1
|
Wang JX, Zhang PL, Gopala L, Lv JS, Lin JM, Zhou CH. A Unique Hybridization Route to Access Hydrazylnaphthalimidols as Novel Structural Scaffolds of Multitargeting Broad-Spectrum Antifungal Candidates. J Med Chem 2024; 67:8932-8961. [PMID: 38814290 DOI: 10.1021/acs.jmedchem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing-Song Lv
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
2
|
Gupta S, Luxami V, Paul K. Bacterial cell death to overcome drug resistance with multitargeting bis-naphthalimides as potent antibacterial agents against Enterococcus faecalis. J Mater Chem B 2024; 12:5645-5660. [PMID: 38747306 DOI: 10.1039/d3tb02804f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The increasing frequency of drug-resistant pathogens poses serious health issues to humans around the globe, leading to the development of new antibacterial agents to conquer drug resistance and bacterial infections. In view of this, we have synthesized a series of bis-naphthalimides to respond to awful drug resistance. Bioactivity assay and structure-activity relationship disclosed that compounds 5d and 5o exhibit potent antibacterial activity against E. faecalis, outperforming the marketed antibiotics. These drug candidates not only inhibit the biofilm formation of E. faecalis but also display rapid bactericidal properties, thus delaying the development of drug resistance within 20 passages. To explore the mechanism of antibacterial activity against E. faecalis, biofunctional examination was carried out which unveiled that 5d and 5o effectively disrupt bacterial cell membranes, causing the leakage of cytoplasmic contents and metabolic activity loss. Concurrently, 5d and 5o effectively intercalate with DNA to block DNA replication, causing the build-up of excessive reactive oxygen species and inhibiting the glutathione activity, ultimately leading to oxidative damage of E. faecalis and cell death. In addition, these compounds readily bind with HSA with a high binding constant, indicating that these drug candidates could be easily delivered to the target site. The above finding manifested that these newly synthesized bis-naphthalimides with multitargeting antibacterial properties offer a new prospect to overcome drug resistance.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
3
|
Ghomashi S, Ghomashi R, Damavandi MS, Fakhar Z, Mousavi SY, Salari-Jazi A, Gharaghani S, Massah AR. Evaluation of antibacterial, cytotoxicity, and apoptosis activity of novel chromene-sulfonamide hybrids synthesized under solvent-free conditions and 3D-QSAR modeling studies. Sci Rep 2024; 14:12878. [PMID: 38834651 DOI: 10.1038/s41598-024-63535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
In this study, eleven novel chromene sulfonamide hybrids were synthesized by a convenient method in accordance with green chemistry. At first, chromene derivatives (1-9a) were prepared through the multi-component reaction between aryl aldehydes, malononitrile, and 3-aminophenol. Then, synthesized chromenes were reacted with appropriate sulfonyl chlorides by grinding method to give the corresponding chromene sulfonamide hybrids (1-11b). Synthesized hybrids were obtained in good to high yield and characterized by IR, 1HNMR, 13CNMR, CHN and melting point techniques. In addition, the broth microdilution assay was used to determine the minimal inhibitory concentration of newly synthesized chromene-sulfonamide hybrids. The MTT test was used to determine the cytotoxicity and apoptotic activity of the newly synthesized compounds against fibroblast L929 cells. The 3D‑QSAR analysis confirmed the experimental assays, demonstrating that our predictive model is useful for developing new antibacterial inhibitors. Consequently, molecular docking studies were performed to validate the findings of the 3D-QSAR analysis, confirming the potential binding interactions of the synthesized chromene-sulfonamide hybrids with the target enzymes. Molecular docking studies were employed to support the 3D-QSAR predictions, providing insights into the binding interactions between the newly synthesized chromene-sulfonamide hybrids and their target bacterial enzymes, thereby reinforcing the potential efficacy of these compounds as antibacterial agents. Also, some of the experimental outcomes supported or conflicted with the pharmacokinetic prediction (especially about compound carcinogenicity). The performance of ADMET predictor results was assessed. The work presented here proposes a computationally driven strategy for designing and discovering a new sulfonamide scaffold for bacterial inhibition.
