1
|
Ekramzadeh M, Kalantar-Zadeh K, Kopple JD. The Relevance of Phytate for the Treatment of Chronic Kidney Disease. Clin J Am Soc Nephrol 2024; 19:1341-1355. [PMID: 39110986 PMCID: PMC11469791 DOI: 10.2215/cjn.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/30/2024] [Indexed: 10/13/2024]
Abstract
Diets high in plant-based foods are commonly recommended for people with CKD. One putative advantage of these diets is reduced intestinal phosphate absorption. This effect has been ascribed to phytic acid (myoinositol hexaphosphoric acid) and its anion, phytate, that are present in many plant foods, particularly in the seeds, nuts, grains, and fruits of plants. This article reviews the structure and many actions of phytate with particular reference to its potential effects on people with CKD. Phytate binds avidly to and can reduce gastrointestinal absorption of the phosphate anion and many macrominerals and trace elements including iron, zinc, calcium, and magnesium. This has led some opinion leaders to label phytate as an anti-nutrient. The human intestine lacks phytase; hence, phytate is essentially not degraded in the small intestine. A small amount of phytate is absorbed from the small intestine, although phytate bound to phosphate is poorly absorbed. Clinical trials in maintenance hemodialysis patients indicate that intravenously administered phytate may decrease hydroxyapatite formation, vascular calcification, and calciphylaxis. Orally administered phytate or in vitro studies indicate that phytate may also reduce osteoporosis, urinary calcium calculi formation, and dental plaque formation. Phytate seems to have anti-inflammatory and antioxidant effects, at least partly because of its ability to chelate iron. Other potential therapeutic roles for phytate, not definitively established, include suppression of cancer formation, reduction in cognitive decline that occurs with aging, and amelioration of certain neurodegenerative diseases and several gastrointestinal and metabolic disorders. These latter potential benefits of phytate are supported by cell or animal research or observational studies in humans. Many of the above disorders are particularly common in patients with CKD. Definitive clinical trials to identify potential therapeutic benefits of phytate in patients with CKD are clearly warranted.
Collapse
Affiliation(s)
- Maryam Ekramzadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Kamyar Kalantar-Zadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Joel D. Kopple
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
2
|
Gong D, Wu N, Chen H, Zhang W, Yan C, Zhang C, Fu Y, Sun H. Phytic acid-loaded polyvinyl alcohol hydrogel promotes wound healing of injured corneal epithelium through inhibiting ferroptosis. Redox Biol 2024; 76:103354. [PMID: 39298836 PMCID: PMC11426138 DOI: 10.1016/j.redox.2024.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
As the important barrier of intraocular tissue, cornea is easy to suffer various kinds of injuries. Among them, acute alkali burn is a thorny ophthalmic emergency event, which can lead to corneal persistent epithelial defects, ulcers, and even perforation. Ferroptosis, a mode of regulatory cell death, has been found to play a key role in the process of corneal alkali burn, of which lipid peroxidation and intracellular iron levels are considered to be the possible therapeutic targets. To seek new effective treatments, the study herein focused on the occurrence of oxidative stress and ferroptosis in corneal alkali burn, exploring the role of phytic acid (PA), a natural small molecule with both antioxidant and iron chelating capacity, in the repair of corneal epithelial injury. The in vivo therapeutic results showed that PA eyedrops treatment promoted the recovery of corneal morphology and function, and in vitro experiments proved that PA prompted the repair of oxidative stress induced-corneal epithelial injury through ferroptosis inhibition. In addition, better drug treatment effect could be achieved through hydrogel delivery and sustained release, and our in vivo experiments showed the superior therapeutic effects of PA delivered by PVA hydrogels with larger molecular weights on corneal injury. In summary, this study demonstrated the excellent effect of natural small molecule PA with antioxidant and high efficiency chelating ferrous ions on ferroptosis inhibition, and showed the outstanding application prospect of PVA/PA hydrogels in the treatment of corneal epithelial injury.
