1
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Yan Y, Li G, Su M, Liang H. Scutellaria baicalensis Polysaccharide-Mediated Green Synthesis of Smaller Silver Nanoparticles with Enhanced Antimicrobial and Antibiofilm Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45289-45306. [PMID: 39152895 DOI: 10.1021/acsami.4c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Silver nanoparticles (AgNPs) have attracted widespread attention in multidrug-resistant bacterial infections. However, the application of AgNPs synthesized by conventional methods is restricted by its high costs, toxicity, and poor stability. Herein, a water-soluble polysaccharide (Scutellaria baicalensis polysaccharide, SBP) rich in reducing sugars was used as both the reductant and stabilizer to greenly synthesize spherical AgNPs@SBP with smaller particle sizes (11.18 ± 2.50 nm) and higher negative zeta potential (-23.05 ± 2.76 mV), which was favorable to enhance its antimicrobial activity and improve pH and thermal stability. Besides, SBP facilitated the adhesion and penetration of AgNPs@SBP to methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Escherichia coli (CREC), thus significantly enhancing its antibacterial activity (increased by 32-fold and 64-fold, respectively). Likewise, AgNPs@SBP at a low concentration (7.8 μg/mL) could effectively penetrate and inhibit nearly 90% of MRSA and CREC biofilm formation. Antimicrobial mechanism studies showed that AgNPs@SBP could lead to more severe cell membrane damage and genetic material leakage by upregulating reactive oxygen species and depolarizing mitochondrial membrane potential, ultimately resulting in the apoptosis of bacteria. Overall, the wrapping of SBP significantly enhanced the antibacterial and antibiofilm activity of AgNPs, which possessed great potential in the prevention and treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yucheng Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guofeng Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Ecology and Environment, Renmin University of China, Beijing 100872, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Deng J, Zhang F, Fan H, Zheng Y, Zhao C, Ren M, Jin E, Gu Y. Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners. Animals (Basel) 2024; 14:1515. [PMID: 38891562 PMCID: PMC11171036 DOI: 10.3390/ani14111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Yuxuan Zheng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
4
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed Pharmacother 2024; 173:116330. [PMID: 38422656 DOI: 10.1016/j.biopha.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Wu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumei Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Chemistry, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Clinical Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Khan S, Rafi Z, Mishra P, Al-Keridis LA, Farooqui A, Mansoor S, Alshammari N, Al-Saeed FA, Siddiqui S, Saeed M. Unleashing the Potential of Benincasa hispida Peel Extract: Synthesizing Selenium Nanoparticles with Remarkable Antibacterial and Anticancer Properties. Mol Biotechnol 2023:10.1007/s12033-023-00884-y. [PMID: 37752300 DOI: 10.1007/s12033-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023]
Abstract
In this study, we successfully synthesized selenium nanoparticles (P-SeNPs) using an environment-friendly approach. This method involves utilizing the aqueous peel extract of Benincasa hispida (ash gourd) in combination with selenium salt. Through our innovative procedure, we harnessed the impressive bio-reduction capabilities, therapeutic potential, and stabilizing attributes inherent in B. hispida. This results in the formation of P-SeNPs with distinct and noteworthy qualities. Our findings were thoroughly substantiated through comprehensive characterizations employing various techniques, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared spectroscopy (FTIR). The nanoparticles exhibited a spherical shape, considerable size (22.32 ± 2 nm), uniform distribution, and remarkable stability (-24 mV), all of which signify the effective integration of the phytoconstituents of B. hispida. Furthermore, P-SeNPs displayed robust antibacterial efficacy against pathogenic bacterial strains, as indicated by their low minimum inhibitory concentration values. Our research also revealed the remarkable ability of P-SeNPs to fight cancer, as demonstrated by their impressive IC50 value of 0.19 µg/mL against HeLa cells, while showing no harm to primary human osteoblasts, while simultaneously demonstrating no toxicity toward primary human osteoblasts. These pivotal findings underscore the transformative nature of P-SeNPs, which holds promise for targeted antibacterial treatment and advancements in cancer therapeutics. The implications of these nanoparticles extend to their potential applications in therapies, diagnostics, and various biomedical contexts. Notably, the environmentally sustainable synthesis process and exceptional properties established this study as a significant milestone in the field of nanomedicine, paving the way for a more promising and health-enhancing future.