Collapse
Affiliation(s)
- Shakila Ghomashi
- Department of Medicinal Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Reihane Ghomashi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Sadegh Damavandi
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Fakhar
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyedeh Yasaman Mousavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Azhar Salari-Jazi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran.
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
- Department of Chemistry, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
4
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kumar Bishoyi A, Mahapatra M, Sahoo CR, Kumar Paidesetty S, Nath Padhy R. Design, molecular docking and antimicrobial assessment of newly synthesized p-cuminal-sulfonamide Schiff base derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Mahapatra M, Paidesetty SK, Bishoyi AK, Padhy RN. Design, molecular docking study of synthesised N-heteroaryl substituted gallamide derivatives and their antibacterial assessment. Nat Prod Res 2022; 36:5575-5583. [PMID: 35105197 DOI: 10.1080/14786419.2021.2022662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A series of N-heteroaryl substituted Gallamide derivatives 3a-3g were synthesised and the obtained structures were further confirmed by different spectral studies. For in-vitro antibacterial activity, the synthesised compounds were evaluated against three UTI (Urinary Tract Infection) bacterial strains including Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. Furthermore, the designed compounds were docked with bacterial DNA gyrase and dihydropteroate synthase. All the compounds had shown good inhibition against S. aureus whereas compound 3e has produced significant inhibition at 28 and 26 mm against S.aureus and E.coli, respectively. The MIC value of the conjugate 3e and 3d was 3.12 and 6.25 μg/mL against S. aureus andE.coli, respectively. Compound 3,4,5-trihydroxy-N-(4-(N-(5-methyl isoxazol-3-yl) sulfamoyl) phenyl)benzamide 3d had shown the highest binding energy against both the targets along with good antibacterial action.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ajit Kumar Bishoyi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Bishoyi AK, Mahapatra M, Paidesetty SK, Padhy RN. Design, molecular docking, and antimicrobial assessment of newly synthesized phytochemical thymol Mannich base derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Esfahani SN, Damavandi MS, Sadeghi P, Nazifi Z, Salari-Jazi A, Massah AR. Synthesis of some novel coumarin isoxazol sulfonamide hybrid compounds, 3D-QSAR studies, and antibacterial evaluation. Sci Rep 2021; 11:20088. [PMID: 34635732 PMCID: PMC8505453 DOI: 10.1038/s41598-021-99618-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
With the progressive and ever-increasing antibacterial resistance pathway, the need for novel antibiotic design becomes critical. Sulfonamides are one of the more effective antibiotics against bacteria. In this work, several novel sulfonamide hybrids including coumarin and isoxazole group were synthesized in five steps starting from coumarin-3-carboxylic acid and 3-amino-5-methyl isoxazole and assayed for antibacterial activity. The samples were obtained in good to high yield and characterized by FT-IR, 13C-NMR, 1H-NMR, CHN and melting point techniques. 3D-QSAR is a fast, easy, cost-effective, and high throughput screening method to predict the effect of the compound's efficacy, which notably decreases the needed price for experimental drug assay. The 3D-QSAR model displayed acceptable predictive and descriptive capability to find r2 and q2 the pMIC of the designed compound. Key descriptors, which robustly depend on antibacterial activity, perhaps were explained by this method. According to this model, among the synthesized sulfonamide hybrids, 9b and 9f had the highest effect on the gram-negative and gram-positive bacteria based on the pMIC. The 3D-QSAR results were confirmed in the experimental assays, demonstrating that our model is useful for developing new antibacterial agents. The work proposes a computationally-driven strategy for designing and discovering new sulfonamide scaffold for bacterial inhibition.