Collapse
Affiliation(s)
- Danni Gong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Nianxuan Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huan Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weijie Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chenxi Yan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
3
|
Wang J, Xie Y, Wu T, Chen Y, Jiang M, Li X, Ye Y, Zhou E, Yang Z. Phytic acid alleviates ochratoxin A-induced renal damage in chicks by modulating ferroptosis and the structure of the intestinal microbiota. Poult Sci 2024; 103:104027. [PMID: 39024690 PMCID: PMC11519695 DOI: 10.1016/j.psj.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Phytic acid (PA) is a natural antioxidant with various biological activities, providing protective effects in multiple animals. Ochratoxin A (OTA) is a mold toxin commonly found in feed, which induces multi-organ damage, with kidney being the target organ of its toxicity. This study investigates the protective effects of PA on OTA-induced renal damage and its potential mechanisms in chicks. The results demonstrates that PA treatment restores OTA-induced renal pathological injuries, reverses the diminished activities of antioxidant enzymes, reduces the accumulation of malondialdehyde, and normalizes the expression of pro-inflammatory cytokines, which confirms that PA can alleviate OTA-induced renal damage. Further investigations reveal that OTA-induced renal injury accompanied by an increase in tissue iron content and the transcription levels of ferroptosis-related genes (TFR, ACSL4, and HO-1), and a decrease in the levels of SLC7A11 and GPX4. PA treatment reverses all these effects, indicating that PA mitigates OTA-induced renal ferroptosis. Moreover, PA supplementation improves intestinal morphology and mucosal function, corrects OTA-induced changes in the intestinal microbiota. Besides, PA microbiota transplantation alleviates renal inflammation and oxidative stress caused by OTA. In conclusion, PA plays a protective role against renal damage through the regulation of ferroptosis and the intestinal microbiota, possibly providing novel insights into the control and prevention of OTA-related nephrotoxicity.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yueqing Xie
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ting Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xuhai Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
4
|
Hassan HM, Abdel-Halim NHM, El-Shenbaby I, Helmy MA, Hammad MO, Habotta OA, El Nashar EM, Alghamdi MA, Aldahhan RA, Al-Khater KM, Almohaywi B, Farrag EAE. Phytic acid attenuates acetaminophen-induced hepatotoxicity via modulating iron-mediated oxidative stress and SIRT-1 expression in mice. Front Pharmacol 2024; 15:1384834. [PMID: 38751780 PMCID: PMC11094543 DOI: 10.3389/fphar.2024.1384834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.
Collapse
Affiliation(s)
- Hend M. Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Human Anatomy and Embryology Department, New Mansoura University, New Mansoura, Egypt
| | | | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manar A. Helmy
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha O. Hammad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman M. El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khulood M. Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Eman A. E. Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Lv J, Wang Q, Liu D, Chu CH, Zhou H, Li G, Wu J, Cai K, Tang C. Calcium phytate reverses high glucose-inhibited osteogenesis of BMSCs via the MAPK/JNK pathway. Oral Dis 2024; 30:1379-1391. [PMID: 37103891 DOI: 10.1111/odi.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Diabetes mellitus (DM) induces oxidative tissue impairment and suppresses bone formation. Some studies have shown that phytic acid has antioxidant and anti-diabetic properties. This study aimed to investigate the potential of calcium phytate (Ca-phytate) to reverse inhibited osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) in a high glucose (HG) environment and to determine the underlying mechanism. MATERIALS AND METHODS hBMSCs were exposed to HG and palmitic acid to simulate DM in vitro. Osteogenic differentiation was measured using alkaline phosphatase staining and activity assay, alizarin red S staining, qRT-PCR, Western blot and immunofluorescence staining. A critical-size cranial defect model of type 2 diabetes mellitus (T2DM) rats was established to evaluate bone regeneration. A specific pathway inhibitor was used to explore whether the MAPK/JNK pathway was involved. RESULTS Treatment with 34 μM Ca-phytate had the highest effect on osteogenic differentiation in HG. Ca-phytate improved cranial bone defect healing in T2DM rats. The long-term HG environment inhibited the activation of the MAPK/JNK signalling pathway, which was restored by Ca-phytate. Blocking the JNK pathway reduced the Ca-phytate-mediated osteogenic differentiation of hBMSCs. CONCLUSION Ca-phytate induced bone regeneration in vivo and reversed HG-inhibited osteogenesis of hBMSCs in vitro via the MAPK/JNK signalling pathway.
Collapse
Affiliation(s)
- Jiaxin Lv
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaona Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyu Liu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Heyang Zhou
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
6
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Sadek SA, Marzouk M, Mohamed HRH, El-Sallam BFA, Elfiky AA, Sayed AA. Chia seeds and coenzyme Q 10 alleviate iron overload induced hepatorenal toxicity in mice via iron chelation and oxidative stress modulation. Sci Rep 2023; 13:19773. [PMID: 37957293 PMCID: PMC10643458 DOI: 10.1038/s41598-023-47127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Iron overload (IOL) can cause hepatorenal damage due to iron-mediated oxidative and mitochondrial damage. Remarkably, combining a natural iron chelator with an antioxidant can exert greater efficacy than monotherapy. Thus, the present study aimed to evaluate the efficacy of Chia and CoQ10 to chelate excess iron and prevent hepatorenal oxidative damage in IOL mice. Male Swiss albino mice (n = 49) were randomly assigned to seven groups: control, dietary Chia, CoQ10, IOL, IOL + Chia, IOL + CoQ10, and IOL + Chia + CoQ10. Computational chemistry indicates that the phytic acid found in the Chia seeds is stable, reactive, and able to bind to up to three iron ions (both Fe2+ and Fe3+). IOL induced a significant (P < 0.05) increase in serum iron, ferritin, transferrin, TIBC, TSI, RBCs, Hb, MCV, MCH, WBCs, AST, ALT, creatinine, and MDA. IOL causes a significant (P < 0.05) decrease in UIBC, platelets, and antioxidant molecules (GSH, SOD, CAT, and GR). Also, IOL elicits mitochondrial membrane change depolarization, and DNA fragmentation and suppresses mitochondrial DNA copies. Furthermore, substantial changes in hepatic and renal tissue, including hepatocellular necrosis and apoptosis, glomerular degeneration, glomerular basement membrane thickening, and tubular degeneration, were observed in the IOL group. Dietary Chia and CoQ10 induced significant (P < 0.05) amelioration in all the mentioned parameters. They can mostly repair the abnormal architecture of hepatic and renal tissues induced by IOL, as signified by normal sinusoids, normal central veins, and neither glomerular damage nor degenerated tubules. In conclusion, the combined treatment with Chia + CoQ10 exerts more pronounced efficacy than monotherapy in hepatorenal protection via chelating excess iron and improved cellular antioxidant status and hepatorenal mitochondrial function in IOL mice.