Collapse
Affiliation(s)
- Salman Khan
- Nanotechnology and Nanomedicine Lab-6 (IIRC), Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Zeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Pooja Mishra
- Nanotechnology and Nanomedicine Lab-6 (IIRC), Department of Biosciences, Integral University, Lucknow, 226026, India.
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Shazia Mansoor
- Department of Research, Jawaharlal Nehru Cancer Hospital, and Research Centre, Bhopal, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, 34464, Hail, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, 34464, Hail, Saudi Arabia.
| |
Collapse
|
7
|
Huang Z, Ye Y, Xu A, Li Z. Effects of Astragalus membranaceus Polysaccharides on Growth Performance, Physiological and Biochemical Parameters, and Expression of Genes Related to Lipid Metabolism of Spotted Sea Bass, Lateolabrax maculatus. AQUACULTURE NUTRITION 2023; 2023:6191330. [PMID: 37303608 PMCID: PMC10256447 DOI: 10.1155/2023/6191330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
This experiment investigated the effects of Astragalus membranaceus polysaccharides (AMP) on growth, physiological and biochemical parameters, and the expression of lipid metabolism-related genes in spotted sea bass, Lateolabrax maculatus. A total of 450 spotted sea bass (10.44 ± 0.09 g) were divided into six groups and were given diets with different levels of AMP (0, 0.2, 0.4, 0.6, 0.8, and 1.0 g/kg) for 28 days, respectively. Results indicated that dietary intake of AMP significantly improved fish weight gain, specific growth rate, feed conversion, and trypsin activity. Meanwhile, fish fed with AMP manifested significantly higher serum total antioxidant capacity and activity of hepatic superoxide dismutase, catalase, and lysozyme. Lower triglyceride and total cholesterol were noted in fish fed with AMP (P < 0.05). Moreover, hepatic ACC1 and ACC2 were downregulated by dietary intake of AMP, and PPAR-α, CPT1, and HSL were upregulated accordingly (P < 0.05). Parameters with significant difference were analyzed by quadratic regression analysis, and results showed that 0.6881 g/kg of AMP is the optimal dosage for spotted sea bass in size (10.44 ± 0.09 g). In conclusion, dietary intake of AMP can improve the growth, physiological status, and lipid metabolism of spotted sea bass, thereby indicating its promise as a potential dietary supplement.
Collapse
Affiliation(s)
- Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| |
Collapse
|
8
|
Manh Khoa N, Viet Phong N, Yang SY, Min BS, Kim JA. Spectroscopic analysis, kinetic mechanism, computational docking, and molecular dynamics of active metabolites from the aerial parts of Astragalus membranaceusBunge as tyrosinase inhibitors. Bioorg Chem 2023; 134:106464. [PMID: 36921361 DOI: 10.1016/j.bioorg.2023.106464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
A new isoflavane derivative (2), a new natural isoflavane (6), four new oleanane-type triterpenoid saponins (23, 25, 28, and 29), and twenty three known secondary metabolites (1, 3-5, 7-22, 24, 26, and 27) were isolated from the aerial parts of Astragalus membranaceus Bunge. The chemical structures of these compounds were elucidated through spectroscopic analysis and compared with those identified in previous studies. Tyrosinase inhibition ability of isolated compounds (1-29) was evaluated. Of these, compounds 3, 4, 6, and 14 exhibited inhibitory effects, with IC50 values ranging from 24.6 to 59.2 μM. According to kinetic analysis, compounds 3 and 4 were non-competitive inhibitors of tyrosinase, whereas compounds 6 and 14 inhibited tyrosinase in uncompetitive and competitive modes, respectively. Molecular docking analysis identified that compounds 3, 4, and 6 could bind to allosteric sites and compound 14 could bind to the catalytic site of tyrosinase, which is consistent with the results of kinetic studies. Molecular dynamics behaviors of the active compounds in complex with tyrosinase were investigated via 60 ns simulation which demonstrated their high stability. These findings indicate that the aerial parts of A. membranaceus are a potential source of natural tyrosinase inhibitors.