Collapse
Affiliation(s)
- Sheida Nasr Esfahani
- grid.411757.10000 0004 1755 5416Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311 Isfahan, Iran
| | - Mohammad Sadegh Damavandi
- grid.411036.10000 0001 1498 685XDepartment of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ,Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran
| | - Parisa Sadeghi
- grid.411036.10000 0001 1498 685XDepartment of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ,Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran
| | - Zahrasadat Nazifi
- grid.411757.10000 0004 1755 5416Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311 Isfahan, Iran
| | - Azhar Salari-Jazi
- grid.411036.10000 0001 1498 685XDepartment of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ,Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran
| | - Ahmad Reza Massah
- grid.411757.10000 0004 1755 5416Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311 Isfahan, Iran ,grid.411757.10000 0004 1755 5416Razi Chemistry Research Center, Shahreza Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
10
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
11
|
Sahoo CR, Paidesetty SK, Padhy RN. The recent development of thymol derivative as a promising pharmacological scaffold. Drug Dev Res 2021; 82:1079-1095. [PMID: 34164828 DOI: 10.1002/ddr.21848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023]
Abstract
Thymol (a phenol ring bearing active phytoconstituent) is a privileged scaffold, which is diversified in natural sources. This scaffold acts as an obligatory template for scheming and arriving at designing some newer drug-molecules with potential biological activities. In the pharmacological perspective, the promising active sites of the scaffold are the positions C-1, C-4, and C-6 of thymol that would be accountable for developing potent drug candidates. This review aims to explore the various synthetic routes and the structural-activity relationship of thymol scaffold with suitable active pharmacophore sites.
Collapse
Affiliation(s)
- Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India.,Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
12
|
Tugrak M, Gul HI, Demir Y, Levent S, Gulcin I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch Pharm (Weinheim) 2021; 354:e2000375. [PMID: 33283898 DOI: 10.1002/ardp.202000375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
New imidazolinone-based benzenesulfonamides 3a-e and 4a-e were synthesized in three steps and their chemical structures were confirmed by 1 H NMR (nuclear magnetic resonance), 13 C NMR, and high-resolution mass spectrometry. The benzenesulfonamides used were sulfacetamide (3a, 4a), sulfaguanidine (3b, 4b), sulfanilamide (3c, 4c), sulfadiazine (3d, 4d), sulfamerazine (3e), and sulfathiazole (4e). The compounds were evaluated against carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes to obtain possible drug candidate/s. The lead compounds of the series were 3a and 4a against human CA (hCA) I, whereas 3d and 4a were leads against hCA II in terms of Ki values. Series 4 includes more effective CAs inhibitors than series 3 (except 3d). Series 4 compounds having a nitro group (except 4d) were 3.3-4.8 times more selective inhibitors than their corresponding analogues 3a-d in series 3, in which hydrogen was located in place of the nitro group, by considering Ki values against hCA II. Compounds 3c and 4c, where the sulfanilamide moiety is available, were the leads in terms of AChE inhibition with the lowest Ki values. The use of secondary sulfonamides was a more effective modification on CA inhibition, whereas the primary sulfonamide was the effective substitution in terms of AChE inhibitory potency.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Khaldan A, Bouamrane S, En-Nahli F, El-mernissi R, El khatabi K, Hmamouchi R, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T. Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon 2021; 7:e06603. [PMID: 33817388 PMCID: PMC7997311 DOI: 10.1016/j.heliyon.2021.e06603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Coronavirus (COVID-19), an enveloped RNA virus, primarily affects human beings. It has been deemed by the World Health Organization (WHO) as a pandemic. For this reason, COVID-19 has become one of the most lethal viruses which the modern world has ever witnessed although some established pharmaceutical companies allege that they have come up with a remedy for COVID-19. To that end, a set of carboxamides sulfonamide derivatives has been under study using 3D-QSAR approach. CoMFA and CoMSIA are one of the most cardinal techniques used in molecular modeling to mold a worthwhile 3D-QSAR model. The expected predictability has been achieved using the CoMFA model (Q2 = 0.579; R2 = 0.989; R2test = 0.791) and the CoMSIA model (Q2 = 0.542; R2 = 0.975; R2test = 0.964). In a similar vein, the contour maps extracted from both CoMFA and CoMSIA models provide much useful information to determine the structural requirements impacting the activity; subsequently, these contour maps pave the way for proposing 8 compounds with important predicted activities. The molecular surflex-docking simulation has been adopted to scrutinize the interactions existing between potentially and used antimalarial molecule on a large scale, called Chloroquine (CQ) and the proposed carboxamides sulfonamide analogs with COVID-19 main protease (PDB: 6LU7). The outcomes of the molecular docking point out that the new molecule P1 has high stability in the active site of COVID-19 and an efficient binding affinity (total scoring) in relation with the Chloroquine. Last of all, the newly designed carboxamides sulfonamide molecules have been evaluated for their oral bioavailability and toxicity, the results point out that these scaffolds have cardinal ADMET properties and can be granted as reliable inhibitors against COVID-19.