Collapse
Affiliation(s)
- Shimaa A Sadek
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Marzouk
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Suhett WG, Gerez JR, Hohmann MS, Staurengo-Ferrari L, Verri WA, Pinho FHO, de Barros LD, Cardim ST, Flaiban KMC, Bracarense APFRL. Exploring porcine kidney explants as a model for the study of nephrotoxins and the therapeutic potential of phytic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104241. [PMID: 37562547 DOI: 10.1016/j.etap.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The use of in vivo models to assess nephrotoxicity has faced ethical limitations. A viable alternative is the ex vivo model that combines the 3 R principles with the preservation of tissue histology. Here, we established a gentamicin nephrotoxicity model using pigs` kidney explants and investigated the effect of phytic acid (IP6) against gentamicin- induced nephrotoxicity. A total of 360 kidney explants were divided into control, gentamicin (10 mM), IP6 (5 mM), and gentamicin+IP6 groups. The activity of gammaglutamyltransferase (GGT), creatinine levels, histological assessment, oxidative stress, and inflammatory cytokine expression were analyzed. Exposure to gentamicin induced an increase in GGT activity, creatinine levels, lesion score, lipoperoxidation and IL-8 expression. Explants exposed to IP6 remained like the control. The addition of IP6 to gentamicin prevented tissue damage, increasing the antioxidant status and gene expression of IL-10. This model proved to be an adequate experimental approach for identifying nephrotoxins and potential products to modulate the toxicity.
Collapse
Affiliation(s)
| | - J R Gerez
- Laboratory of Animal Pathology, Brazil
| | - M S Hohmann
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Brazil
| | - L Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Brazil
| | - W A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | - S T Cardim
- Laboratory of Animal Protozoology, Brazil
| | - K M C Flaiban
- Laboratory of Clinical Pathology, Universidade Estadual de Londrina, rodovia Celso Garcia Cid, km 380, 86057-970 Londrina, PR, Brazil
| | | |
Collapse
|
9
|
Chuljerm H, Paradee N, Katekaew D, Nantachai P, Settakorn K, Srichairatanakool S, Koonyosying P. Iron Chelation Property, Antioxidant Activity, and Hepatoprotective Effect of 6-Gingerol-Rich Ginger ( Zingiber officinale) Extract in Iron-Loaded Huh7 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:2936. [PMID: 37631148 PMCID: PMC10459954 DOI: 10.3390/plants12162936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Iron is essential for numerous biological processes; however, an iron imbalance can contribute to a number of diseases. An excess of iron can accumulate in the body and subsequently induce the production of reactive oxygen species (ROS), leading to oxidative tissue damage and organ dysfunction. The liver, a major iron storage site, is vulnerable to this iron-induced oxidative damage; however, this issue can be overcome by the chelation of excess iron. This study aimed to investigate the effect of 6-gingerol-rich ginger (Zingiber officinale) extract on iron chelation, antioxidation, and hepatoprotective function in protecting against iron-induced oxidative liver cell injury. In experiments, 6-gingerol was confirmed to be a main bioactive component of the ginger extract and possessed free radical scavenging activity, decreasing ABTS•+ and DPPH• radical levels, and inhibiting AAPH-induced red blood cell hemolysis. Interestingly, the extract significantly reduced the levels of labile cellular iron (LCI), intracellular ROS, and lipid peroxidation products (TBARS) in iron-loaded human hepatoma (Huh7) cells. In conclusion, this work highlights the iron chelation property of 6-gingerol-rich ginger extract and its antioxidant activity, which could potentially protect the liver from iron-induced oxidative tissue damage.