Collapse
Affiliation(s)
- Nguyen Manh Khoa
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Chang R, Zhao D, Zhang C, Liu K, He Y, Guan F, Yao M. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int J Biol Macromol 2023; 226:870-884. [PMID: 36526064 DOI: 10.1016/j.ijbiomac.2022.12.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Bacterial infection and subsequent reactive oxygen species (ROS) damage are major factors that delay wound healing in infected skin. Recently, photothermal therapy (PTT), as a new antibacterial method, has shown great advantages in the treatment of infected skin wound. Antibacterial and antioxidant hydrogels can reduce bacterial colonization and infection, scavenge ROS, relieve inflammation, and accelerate wound healing. In this study, an enzyme-crosslinked hyaluronic acid-tyramine (HT) hydrogel loaded with antioxidant and photothermal silver nanoparticles (AgNPs), named HTA, was developed as functional wound dressing to promote the infected skin wound healing. Natural antioxidant tannic acids (TA) were used as both reducing and stabilizing agents to facilely synthesize the silver nanoparticles capped with TA (AgNPs@TA). The incorporation of AgNPs@TA significantly enhanced the antioxidant, antibacterial, photothermal antibacterial, adhesive, and hemostatic abilities of the resulted HTA hydrogel. Besides, HTA hydrogel has rapid gelation, well injection and biocompatibility. In vivo results on the Staphylococcus aureus and Escherichia coli co-infected mouse skin wound model showed that HTA0.4 (containing 0.4 mg/mL AgNPs@TA) hydrogel combined with near infrared ray radiation highly alleviated inflammation, promoted angiogenesis, and accelerated the healing process. Therefore, this nanocomposite hydrogel wound dressing with antibacterial and antioxidant capabilities has great application potential in the treatment of infected skin wounds.
Collapse
Affiliation(s)
- Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Donghui Zhao
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
10
|
An EK, Zhang W, Kwak M, Lee PCW, Jin JO. Polysaccharides from Astragalus membranaceus elicit T cell immunity by activation of human peripheral blood dendritic cells. Int J Biol Macromol 2022; 223:370-377. [PMID: 36368354 DOI: 10.1016/j.ijbiomac.2022.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Astragalus membranaceus is a widely used herbal medicine in Asia. It has been recognized as possessing various biological properties, however, studies on the activity of the A. membranaceus polysaccharide (AMP), a major component of A. membranaceus, on human peripheral blood dendritic cells (PBDCs) have not been thoroughly investigated. In this study, we found that AMP induced changes in dendritic morphology and the upregulation of activation marker expression and inflammatory cytokine production in human blood monocyte-derived dendritic cells (MDDCs). The AMP promoted the activation of both blood dendritic cell antigen 1+ (BDCA1+) and BDCA3+ PBDCs. AMP-induced secretion of cytokines in the peripheral blood mononuclear cells (PBMCs) was mainly due to PBDCs. Finally, activated BDCA1+ and BDCA3+ PBDCs by AMP elicited proliferation and activation of autologous T cells, respectively. Hence, these data demonstrated that AMPs could activate dendritic and T cells in human blood, and may provide a new direction for the application of AMPs in the regulation of human immunity.
Collapse
Affiliation(s)
- Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
11
|
Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081703. [PMID: 36015329 PMCID: PMC9414761 DOI: 10.3390/pharmaceutics14081703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.
Collapse
|
12
|
Pu Y, Wu S. The growth performance, body composition and nonspecific immunity of white shrimps (Litopenaeus vannamei) affected by dietary Astragalus membranaceus polysaccharide. Int J Biol Macromol 2022; 209:162-165. [PMID: 35395278 DOI: 10.1016/j.ijbiomac.2022.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the effects of Astragalus membranaceus polysaccharide (AMP) on the growth performance, body composition and non-specific immune index of white shrimps (Litopenaeus vannamei). AMP was used to replace 0 (control), 10, 30, and 50 g kg-1 of the cellulose in the basic diet to formulate four kinds of test feeds. Sixplicate groups of shrimps with an average weight of 0.51 ± 0.03 g were fed with one of diets four times daily. Dietary 50 and 30 g kg-1 of AMP increased body weight gain, feed efficiency, body protein, superoxide dismutase activity, catalase activity, acid phosphatase activity, lysozyme, disease resistance ability against Vibrio alginolyticus and decreased body lipid level of shrimps compared with those of the control group. However, a high level of AMP (50 g kg-1) did not improve the efficiency of AMP on the growth performance, body composition and non-specific immune index of shrimps further compared to moderate level of AMP (30 g kg-1). The results demonstrated that AMP with appropriate dose could promote the growth of shrimps and improve their disease resistance.