Collapse
Affiliation(s)
- Ayoub Khaldan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Soukaina Bouamrane
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Fatima En-Nahli
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Reda El-mernissi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Khalil El khatabi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Rachid Hmamouchi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Hamid Maghat
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Benimellal, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| |
Collapse
|
14
|
Jeliński T, Bugalska N, Koszucka K, Przybyłek M, Cysewski P. Solubility of sulfanilamide in binary solvents containing water: Measurements and prediction using Buchowski-Ksiazczak solubility model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Swain SS, Paidesetty SK, Padhy RN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev Res 2020; 82:149-166. [PMID: 33025605 DOI: 10.1002/ddr.21746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
The emergence and reemergence of multidrug-resistant (MDR) bacteria and mycobacteria in community and hospital periphery have directly enhanced the hospitalization costs, morbidity and mortality, globally. The appearance of MDR pathogens, the currently used antibiotics, remains insufficient, and the development of potent antibacterial(s) is merely slow. Thus, the development of active antibacterials is the call of the day. The sulfonamides class of antibacterials was the most successful synthesized drug in the 19th century. Mechanically, sulfonamides were targeting bacterial folic acid biosynthesis and today, those are obsolete or clinically inactive. Nevertheless, the magic sulfonamide pharmacophore has been used continuously in several mainstream antibacterial, antidiabetic, antiviral drugs. Concomitantly, thousands of phytochemicals with antimicrobial potencies have been recorded and were commanded as alternate antibacterials toward control of MDR pathogens. However, none/very few isolated phytochemicals have gone up to the pure-drug stage due to the lack of the desired drug-likeness values and the required pharmacokinetic properties. Thus, chemical modification of parent drug remains as the versatile approach in antibacterial drug development. Improvement of clinically inactive sulfa drugs with suitable phytochemicals to develop active, low-toxic drug molecules followed by medicinal chemistry could be prudent. This review highlights such "sulfonamide-phytochemical" hybrid drug development research works for utilizing inactive sulfonamides and phytochemicals; the ingenious cost-effective and resource-saving hybrid drug concept could be a new trend in current antibacterial drug discovery to reactive the obsolete antibacterials.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Swain SS, Paidesetty SK, Padhy RN, Hussain T. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Chem Biol Drug Des 2020; 96:714-730. [PMID: 32237023 DOI: 10.1111/cbdd.13685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of the most grievous pandemic infectious diseases, tuberculosis (TB), with long-term morbidity and high mortality. The emergence of drug-resistant Mtb strains, and the co-infection with human immunodeficiency virus, challenges the current WHO-TB stewardship programs. The first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), have become extensively obsolete in TB control from chromosomal mutations during the last decades. However, based on clinical trial statistics, the production of well-tolerated anti-TB drug(s) is miserably low. Alternately, semi-synthesis or structural modifications of first-line obsolete antitubercular drugs remain as the versatile approach for getting some potential medicines. The use of any suitable phytochemicals with INH in a hybrid formulation could be an ideal approach for the development of potent anti-TB drug(s). The primary objective of this review was to highlight and analyze available INH-phytochemical hybrid research works. The utilization of phytochemicals through chemical conjugation is a new trend toward the development of safer/non-toxic anti-TB drugs.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