Collapse
Affiliation(s)
- Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental-Occupational Health Sciences and Non Communicable Diseases Research Center, Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Dabudsawin Katekaew
- Science Classroom Affiliated School Project, Chiang Mai University Demonstration School, Chiang Mai University, Chiang Mai 50200, Thailand; (D.K.); (P.N.)
| | - Panaphat Nantachai
- Science Classroom Affiliated School Project, Chiang Mai University Demonstration School, Chiang Mai University, Chiang Mai 50200, Thailand; (D.K.); (P.N.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| |
Collapse
|
10
|
Arefhosseini S, Roshanravan N, Asghari S, Tutunchi H, Ebrahimi-Mameghani M. Expression of inflammatory genes, WBC-derived inflammatory biomarkers and liver function indices: Effects of myo-inositol supplementation in obese patients with NAFLD. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
11
|
Arefhosseini S, Roshanravan N, Tutunchi H, Rostami S, Khoshbaten M, Ebrahimi-Mameghani M. Myo-inositol supplementation improves cardiometabolic factors, anthropometric measures, and liver function in obese patients with non-alcoholic fatty liver disease. Front Nutr 2023; 10:1092544. [PMID: 36824177 PMCID: PMC9941177 DOI: 10.3389/fnut.2023.1092544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of metabolic syndrome is closely associated with type 2 diabetes mellitus. Myo-inositol (MI)-a 6-C sugar alcohol-with insulin-mimetic, anti-diabetic, lipid-lowering, and anti-inflammatory properties has exerted favorable effects on insulin resistance-related disorders and metabolic disease, while recent animal studies revealed its positive effects on liver function. This study aimed to investigate the effects of MI supplementation on cardiometabolic factors, anthropometric measures, and liver function in obese patients with NAFLD. Methods This double-blinded placebo-controlled randomized clinical trial was carried out on 48 obese patients with NAFLD who were randomly assigned to either MI (4g/day) or placebo (maltodextrin 4g/day) along with dietary recommendations for 8 weeks. Glycemic indices, lipid profile, liver enzymes anthropometric measures, and blood pressure were evaluated pre- and post-intervention. Dietary intakes were assessed using a 3-day 24 h recall and analyzed by Nutritionist IV software. Insulin resistance was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR), and beta-cell function (HOMA-B) was also estimated. Results Anthropometric measures decreased significantly in both groups, while the reduction in weight (p = 0.049) and systolic blood pressure (p = 0.006) in the MI group was significantly greater than in the placebo group after adjusting for baseline values and energy intake. Although energy and macronutrient intakes decreased significantly in both groups, between-group differences were not significant after adjusting for the potential confounders. MI supplementation led to a significant reduction in serum fasting insulin (p = 0.008) and HOMA-IR (p = 0.046). There were significant improvements in lipid profile, liver enzymes, and aspartate aminotransferase/alanine aminotransferase ratio as well as serum ferritin level in the MI group, compared to the placebo group at the endpoint. By MI supplementation for eight weeks, 1 in 3 patients reduced one- grade in the severity of NAFLD. Conclusion MI supplementation could significantly improve IR, lipid profile, and liver function in patients with NAFLD. Further clinical trials with larger sample sizes, longer duration, different MI doses, and other inositol derivatives are recommended.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayyeh Rostami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manuchehr Khoshbaten
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,*Correspondence: Mehrangiz Ebrahimi-Mameghani ✉
| |
Collapse
|
12
|
Metabolomics Study of Serum Samples of β-YAC Transgenic Mice Treated with Tenofovir Disoproxil Fumarate. Int J Mol Sci 2022; 23:ijms232415750. [PMID: 36555396 PMCID: PMC9778960 DOI: 10.3390/ijms232415750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
β-thalassemia is one of the most common monogenic disorders and a life-threatening health issue in children. A cost-effective and safe therapeutic approach to treat this disease is to reactivate the γ-globin gene for fetal hemoglobin (HbF) production that has been silenced during infancy. Hydroxyurea (HU) is the only FDA approved HbF inducer. However, its cytotoxicity and inability to respond significantly in all patients pose a need for an HbF inducer with better efficacy. The study describes the serum metabolic alteration in β-YAC transgenic mice treated with Tenofovir disoproxil fumarate (TDF) (n = 5), a newly identified HbF inducer, and compared to the mice groups treated with HU (n = 5) and untreated control (n = 5) using gas chromatography-mass spectrometry. Various univariate and multivariate statistical analyses were performed to identify discriminant metabolites that altered the biological pathways encompassing galactose metabolism, lactose degradation, and inositol. Furthermore, the decreased concentrations of L-fucose and geraniol in TDF-treated mice help in recovering towards normal, decreasing oxidative stress even much better than the HU-treated mice. The proposed study suggested that TDF can reduce the deficiency of blood required for β-thalassemia and can be used for the preclinical study at phase I/II for fetal hemoglobin production.
Collapse
|
13
|
Figueredo KC, Guex CG, da Silva ARH, Lhamas CL, Engelmann AM, Maciel RM, Danesi CC, Duarte T, Duarte MMMF, Lopes GHH, Bauermann LDF. In silico and in vivo protective effect of Morus nigra leaves on oxidative damage induced by iron overload. Drug Chem Toxicol 2021; 45:2814-2824. [PMID: 34663156 DOI: 10.1080/01480545.2021.1991946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Morus nigra L. is a plant popularly known as 'amoreira preta', very used in folk medicine. Iron overload (hemochromatosis) is a clinical condition that causes damage to various tissues due to oxidative stress. Therapy to control iron overload is still unsatisfactory. The protective effect on oxidative stress induced by iron overload was verified. Phytochemical characterization was evaluated by UHPLC-MS/MS. The in silico toxicity predictions of the main phytochemicals were performed via computer simulation. To induce iron overload, the animals received iron dextran (50 mg/kg/day). The test groups received doses of 500 and 1000 mg/kg of M. nigra extract for six weeks. Body weight, organosomatic index, serum iron, hepatic markers, cytokines, interfering factors in iron metabolism, enzymatic and histopathological evaluations were analyzed. Vanillic acid, caffeic acid, 6-hydroxycoumarin, p-coumaric acid, ferulic acid, rutin, quercitrin, resveratrol, apigenin and kaempferol were identified in the extract. In addition, in silico toxic predictions showed that the main compounds presented a low probability of toxic risk. The extract of M. nigra showed to control the mediators of inflammation and to reduce iron overload in several tissues. Our findings illustrate a novel therapeutic action of M. nigra leaves on hemochromatosis caused by iron overload.