Collapse
Affiliation(s)
- Yinfang Pu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; School of Food Science and Engineering, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, China
| | - Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; School of Food Science and Engineering, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, China.
| |
Collapse
|
13
|
Biosynthesis of Silver Nanoparticles Using Astragalus flavesces Leaf: Identification, Antioxidant Activity, and Catalytic Degradation of Methylene Blue. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Yu W, Yang Y, Zhou Q, Huang X, Huang Z, Li T, Wu Q, Zhou C, Ma Z, Lin H. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer. Int J Biol Macromol 2022; 207:850-858. [PMID: 35364191 DOI: 10.1016/j.ijbiomac.2022.03.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023]
Abstract
It is generally accepted that Astragalus polysaccharides (APS) supplementation can makes beneficial effects to fish. However, the adverse effects of APS to fish remains poorly understood. In the present study, Asian seabass Lates calcarifer were studied to assess the influence of different doses of APS on growth, health and resistance to Vibrio harveyi. Results showed that supplemental APS with 0.10 to 0.20% significantly boosted the growth performance, the protease and lipase activities of L. calcarifer. Compared with control diet, the villus length of L. calcarifer fed with APS supplemented diets was significantly higher. L. calcarifer fed with APS supplementation diets also significantly facilitated the antioxidant capacity and immune function. Meanwhile, supplemental APS with 0.10 to 0.15% significantly promoted liver health by up-regulating the expression of anti-inflammatory cytokines and down-regulating the expression of pro-inflammatory cytokines. Furthermore, survival rate of L. calcarifer challenged with V. harveyi was higher in diets supplemented with APS compared to the control. However, 0.20% APS significantly hindered the growth performance and caused immunostimulatory fatigue in L. calcarifer compared to 0.10% APS. Taken together, the present study demonstrates that supplementation APS with 0.10% is the optimal level for promoting the growth performance, health and resistance to V. harveyi of L. calcarifer, while 0.20% APS exerts adverse effects on L. calcarifer. Our findings provide novel recommendations for the application of APS supplementation in farmed fish.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xiaolin Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Tao Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qiaer Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China.
| |
Collapse
|
15
|
Huang L, Chen R, Luo J, Hasan M, Shu X. Synthesis of phytonic silver nanoparticles as bacterial and ATP energy silencer. J Inorg Biochem 2022; 231:111802. [DOI: 10.1016/j.jinorgbio.2022.111802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/28/2022]
|
16
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
17
|
Astragalus membranaceus Alters Rumen Bacteria to Enhance Fiber Digestion, Improves Antioxidant Capacity and Immunity Indices of Small Intestinal Mucosa, and Enhances Liver Metabolites for Energy Synthesis in Tibetan Sheep. Animals (Basel) 2021; 11:ani11113236. [PMID: 34827968 PMCID: PMC8614378 DOI: 10.3390/ani11113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Astragalus membranaceus is a widely used traditional Chinese herb that has been used by humans for hundreds of years. The Qinghai-Tibetan plateau (QTP) is regarded as one of the remaining ‘Green’ places in the world. With the fast-developing intensive livestock production, sustainable and environmentally-friendly practices are required urgently on the QTP. In the current study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT) to reduce the use of chemical veterinary drugs and antibiotics, and to examine the effect on rumen bacteria, the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue, and the liver metabolome responses. Abstract Natural, non-toxic feed additives can potentially replace chemical medications and antibiotics that are offered sheep to improve performance. In the present study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT), a traditional herb used widely in China. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9-month-old) were assigned randomly to one of four levels of supplementary AMT: 0 g/kg (A0), 20 g/kg (A20), 50 g/kg (A50) and 80 g/kg (A80) dry matter intake (DMI). The A50 and A80 groups increased the diversity of rumen bacteria on d 14 and the relative abundances of fiber decomposing bacteria. Supplementary AMT upregulated the metabolism of vitamins, nucleotides, amino acids and glycan, and downregulated the metabolism of lipids and carbohydrates. In addition, supplementary AMT enriched rumen bacteria for drug resistance, and reduced bacteria incurring cell motility. In general, AMT supplementation increased the concentrations of catalase (CAT), superoxide dismutase (SOD) total antioxidant capacity (T-AOC) and secretory immunoglobulin A (sIgA) in the small intestinal mucosa and CAT and SOD in meat tissue. The liver tissue metabolome response showed that AMT in the A80 lambs compared to the A0 lambs upregulated the metabolites for energy synthesis. It was concluded that supplementary A. membranaceus increased the relative abundances of fiber decomposing bacteria and improved the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue in Tibetan sheep.