17
|
Synthesis of N-substituted sulfonamides containing perhalopyridine moiety as bio-active candidates. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Boye A, Addo JK, Acheampong DO, Thomford AK, Asante E, Amoaning RE, Kuma DN. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 2020; 6:e03492. [PMID: 32195386 PMCID: PMC7078539 DOI: 10.1016/j.heliyon.2020.e03492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thymol, a natural monoterpene phenol is not only relevant clinically as an anti-microbial, anti-oxidant and anti-inflammatory agent but also holds the prospect as a natural template for pharmaceutical semi-synthesis of therapeutic agents. It is a major component of essential oils from many plants. Evidence abound linking overall bioactivity of thymol to its monoterpene nucleus, specifically, the hydroxyl (-OH) substituent on carbon number one (C1) on the monoterpene nucleus. Other studies have posited that the overall bioactivity of thymol is not substantially altered by chemical modification of - OH on the C1 of the monoterpene nucleus. In view of this, it is still unclear as to whether removal or modification of the –OH on C1 of the monoterpene nucleus relates generally or context-dependently to bioactivity of thymol. Objective The present study investigated anti-bacterial effects of ester-and-ether substituted derivatives of thymol on S. aureus, P. aeruginosa and E. coli. Materials and methods twelve ester-and-ether substituted derivatives of thymol (6TM1s and 6TM2s) were synthesized and characterized by using HPLC, Mass spectrometry, and IR techniques. Anti-bacterial activity of the 12 thymol derivatives was evaluated using broth macrodilution and turbidimetric methods against pure clinical isolates (S. aureus, P. aeruginosa and E. coli). Standard anti-biotics used were Thymol Streptomycin and flucloxacillin, while DMSO was used as vehicle for thymol derivatives. MIC and MBC were determined. Results Thymol produced broad-spectrum growth inhibition on all isolates. At equimolar concentrations, thymol and reference drugs produced concentration-dependent growth inhibition against the isolates (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli) compared to DMSO. Although the growth inhibitory effects of the ester-and-ether derivatives of thymol was significant (P ≤ 0.05) compared to DMSO, it was however insignificant (P ≥ 0.05) compared to thymol and reference antibiotics. Comparatively, at equimolar concentrations, ester-substituted derivatives of thymol, particularly the branched chain derivative (TM1C) produced more effective growth inhibition on the isolates than the ether-substituted derivatives of thymol. Thymol was twice as potent (MIC and MBC, 500 μg/ml) than both ester-and-ether substituted derivatives of thymol (MIC and MBC, > 1000 μg/ml) on all the three clinical isolates. Increase in side chain bulkiness of –OH moiety on the monoterpene nucleus of thymol decreased growth inhibition on isolates. Conclusion Thymol has demonstrated broad-spectrum anti-bacterial effects attributable to the hydroxyl moiety on C1 of the monoterpene nucleus. Structural modification of the hydroxyl moiety on C1 of the monoterpene nucleus of thymol with either ether-or-ester substitutions yielded no significant anti-bacterial effects.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Kwaku Addo
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ama Kyeraa Thomford
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Asante
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Regina Elorm Amoaning
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dominic Nkwantabisa Kuma
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
19
|
Oyedemi SO, Nwaogu G, Chukwuma CI, Adeyemi OT, Matsabisa MG, Swain SS, Aiyegoro OA. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. J Food Biochem 2019; 44:e13127. [PMID: 31876980 DOI: 10.1111/jfbc.13127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/19/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