Collapse
Affiliation(s)
- Kássia Caroline Figueredo
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Camille Gaube Guex
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Cibele Lima Lhamas
- Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Thiago Duarte
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
14
|
Malev AL, Zakharova AN, Kaliberdenko VB, Fominykh TA, Kulanthaivel S, Balasundaram K. Structural and Morphological Changes in the Liver Due to Intestinal Endotoxins. Rev Recent Clin Trials 2021; 15:205-213. [PMID: 32552644 DOI: 10.2174/1574887115666200617143422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Under normal physiological conditions, endotoxin (ET) released during self-renewal of the colibacillus pool is an obligate stimulus for the formation of the immune system and homeostasis of the body. Violation of the barrier function of the intestinal wall and the mechanisms of neutralization of endotoxin lead to systemic endotoxemia of intestinal origin. Its development is facilitated by stress, intoxication, a decrease in nonspecific resistance of the body, as well as damage to the intestinal mucosa and dysbiosis, where the mucous membrane is more vulnerable and permeable to endotoxin. PURPOSE OF THE RESEARCH The aim of this study is to compare and assess the severity and nature of hepatocyte damage from endotoxin exposure and the degree of manifestation of stress due to oxidation, to determine the characteristics of structural changes in hepatocytes and to assess the oxidation stress during endotoxin intoxication in the experiment with biochemical markers. MATERIALS AND METHODS The experiments were conducted on 40 non-linear rats, divided into two groups of 20 animals. Group 1 animals received intraperitoneal injections of ET of Escherichia coli drug (Sigma USA K-235) for seven days at a rate of 0.1 mg/kg of the body weight. Animals of the second group served as the control group. Character and stage of liver damage were studied using morphological methods, including electron and light microscopy. In studying oxidizing stress, biochemical methods were used to define the changes, such as conjugated dienes and dienketones, spontaneous oxidizing modification of proteins. RESULTS AND CONCLUSION 1. The severity and depth of morphological changes in the liver during endotoxin intoxication were correlated with the dynamics of the content of lipid oxidation products (CD and DK, MDA) and proteins. There was a tendency for a more significant increase in the oxidative modification of proteins in serum. This confirms the data on the primary damage of proteins by free radicals. 2. When exposed to intestinal microflora endotoxin, pronounced dyscirculatory changes, fatty and hydropic degeneration of hepatocytes with signs of toxic damage to their nuclei were determined, but at the same time, the increased hyperplastic activity of sinusoidal cells remained associated with the effects of endotoxin. These changes are associated with both the direct toxic effect of endotoxin, and the effects of oxidative stress, in which endotoxin is a potent inducer.
Collapse
Affiliation(s)
- Alexander L Malev
- Department of Internal medicine No.1, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Anna N Zakharova
- Department of Internal medicine No.1, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vitalii B Kaliberdenko
- Department of Internal medicine No.2, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Tatyana A Fominykh
- Department of Forensic Medicine, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Shanmugaraj Kulanthaivel
- Department of Internal medicine No.2, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Keerthanaa Balasundaram
- Department of Internal medicine No.2, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
15
|
Sangija F, Martin H, Matemu A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr Rev Food Sci Food Saf 2021; 20:3284-3318. [PMID: 33938139 DOI: 10.1111/1541-4337.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Achieving zero hunger in sub-Saharan Africa (SSA) without minimizing postharvest losses of agricultural products is impossible. Therefore, a holistic approach is vital to end hunger, simultaneously improving food security, diversity, and livelihoods. This review focuses on the African nightshades (ANS) Solanum spp. contribution to improving food and nutrition security in SSA. Different parts of ANS are utilized as food and medicine; however, pests and diseases hinder ANS utilization. African nightshade is rich in micronutrients such as β-carotene, vitamins C and E, minerals (iron, calcium, and zinc), and dietary fiber. The leaves contain a high amount of nutrients than the berries. Proper utilization of ANS can contribute to ending hidden hunger, mainly in children and pregnant women. Literature shows that ANS contains antinutritional factors such as oxalate, phytate, nitrate, and alkaloids; however, their quantities are low to cause potential health effects. Several improved varieties with high yields, rich in nutrients, and low alkaloids have been developed in SSA. Various processing and preservation techniques such as cooking, drying, and fermentation are feasible techniques for value addition on ANS in SSA; moreover, most societies are yet to adopt them effectively. Furthermore, promoting value addition and commercialization of ANS is of importance and can create more jobs. Therefore, this review provides an overview of ANS production and challenges that hinder their utilization, possible solutions, and future research suggestions. This review concludes that ANS is an essential nutritious leafy vegetable for improving nutrition and livelihoods in SSA.