Collapse
|
18
|
Islam R, Sun L, Zhang L. Biomedical Applications of Chinese Herb-Synthesized Silver Nanoparticles by Phytonanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2757. [PMID: 34685197 PMCID: PMC8539779 DOI: 10.3390/nano11102757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Recent advances in nanotechnology have opened up new avenues for the controlled synthesis of nanoparticles for biomedical and pharmaceutical applications. Chinese herbal medicine is a natural gift to humanity, and it has long been used as an antibacterial and anticancer agent. This study will highlight recent developments in the phytonanotechnological synthesis of Chinese herbal medicines to utilize their bioactive components in biomedical and therapeutic applications. Biologically synthesized silver nanoparticles (AgNPs) have emerged as a promising alternative to chemical and physical approaches for various biomedical applications. The comprehensive rationale of combinational or synergistic effects of Chinese herb-based AgNPs synthesis was investigated with superior physicochemical and biological properties, and their biomedical applications, including antimicrobial and anticancer activity and wound healing properties. AgNPs can damage the cell ultrastructure by triggering apoptosis, which includes the formation of reactive oxygen species (ROS), DNA disintegration, protein inactivation, and the regulation of various signaling pathways. However, the anticancer mechanism of Chinese herbal medicine-based AgNPs is more complicated due to the potential toxicity of AgNPs. Further in-depth studies are required to address Chinese herbs' various bioactive components and AgNPs as a synergistic approach to combat antimicrobial resistance, therapeutic efficiency of drug delivery, and control and prevention of newly emerged diseases.
Collapse
Affiliation(s)
| | - Leming Sun
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (R.I.); (L.Z.)
| | | |
Collapse
|
19
|
Liu HR, Liu YM, Hou TL, Li CT, Zhang QZ. Antiparasitic Efficacy of Crude Plant Extracts and Compounds Purified from Plants against the Fish Monogenean Neobenedenia girellae. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:155-161. [PMID: 33905159 DOI: 10.1002/aah.10128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Neobenedenia girellae is a pathogenic ectoparasite of many marine fishes, and it causes major epidemics in marine aquaculture. In this study, the efficacy of ethanol extracts of huangqi Astragalus membranaceus (known as milkvetch in North America), guanzhong Dryopteris setosa (known as beaded wood fern in North America), gancao Glycyrrhiza uralensis (known as Chinese licorice in North America), danshen Salvia miltiorrhiza (known as red sage in North America), and pomegranate Punica granatum, as well as seven phytochemicals (10-gingerol, curcumin, cynatratoside-C, emodin, kuwanon-G, kuwanon-O, and sophoraflavanone-G), against adult N. girellae was investigated. In vitro results indicated that pomegranate extract killed all adult N. girellae at a 62.5-mg/L concentration with an 8-h exposure, but gancao extract did not cause 100% mortality until a 1,000-mg/L concentration was used. Additionally, all adult N. girellae died after an 8-h exposure to cynatratoside-C, kuwanon-G, kuwanon-O, or sophoraflavanone-G at a concentration of 125 mg/L. Curcumin, emodin, and 10-gingerol at a concentration of 1,000 mg/L did not kill all parasites after an 8-h exposure. These findings demonstrate that plant extracts and active phytochemicals are potential sources of botanical drugs for controlling N. girellae infection in aquaculture.
