hence, COP inhibited the proliferation, migration and promoted apoptosis of HCC cells; moreover, it inhibited the tumor growth in nude mice by up-regulating the expression of miR-122.
Collapse
|
29
|
Wang J, Xia Y, Zuo Q, Chen T. Molecular mechanisms underlying the antimetastatic activity of bufalin. Mol Clin Oncol 2018; 8:631-636. [PMID: 29732152 DOI: 10.3892/mco.2018.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Bufalin is a monomer compound extract from Chansu, which is a traditional Chinese medicine obtained from the skin and parotid venom glands of toads, such as Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. Chansu had been used in traditional Chinese medicine for >1,000 years due to its cardiac, anti-inflammatory and anticancer properties. Previous studies identified bufalin as the main anticancer compound of Chansu, and recent evidence has corroborated its anticancer properties. Bufalin inhibits cancer cell proliferation, induces cell cycle arrest, induces cancer cell apoptosis, inhibits neovascularization, induces cell differentiation, inhibits cancer metastasis and invasion, and enhances chemotherapeutic drug sensitivity. However, the function and mechanism of bufalin in metastatic cancer cells have not yet been expounded. The aim of the present review was to discuss the recent progress and prospects of bufalin in the prevention of cancer metastasis, particularly in inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yue Xia
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingshong Zuo
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Teng Chen
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
30
|
Metabolism of Rhizoma coptidis in Human Urine by Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2018; 43:441-452. [DOI: 10.1007/s13318-018-0463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Zhang QS, Wang GW, Han ZQ, Chen XM, Na R, Jin H, Li P, Bu R. Metabolic profile of Rhizoma coptidis in human plasma determined using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:63-73. [PMID: 28926137 DOI: 10.1002/rcm.7990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Rhizoma coptidis extract and its alkaloids show various pharmacological activities, but its metabolic profile in human plasma has not been thoroughly investigated. In the present research, the metabolism of Rhizoma coptidis at a clinical dose (5 g/60 kg/day) was systematically analyzed to determine its biotransformation processes in human plasma. METHODS In this research, the metabolites of Rhizoma coptidis in human plasma after oral administration of Rhizoma coptidis extract at a clinical dose were investigated using ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry. The structural elucidation of the constituents was confirmed by comparing their retention times (tR ) and MSn fragments with those of standards and literature reports. RESULTS In total, two prototypes and twelve metabolites were detected in human plasma. The two prototypes were confidently identified using reference standards. Of the compounds detected, M7 (berberrubinen-9-O-glucuronide) was the most abundant based on its peak area, which indicates that this compound might be a pharmacokinetic marker for Rhizoma coptidis alkaloids in humans. Based on the metabolites detected in human plasma, a possible metabolic pathway for Rhizoma coptidis in vivo was proposed. CONCLUSIONS The results indicated that the alkaloids in Rhizoma coptidis were extensively biotransformed in vivo mainly via conjugation with glucuronic acid (GluA) or sulfuric acid (SulA) to form phase II metabolites, and the GluA metabolites are likely the dominant form in human plasma. To the best of our knowledge, this is the first in vivo evaluation of the metabolic profile of the whole Rhizoma coptidis extract in human plasma, which is essential for determining the chemicals responsible for the pharmacological activities of Rhizoma coptidis in vivo. Moreover, it would be beneficial for us to further systematically study the pharmacokinetic behavior of Rhizoma coptidis in humans.
Collapse
Affiliation(s)
- Qing-Shan Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Gao-Wa Wang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Zhi-Qiang Han
- Medical Institution Conducting Clinical Trials for Human Used Drug of Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Xiang-Mei Chen
- Mongolian Medicine College of Pharmacy of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Risu Na
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Haburi Jin
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Ping Li
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Renbatu Bu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| |
Collapse
|
32
|
Du H, Liu Y, Chen X, Yu X, Hou X, Li H, Zhan M, Lin S, Lu L, Yuan S, Sun L. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol 2017; 818:124-131. [PMID: 29037767 DOI: 10.1016/j.ejphar.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Natural medicine has multi-levels, multi-paths and multi-targets, and an increasing number of reports have confirmed that the combination of natural medicine with chemotherapy drugs exhibit a significant synergistic effect. It is necessary to find drug combination strategies to enhance efficacy and reduce toxicity, which can relieve the restrictions on the use of several chemotherapy drugs that have serious toxicity. Our previous reports showed that DT-13 inhibits cancer proliferation, invasion, migration, metastasis, and angiogenesis and induces autophagy. In this study, we evaluated the anti-proliferation effect of DT-13 on a panel of 40 different cancer cell lines for the first time. Moreover, it is also the first time that the combination of DT-13 with 5 different chemotherapy drugs on 3 common cancer cells has been examined. We further confirmed that DT-13 enhanced the sensitivity of gastric cancer cells to topotecan (TPT) via cell cycle arrest in vitro and in vivo. Considering that TPT has been subjected to restriction because of its serious toxicity, DT-13 showed the ability to enhance its effect and reduce its toxicity, which could provide a strategy to reduce the toxic and clinical side effects of TPT.
Collapse
Affiliation(s)
- Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xudong Chen
- Department of Intervention Treatment, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaowen Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meixiao Zhan
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ligong Lu
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China.
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Esmailzadeh S, Mansoori B, Mohammadi A, Baradaran B. Regulatory roles of micro-RNAs in T cell autoimmunity. Immunol Invest 2017; 46:864-879. [DOI: 10.1080/08820139.2017.1373901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sahar Esmailzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 95:1119-1128. [PMID: 28922731 DOI: 10.1016/j.biopha.2017.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFβ1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-β induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-β was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-β induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.
Collapse
|
35
|
Xiong B, Lei X, Zhang L, Fu J. miR-103 regulates triple negative breast cancer cells migration and invasion through targeting olfactomedin 4. Biomed Pharmacother 2017; 89:1401-1408. [PMID: 28320108 DOI: 10.1016/j.biopha.2017.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023] Open
Abstract
Our previous study showed olfactomedin 4 (OLFM4) suppressed triple-negative breast cancer cells migration, invasion and metastasis-associated protein MMP 9 expression. OLFM4 was identified as a potential target of miR-103 according to microRNA target databases and published studies. The aim of this study is to validate the relationship between miR-103 and OLFM4, and explore the function and clinical significance of miR-103 in triple-negative breast cancer patients. In our results, miR-103 negatively regulated OLFM4 expression by directly targeting its 3'-UTR. OLFM4 was a functional target of miR-103 to regulate triple-negative breast cancer cells migration, invasion and MMP 9 expression. Moreover, miR-103 overexpression was observed in triple-negative breast cancer tissues and cell lines, and associated with lymph node metastasis, distant metastasis and clinical stage. Univariate and multivariate analyses suggested that miR-103 overexpression was a poor independent prognostic factor for triple-negative breast cancer patients. In conclusion, miR-103 acts as an oncogene miRNA to promote triple-negative breast cancer cells migration and invasion through targeting OLFM4.
Collapse
Affiliation(s)
- Bin Xiong
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, NO. 16 Hehua Road, Jining, Shandong 272067, China
| | - Xuefeng Lei
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, NO. 16 Hehua Road, Jining, Shandong 272067, China
| | - Lei Zhang
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, NO. 16 Hehua Road, Jining, Shandong 272067, China
| | - Jia Fu
- Academy of Basic Medicine, Jining Medical University, NO. 16 Hehua Road, Jining, Shandong 272067, China.
| |
Collapse
|