Collapse
Affiliation(s)
- Frank Sangija
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Haikael Martin
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Athanasia Matemu
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
16
|
Aguree S, Guo L, Reddy MB. Phytic Acid Protects from Oxidative Stress Induced by Iron-Overload and High-Fat Diets in ß2-Microglobulin Knockout Mice. Molecules 2020; 25:molecules25225331. [PMID: 33203173 PMCID: PMC7697163 DOI: 10.3390/molecules25225331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to examine the protective effect of phytic acid (PA) in reducing oxidative stress in an animal model for human hereditary hemochromatosis (HH) fed high-fat diets. Sixty-four ß2 microglobulin knockout (β2m KO) mice were randomly assigned to three treatments by feeding: control (basal), atherogenic (AT), and polyunsaturated fatty acid (PUFA) diets. One-half of the mice in each treatment group were fed 2% (wt/wt) PA. The ß2m+/+ mice (wild type (WT)) were fed a basal diet. All seven groups were fed for 10 weeks with a 50-ppm iron-containing diet (AIN-93G). Free iron and lipids were measured in serum samples. Nonheme iron, thiobarbituric acid-reactive substances (TBARS), superoxide dismutase (SOD), and catalase concentrations were measured in the liver tissue. Nonheme iron concentration in ß2m KO mice (on the basal diet) was 20× higher (p < 0.0001) than in the WT mice. Compared to the WT mice, ß2m KO mice had a significantly higher concentration of free iron in the serum (p < 0.0001), six-fold higher hepatic TBARs (p < 0.0001), and 18% lower hepatic SOD level. When PA was added to the β2m KO basal diet, a reduction (26 to 50%) of iron concentration was seen in the liver and heart. The addition of PA also significantly reduced TBARs in all three dietary groups of the iron-overloaded group, but most effectively in the control group. An increase in SOD concentration was seen only in the PUFA group, but serum triacylglycerol (TG) concentration was reduced in both dietary fat groups. In conclusion, our results suggest that PA protects against oxidative stress-induced by genetic iron overload alone or when fed high fat.
Collapse
Affiliation(s)
- Sixtus Aguree
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (S.A.); (L.G.)
| | - Ling Guo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (S.A.); (L.G.)
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Manju B. Reddy
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (S.A.); (L.G.)
- Correspondence: ; Tel.: +1-515-294-2024
| |
Collapse
|
17
|
Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules 2020; 25:molecules25215079. [PMID: 33139672 PMCID: PMC7663797 DOI: 10.3390/molecules25215079] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders. We review inositols and inositol phosphate metabolism in mammalian cells to establish their biological activities and highlight their potential roles in energy metabolism. These molecules are known to decrease insulin resistance, increase insulin sensitivity, and have diverse properties with importance from cell signaling to metabolism. Evidence showed that inositol phosphates might enhance the browning of white adipocytes and directly improve insulin sensitivity through adipocytes. In addition, inositol pyrophosphates containing high-energy phosphate bonds are considered in increasing cellular energetics. Despite all recent advances, many aspects of the bioactivity of inositol phosphates are still not clear, especially their effects on insulin resistance and alteration of metabolism, so more research is needed.
Collapse
|
18
|
Neutrophils from hereditary hemochromatosis patients are protected from iron excess and are primed. Blood Adv 2020; 4:3853-3863. [PMID: 32810223 DOI: 10.1182/bloodadvances.2020002198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.
Collapse
|
19
|
Rametta R, Meroni M, Dongiovanni P. From Environment to Genome and Back: A Lesson from HFE Mutations. Int J Mol Sci 2020; 21:ijms21103505. [PMID: 32429125 PMCID: PMC7279025 DOI: 10.3390/ijms21103505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The environment and the human genome are closely entangled and many genetic variations that occur in human populations are the result of adaptive selection to ancestral environmental (mainly dietary) conditions. However, the selected mutations may become maladaptive when environmental conditions change, thus becoming candidates for diseases. Hereditary hemochromatosis (HH) is a potentially lethal disease leading to iron accumulation mostly due to mutations in the HFE gene. Indeed, homozygosity for the C282Y HFE mutation is associated with the primary iron overload phenotype. However, both penetrance of the C282Y variant and the clinical manifestation of the disease are extremely variable, suggesting that other genetic, epigenetic and environmental factors play a role in the development of HH, as well as, and in its progression to end-stage liver diseases. Alcohol consumption and dietary habits may impact on the phenotypic expression of HFE-related hemochromatosis. Indeed, dietary components and bioactive molecules can affect iron status both directly by modulating its absorption during digestion and indirectly by the epigenetic modification of genes involved in its uptake, storage and recycling. Thus, the premise of this review is to discuss how environmental pressures led to the selection of HFE mutations and whether nutritional and lifestyle interventions may exert beneficial effects on HH outcomes and comorbidities.