Collapse
Affiliation(s)
- Hui-Ru Liu
- College of Biology and Agriculture, Zunyi Normal College, Zunyi, 563002, Guizhou, China
- Chinese Academy of Sciences, South China Sea Institute of Oceanology, Guangdong Provincial Key Laboratory of Applied Marine Biology, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Meng Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| | - Ting-Long Hou
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| | - Chun-Tao Li
- College of Biology and Agriculture, Zunyi Normal College, Zunyi, 563002, Guizhou, China
- Special Fish Protection and Development and Utilization Engineering Research Center of North Guizhou Province, Zunyi, 563002, Guizhou, China
| | - Qi-Zhong Zhang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
20
|
Mehwish HM, Liu G, Rajoka MSR, Cai H, Zhong J, Song X, Xia L, Wang M, Aadil RM, Inam-Ur-Raheem M, Xiong Y, Wu H, Amirzada MI, Zhu Q, He Z. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int J Biol Macromol 2021; 184:144-158. [PMID: 34089759 DOI: 10.1016/j.ijbiomac.2021.05.202] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Wound healing is a complicated process that influences patient's life quality. Plant-based polysaccharide has recently gained interest in its use in wound dressing materials because of its biological compatibility, natural abundance, and ideal physiochemical properties. The present study reveals the potential of polysaccharide isolated from Moringa oleifera seed (MOS-PS) and its nanocomposite with silver (MOS-PS-AgNPs) as alternative materials for wound dressing. First, MOS-PS was isolated and structurally characterized by TLC, HPLC, FTIR, NMR, and GPC analyses. A green and simple method was used to synthesize AgNPs using MOS-PS as a stabilizing and reducing agent. The size, morphology, and structure of the MOS-PS-AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The results showed that the MOS-PS-AgNPs were spherically shaped, having no cytotoxicity toward mouse fibroblasts cells and promoting their in-vitro migration. Moreover, the MOS-PS-AgNPs displayed strong anti-microbial activity against wound infectious pathogenic bacteria. Finally, the MOS-PS-AgNPs were used for dressing animal wounds and its preliminary mechanism was studied by RT-PCR and histological analysis. The results showed that the MOS-PS-AgNPs can promote wound contraction and internal tissue growth well. Overall, our results indicated that the MOS-PS-AgNPs might be an excellent candidate for use as an optimal wound dressing material.
Collapse
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Huiming Cai
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Jianfeng Zhong
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Xun Song
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Lixin Xia
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Mingzhong Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Inam-Ur-Raheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Yongai Xiong
- College of Pharamacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiqiang Wu
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Qinchang Zhu
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Zhendan He
- School of Pharmaceutical Science, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
21
|
Effects of Rhizopus Nigricans Exopolysaccharide on Proliferation, Apoptosis, and Migration of Breast Cancer MCF-7 Cells and Akt Signaling Pathway. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5621984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective. To study the effect of Rhizopus nigricans exopolysaccharide EPS1-1 on the proliferation, apoptosis, and migration of breast cancer MCF-7 cells. Methods. Human breast cancer MCF-7 cells were cultured in vitro and treated with different concentrations of EPS1-1. The effect of EPS1-1 on cell proliferation was tested by the CCK-8 experiment, and the effect of EPS1-1 on cell apoptosis was determined by flow cytometry. And the scratch test was used to detect the impact of EPS1-1 on cell migration. Western blot then was used to measure the expression changes of related proteins in the Akt signaling pathway. Results. Compared with the control group, treatment with EPS1-1 significantly reduced the proliferation, migration, and invasion ability of MCF-7 cells and promoted the apoptosis of MCF-7 cells in a dose-dependent manner. In terms of the underlying mechanism, EPS1-1 can significantly inhibit the phosphorylation of Akt at threonine 308 and serine 473 and cause the expression changes of downstream proliferation-related genes CCND1 and p21, apoptosis-related genes Bcl-2 and Bax, and migration-related genes Vimentin and E-cadherin in terms of their protein levels. Conclusion. EPS1-1 can inhibit the proliferation, migration, and invasion of breast cancer MCF-7 cells and promote the apoptosis of MCF-7 cells by inhibiting the activation of the Akt signaling pathway. Therefore, EPS1-1 can be used as a potential new drug or adjuvant drug for the treatment of breast cancer.