Quercetin was assessed for its antihyperglycemic effect in fructose-streptozotocin (STZ) induced diabetic rats. The oral administration of quercetin at the dosage of 25 and 50 mg/kg for 28 days remarkably reduced the level of blood glucose, glycosylated hemoglobin (Hb), and hepatic glycogen but enhanced plasma Hb concentration. The altered activities of glucose-6-phosphatase and hexokinase in diabetic rats were significantly improved upon quercetin treatment. Furthermore, the antioxidant activity of pancreatic superoxide dismutase, catalase (CAT), and reduced glutathione was effectively increased while the value for thiobarbituric acid reactive species was decreased. A significant reduction of glycemia was observed in the glucose tolerance test, 120 min after the glucose pulse. Also, the damage caused by fructose-STZ in the liver and pancreas of diabetic animals were restored to near normal. Molecular docking of quercetin showed a high affinity for hexokinase and CAT with a binding energy of -7.82 and -9.83 kcal/mol, respectively, more elevated than the standard drugs. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals have increasingly interested the consumers in terms of health benefits and have started focussing on the prevention or cure of disease by the foods and their health-enhancing phytochemicals. Quercetin is one of the most potent naturally occurring antioxidants within the flavonoid subclasses, mostly distributed as a secondary metabolite in fruits, vegetables, and black tea. Based on the results exhibited in the present study, we proposed that the consumption of foods rich in quercetin could be a cheap and affordable nutraceutical that can be developed for the treatment of T2DM and its complications. Further studies on the safety aspects of quercetin in long-term usage are strongly recommended before implementing for the treatment of human diseases.
Collapse
Affiliation(s)
- Sunday O Oyedemi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.,Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Godswill Nwaogu
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Chika I Chukwuma
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Olaoluwa T Adeyemi
- Department of Biochemistry, Benjamin S. (Snr.) Carson School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Olayinka A Aiyegoro
- GI Microbiology and Biotechnology Unit, Agricultural Research Council, Animal Production Institute, Pretoria, South Africa
| |
Collapse
|
20
|
Sobotta L, Lijewski S, Dlugaszewska J, Nowicka J, Mielcarek J, Goslinski T. Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
The comparison of semiempirical and ab initio molecular modeling methods in activity and property evaluation of selected antimicrobial sulfonamides. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Swain SS, Paidesetty SK, Dehury B, Sahoo J, Vedithi SC, Mahapatra N, Hussain T, Padhy RN. Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. J Cell Biochem 2018; 119:9838-9852. [DOI: 10.1002/jcb.27304] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Shasank S. Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha “O” Anusandhan (Deemed to be University) Bhubaneswar Odisha India
- NCDs Division ICMR‐Regional Medical Research Centre Bhubaneswar Odisha India
| | - Sudhir K. Paidesetty
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences, Siksha “O” Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR‐Regional Medical Research Centre Bhubaneswar Odisha India
| | - Jyotirmaya Sahoo
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences, Siksha “O” Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Sundeep Chaitanya Vedithi
- Schieffelin Institute of Health‐Research and Leprosy Centre (SIH R & LC), Karigiri Vellore Tamil Nadu India
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Namita Mahapatra
- Biomedical Informatics Centre, ICMR‐Regional Medical Research Centre Bhubaneswar Odisha India
| | - Tahziba Hussain
- NCDs Division ICMR‐Regional Medical Research Centre Bhubaneswar Odisha India
| | - Rabindra N. Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha “O” Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| |
Collapse
|
23
|
Swain SS, Paidesetty SK, Padhy RN. Synthesis of novel thymol derivatives against MRSA and ESBL producing pathogenic bacteria. Nat Prod Res 2018; 33:3181-3189. [DOI: 10.1080/14786419.2018.1474465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Shasank S. Swain