Collapse
Affiliation(s)
- Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
20
|
Boukhris I, Smaoui S, Ennouri K, Morjene N, Farhat-Khemakhem A, Blibech M, Alghamdi OA, Chouayekh H. Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model. PLoS One 2020; 15:e0231397. [PMID: 32302332 PMCID: PMC7164649 DOI: 10.1371/journal.pone.0231397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life.
Collapse
Affiliation(s)
- Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Nawres Morjene
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Othman A. Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Liu J, Li Y, Mei C, Ning X, Pang J, Gu L, Wu L. Phytic acid exerts protective effects in cerebral ischemia-reperfusion injury by activating the anti-oxidative protein sestrin2. Biosci Biotechnol Biochem 2020; 84:1401-1408. [PMID: 32290775 DOI: 10.1080/09168451.2020.1754158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral ischemia reperfusion (I/R) is a therapeutic strategy for ischemia; however, it usually causes injury by the aspect of inflammation and neuron apoptosis. This investigation aims to investigate the protective effects of phytic acid (IP6) for cerebral I/R injury in vitro. PC-12 cells under Oxygen and glucose deprivation/reperfusion (OGD/R) were performed to mimic cerebral I/R. IP6 was pretreated before PC-12 cells under OGD/R treatment. The data showed that IP6 activated the expression of sestrin2 in OGD/R injured PC-12 cells. IP6 inhibited OGD/R induced inflammation, oxidative stress, and apoptosis by activating sestrin2. Besides, p38 MAPK may mediate the effects of sestrin2 activated by IP6. Therefore, IP6 can be a potential drug to prevent neurological damage in cerebral I/R injury.
Collapse
Affiliation(s)
- Jing Liu
- Neurology Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Ying Li
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| | - Chunli Mei
- Neurology Department, Beihua University , Jilin, China
| | - Xianbin Ning
- Neurosurgery Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Jinfeng Pang
- Neurosurgery Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Lei Gu
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| | - Liang Wu
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| |
Collapse
|
22
|
Omoruyi FO, Stennett D, Foster S, Dilworth L. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules 2020; 25:E1720. [PMID: 32290029 PMCID: PMC7212753 DOI: 10.3390/molecules25071720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol, or myo-inositol, and associated analog molecules, including myo-inositol hexakisphosphate, are known to possess beneficial biomedical properties and are now being widely studied. The impact of these compounds in improving diabetic indices is significant, especially in light of the high cost of treating diabetes mellitus and associated disorders globally. It is theorized that, within ten years, the global population of people with the disease will reach 578 million individuals, with the cost of care projected to be approximately 2.5 trillion dollars. Natural alternatives to pharmaceuticals are being sought, and this has led to studies involving inositol, and myo-inositol-hexakisphosphate, also referred to as IP6. It has been reported that IP6 can improve diabetic indices and regulate the activities of some metabolic enzymes involved in lipid and carbohydrate metabolism. Current research activities have been focusing on the mechanisms of action of inositol and IP6 in the amelioration of the indices of diabetes mellitus. We demonstrated that an IP6 and inositol combination supplement may regulate insulin secretion, modulate serum leptin concentrations, food intake, and associated weight gain, which may be beneficial in both prediabetic and diabetic states. The supplement attenuates vascular damage by reducing red cell distribution width. Serum HDL is increased while serum triglycerides tend to decrease with consumption of the combination supplement, perhaps due to the modulation of lipogenesis involving reduced serum lipase activity. We also noted increased fecal lipid output following combination supplement consumption. Importantly, liver function was found to be preserved. Concurrently, serum reactive oxygen species production was reduced, indicating that inositol and IP6 supplement consumption may reduce free radical damage to tissues and organs as well as serum lipids and blood glucose by preserving liver function. This review provides an overview of the findings associated with inositol and IP6 supplementation in the effective treatment of diabetes with a view to proposing the potential mechanisms of action.