Collapse
|
22
|
Salehi B, Carneiro JNP, Rocha JE, Coutinho HDM, Morais Braga MFB, Sharifi-Rad J, Semwal P, Painuli S, Moujir LM, de Zarate Machado V, Janakiram S, Anil Kumar NV, Martorell M, Cruz-Martins N, El Beyrouthy M, Sadaka C. Astragalus species: Insights on its chemical composition toward pharmacological applications. Phytother Res 2021; 35:2445-2476. [PMID: 33325585 DOI: 10.1002/ptr.6974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023]
Abstract
Astragalus L. is widely distributed throughout the temperate regions of Europe, Asia, and North America. The genus is widely used in folk medicine and in dietary supplements, as well as in cosmetics, teas, coffee, vegetable gums, and as forage for animals. The major phytoconstituents of Astragalus species with beneficial properties are saponins, flavonoids, and polysaccharides. Astragalus extracts and their isolated components exhibited promising in vitro and in vivo biological activities, including antiaging, antiinfective, cytoprotective, antiinflammatory, antioxidant, antitumor, antidiabesity, and immune-enhancing properties. Considering their proven therapeutic potential, the aim of this work is to give a comprehensive summary of the Astragalus spp. and their active components, in an attempt to provide new insight for further clinical development of these xenobiotics. This is the first review that briefly describes their ethnopharmacology, composition, biological, and toxicological properties.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | | | | | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, India
- Uttarakhand State Council for Science and Technology, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Laila Moujir Moujir
- Department of Biochemistry, Microbiology, Molecular Biology and Genetics, University of La Laguna, Tenerife, Spain
| | - Victoria de Zarate Machado
- Department of Biochemistry, Microbiology, Molecular Biology and Genetics, University of La Laguna, Tenerife, Spain
| | - Shriyaa Janakiram
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natalia Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | | | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Su Y, Li P, Gao D, Lyu B, Ma J, Zhang J, Lyu L. High-efficiency antibacterial and anti-mildew properties under self-assembly: An environmentally friendly nanocomposite. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Therapeutic Applications of Biostable Silver Nanoparticles Synthesized Using Peel Extract of Benincasa hispida: Antibacterial and Anticancer Activities. NANOMATERIALS 2020; 10:nano10101954. [PMID: 33008104 PMCID: PMC7600797 DOI: 10.3390/nano10101954] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to fabricate biostable inorganic silver nanoparticles (AgNPs) using fresh peel (aqueous) extract of Benincasa hispida. A fast, robust, and eco-friendly approach was used for the synthesis of AgNPs, where bioactive components of peel extract of B. hispida acted as reducing and stabilizing agents. Synthesized AgNPs were characterized using a UV–Vis spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and electron microscopy. The synthesized nanoparticles exhibited maximum absorption at 418 nm under the typical AgNPs surface plasmon resonance band range. They depicted a mean size of 26 ± 2 nm with a spherical shape. Their therapeutic prospective was determined by evaluating their antimicrobial and anticancer potential. The bio-synthesized silver nanoparticles exhibited strong antimicrobial activity with minimum inhibitory concentration (MIC 50) values of 14.5, 8.6, 6.063, and 13.4 μg/mL against Staphylococcus aureus (ATCC 25923), Micrococcus luteus (ATCC 14593), Escherichia coli (ATCC 25922), and Klebsiella pneumonia (ATCC 13883), respectively. The biosynthesized AgNPs showed potent in vitro cytotoxicity against human cervical cancer cell line with a half maximal inhibitory concentration (IC50) value of 0.066 μg/mL; however, no cytotoxic effect was observed on normal human primary osteoblasts cell line. This study explored B. hispida extract and confirmed its effectiveness as a promising source in producing AgNPs that could be employed for several therapeutic applications.
Collapse
|
25
|
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A Review of the Pharmacological Action of Astragalus Polysaccharide. Front Pharmacol 2020; 11:349. [PMID: 32265719 PMCID: PMC7105737 DOI: 10.3389/fphar.2020.00349] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Astragalus membranaceus (A. membranaceus) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to invigorate the spleen and replenish qi. The main components of A. membranaceus are Astragalus polysaccharide (APS), flavonoids compounds, saponins compounds, alkaloids, etc. APS is the most important natural active component in A. membranaceus, and possesses multiple pharmacological properties. At present, APS possess the huge potential to develop a drug improving or treating different diseases. In this review, we reveal the potential approaches of pre-treating and preparation on APS as much as possible and the study on content of APS and its chemical composition including different monosaccharides. More importantly, this paper summarize pharmacological actions on immune regulation, such as enhancing the immune organ index, promoting the proliferation of immune cells, stimulating the release of cytokines, and affecting the secretion of immunoglobulin and conduction of immune signals; anti-aging; anti-tumor by enhancing immunity, inducing apoptosis of tumor cells and inhibiting the proliferation and transfer of tumor cells; antiviral effects; regulation of blood glucose such as type I diabetes mellitus, type II diabetes mellitus and diabetic complications; lipid-lowering; anti-fibrosis; antimicrobial activities and anti-radiation. It provided theoretical basis for the further research such as its structure and mechanism of action, and clinical application of APS.