- Central Research Laboratory, IMS and Sum Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sudhir K. Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rabindra N. Padhy
- Central Research Laboratory, IMS and Sum Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
24
|
Jing L, Yu X, Guan M, Wu X, Wang Q, Wu Y. An Efficient Method for Sulfonylation of Amines, Alcohols and Phenols with N-Fluorobenzenesulfonimide Under Mild Conditions. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Szafrański K, Sławiński J, Kędzia A, Kwapisz E. Syntheses of Novel 4-Substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamide Derivatives with Potential Antifungal Activity. Molecules 2017; 22:molecules22111926. [PMID: 29112162 PMCID: PMC6150321 DOI: 10.3390/molecules22111926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Candidiasis represent a serious threat for patients with altered immune responses. Therefore, we have undertaken the synthesis of compounds comprising a pyridine-3-sulfonamide scaffold and known antifungally active 1,2,4-triazole substituents. Thus a series of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamides have been synthesized by multistep reactions starting from 4-chloropyridine-3-sulfonamide via N′-cyano-N-[(4-substitutedpyridin-3-yl)sulfonyl]carbamimidothioates which were further converted with hydrazine hydrate to the corresponding 1,2,4-triazole derivatives 26–36. The final compounds were evaluated for antifungal activity against strains of the genera Candida, Geotrichum, Rhodotorula, and Saccharomycess isolated from patients with mycosis. Many of them show greater efficacy than fluconazole, mostly towards Candida albicans and Rhodotorula mucilaginosa species, with MIC values ≤ 25 µg/mL. A docking study of the most active compounds 26, 34 and 35 was performed showing the potential mode of binding to Candida albicans lanosterol 14α-demethylase. Also in vitro cytotoxicity of selected compounds have been evaluated on the NCI-60 cell line panel.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Anna Kędzia
- Department of Oral Microbiology, Medical University of Gdańsk, ul. Dębowa 25., 80-204, Gdańsk, Poland.
| | - Ewa Kwapisz
- Department of Oral Microbiology, Medical University of Gdańsk, ul. Dębowa 25., 80-204, Gdańsk, Poland.
| |
Collapse
|
26
|
Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 2017; 90:760-776. [PMID: 28419973 DOI: 10.1016/j.biopha.2017.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Infections from multidrug resistant (MDR) pathogenic bacteria, fungi and Mycobacterium tuberculosis remain progressively intractable. The search of effective antimicrobials from other possible non-conventional sources against MDR pathogenic bacteria, fungi and mycobacteria is call of the day. This review considers 121 cyanobacterial compounds or cyano-compounds with antimicrobial activities. Chemical structures of cyano-compounds were retrieved from ChemSpider and PubChem databases and were visualized by the software ChemDraw Ultra. Chemical information on cyano-compounds pertaining to Lipinski rules of five was assessed. The reviewed cyano-compounds belong to the following chemical classes (with examples): alkaloids (ambiguine isonitriles and 12-epi-hapalindole E isonitrile), aromatic compounds (benzoic acid and cyanobacterin), cyclic depsipeptides (cryptophycin 52 and lyngbyabellin A), cyclic peptides (calophycin and tenuecyclamides), cyclic undecapeptides (kawaguchipeptins and lyngbyazothrin A), cyclophane (carbamidocyclophane), extracellular pigment (nostocine A), fatty acids (alpha-dimorphecolic acid and majusculonic acid), linear peptides (muscoride A), lipopeptides (fischerellins and scytonemin A), nucleosides (tolytoxin and tubercidin), phenols (ambigols and 4-4'-hydroxybiphenyl), macrolides (scytophycin A and tolytoxin), polyketides (malyngolide and nostocyclyne), polyphenyl ethers (crossbyanol A), porphinoids (tolyporphin J) and terpenoids (noscomin and scytoscalarol). Cyanobacteria appear to be a diverse source of compounds with antimicrobial activity. Further attention is required to elucidate whether those could be applied as pharmaceuticals.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|