Collapse
Affiliation(s)
- Felix O. Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA;
| | - Dewayne Stennett
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Shadae Foster
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Lowell Dilworth
- Department of Pathology, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica
| |
Collapse
|
23
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|
24
|
Sharma A, Ahluwalia O, Tripathi AD, Singh G, Arya SK. Phytases and their pharmaceutical applications: Mini-review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Abdulwaliyu I, Arekemase SO, Adudu JA, Batari ML, Egbule MN, Okoduwa SIR. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Mora-Boza A, López-Donaire ML, Saldaña L, Vilaboa N, Vázquez-Lasa B, San Román J. Glycerylphytate compounds with tunable ion affinity and osteogenic properties. Sci Rep 2019; 9:11491. [PMID: 31391524 PMCID: PMC6685941 DOI: 10.1038/s41598-019-48015-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
Phytic acid (PA) is a natural-occurring antioxidant, which plays an important role in many biological processes. PA is recognized as a potent inhibitor of lipid peroxidation because of its high affinity to multivalent cations, and it can play a role in osteogenic processes. However, its powerful chelating capacity is controversial because it can lead to a severe reduction of mineral availability in the organism. For this reason, compounds with beneficial biological properties of PA, but a modular ion binding capacity, are of high interest. In this work, we report the synthesis and physicochemical characterization of two hydroxylic derivatives of PA, named glycerylphytates (GPhy), through a condensation reaction of PA with glycerol (G). Both derivatives present antioxidant properties, measured by ferrozine/FeCl2 method and chelating activity with calcium ions depending on the content of glyceryl groups incorporated. Besides, the hydroxylic modification not only modulates the ion binding affinity of derivatives but also improves their cytocompatibility in human bone marrow mesenchymal cells (MSCs). Furthermore, GPhy derivatives display osteogenic properties, confirmed by COL1A and ALPL expression depending on composition. These positive features convert GPhy compounds into potent alternatives for those skeletal diseases treatments where PA is tentatively applied.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006, Madrid, Spain.,CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | | | - Laura Saldaña
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006, Madrid, Spain. .,CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006, Madrid, Spain.,CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| |
Collapse
|
27
|
Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Cocato ML, Lobo AR, Azevedo-Martins AK, Filho JM, de Sá LRM, Colli C. Effects of a moderate iron overload and its interaction with yacon flour, and/or phytate, in the diet on liver antioxidant enzymes and hepatocyte apoptosis in rats. Food Chem 2019; 285:171-179. [PMID: 30797332 DOI: 10.1016/j.foodchem.2019.01.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/26/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
The effect of moderate Fe overload in the diet and its interaction with phytate, and/or yacon flour (YF), recognized as an inhibitor, and facilitator, of Fe absorption, respectively, was evaluated in healthy rats. For this purpose the following parameters were analyzed: (1) apparent iron (Fe), copper (Cu) and zinc (Zn) absorption; (2) blood Fe; (3) blood lipids (cholesterol, tryacylglicerol); (4) blood AST and ALT; (5) liver histology (histopathology, hemosiderin depots, apoptosis index; (6) liver fatty acid incorporation; (7) liver antioxidant enzyme activity. Moderate Fe overload may cause change in some liver markers (hemosiderin depots, apoptosis index and GPx) and blood lipids (total cholesterol and VLDL) and the interaction with yacon flour, and phytate, in the Fe overloaded diets may exert a protective effect on these alterations.
Collapse
Affiliation(s)
- Maria Lucia Cocato
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Alexandre Rodrigues Lobo
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil
| | | | - Jorge Mancini Filho
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Health of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Célia Colli
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Nomani H, Bayat G, Sahebkar A, Fazelifar AF, Vakilian F, Jomezade V, Johnston TP, Mohammadpour AH. Atrial fibrillation in β‐thalassemia patients with a focus on the role of iron‐overload and oxidative stress: A review. J Cell Physiol 2018; 234:12249-12266. [DOI: 10.1002/jcp.27968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Golnaz Bayat
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Farjam Fazelifar
- Department of Pacemaker and Electrophysiology Rajaie Cardiovascular, Medical and Research center, Iran University of Medical Sciences Tehran Iran
| | - Farveh Vakilian
- Atherosclerotic Research Center Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Vahid Jomezade
- Department of Surgery Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences School of Pharmacy, University of Missouri‐Kansas City Kansas City Missouri
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
30
|
Tan BL, Norhaizan ME, Chan LC. An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G₀/G₁ Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics 2018; 10:pharmaceutics10040198. [PMID: 30360519 PMCID: PMC6321496 DOI: 10.3390/pharmaceutics10040198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/10/2023] Open
Abstract
Magnetic iron oxide nanoparticles are among the most useful metal nanoparticles in biomedical applications. A previous study had confirmed that phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) exhibited antiproliferative activity towards human colorectal cancer (HT-29) cells. Hence, in this work, we explored the in vitro cytotoxicity activity and mechanistic action of Phy-CS-MNP nanocomposite in modulating gene and protein expression profiles in HT-29 cell lines. Cell cycle arrest and apoptosis were evaluated by NovoCyte Flow Cytometer. The mRNA changes (cyclin-dependent kinase 4 (Cdk4), vascular endothelial growth factor A (VEGFA), c-Jun N-terminal kinase 1 (JNK1), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9)) and protein expression (nuclear factor-kappa B (NF-κB) and cytochrome c) were assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The data from our study demonstrated that treatment with Phy-CS-MNP nanocomposite triggered apoptosis and G0/G1 cell cycle arrest. The transcriptional activity of JNK1 and iNOS was upregulated after treatment with 90 μg/mL Phy-CS-MNP nanocomposite. Our results suggested that Phy-CS-MNP nanocomposite induced apoptosis and cell cycle arrest via an intrinsic mitochondrial pathway through modulation of Bax and Bcl-2 and the release of cytochrome c from the mitochondria into the cytosol.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Lee Chin Chan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|