Collapse
Affiliation(s)
- Yijun Zheng
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyu Ren
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lina Zhang
- School of Education, University of Leeds, Leeds, United Kingdom
| | - Yuemei Zhang
- Ophthalmology Department, First Hospital of Lanzhou University, Lanzhou, China
| | - Dongling Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
26
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020; 25:E1340. [PMID: 32187986 PMCID: PMC7144564 DOI: 10.3390/molecules25061340] [Citation(s) in RCA: 600] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (Z.B.); (B.J.)
| |
Collapse
|
27
|
Wu S. Dietary Astragalus membranaceus polysaccharide ameliorates the growth performance and innate immunity of juvenile crucian carp (Carassius auratus). Int J Biol Macromol 2020; 149:877-881. [PMID: 32027906 DOI: 10.1016/j.ijbiomac.2020.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
This study aimed to explore the effects of Astragalus membranaceus polysaccharide (AMP) on the growth and innate immunity of crucian carp (Carassius auratus). Crucian carps were randomly divided into a control group (fed with basal diet) and three AMP groups (received basal diet supplemented with 50, 100 and 150 mg/kg AMP). After 60 days of culture, the crucian carps from each group were weighed, and their immune indexes were measured. Another batch crucian carps from each group was injected with 0.15 ml of 107 CFU/ml Aeromonas hydrophila. The body weight gain, feed conversion rate, specific growth rate and digestive enzyme activity of the crucian carps in the low and middle doses of AMP groups were higher than those in the control group. The AMP groups had significantly higher survival rate and alkaline phosphatase level but lower glutamic-oxaloacetic transaminase, glutamic-alanine transaminase and serum bacteria number compared with the control group. The optimal dose of dietary AMP required for the maximum growth of crucian carp was 100 mg/kg. These results showed that AMP could promote the growth of crucian carps, improve their disease resistance and thus may be developed as a dietary supplement.
Collapse
Affiliation(s)
- Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou 222005, China.
| |
Collapse
|
28
|
Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. ACTA ACUST UNITED AC 2020; 25:e00427. [PMID: 32055457 PMCID: PMC7005563 DOI: 10.1016/j.btre.2020.e00427] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
Recent approaches for green synthesis of metallic nanoparticles were discussed. The antibacterial activities of various metallic nanoparticles were mentioned. The different modes and mechanisms of antibacterial property were deciphered.
Due to development of bacterial resistance to the conventional antibiotics, the treatment of bacterial infections has become a major issue of concern. The unprescribed and uncontrolled use of antibiotics has lead to the rapid development of antibiotic resistance in bacterial strains. Therefore, the development of novel and potent bactericidal agents is of great clinical importance. Interestingly, metallic nanoparticles (NPs) have been proven to be promising alternative to antibiotics. NPs interact with the important cellular organelles and biomolecules like DNA, enzymes, ribosomes, and lysosomes that can affect cell membrane permeability, oxidative stress, gene expression, protein activation, and enzyme activation. Since, NPs target multiple biomolecules concurrently; it becomes very difficult for bacteria to develop resistance against them. Currently, there are different physical and chemical methods utilized for NPs synthesis. However, most of these processes are costly and potentially hazardous for the living organisms and environment. Therefore, there is a need to develop an eco-friendly and cost-effective method of synthesis. Recently, the ‘green synthesis’ approaches are gaining a lot of attention. It is demonstrated that living organisms like bacteria, yeast, fungi, and plant cells can reduce inorganic metal ions into metal NPs by their cellular metabolites. Both the yield and stability of biogenic NPs are quite satisfactory. In the current article, we have addressed the green synthesis of various metal NPs reported till date and highlighted their different modes and mechanisms of antibacterial properties. It is highly anticipated that biogenic metallic NPs could be viable and economical alternatives for treating drug resistant bacterial infections in near future.
Collapse
|
29
|
Wang W, Liu QB, Jing W. Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells. Chin J Nat Med 2019; 17:252-263. [PMID: 31076129 DOI: 10.1016/s1875-5364(19)30029-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China.
| | - Qing-Bin Liu
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Wei Jing
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| |
Collapse
|
30
|
A green method to the preparation of the silver-loaded diatomite with enhanced antibacterial properties. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00917-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C. Nanoparticle-Plant Interactions: Two-Way Traffic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901794. [PMID: 31318142 PMCID: PMC6800249 DOI: 10.1002/smll.201901794] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Indexed: 05/03/2023]
Abstract
In this Review, an effort is made to discuss the most recent progress and future trend in the two-way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP-mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP-plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation-absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.
Collapse
Affiliation(s)
- Mujeebur Rahman Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tanveer Fatima Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, U.S.A
| | - Faheem Ahamad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| |
Collapse
|
32
|
Qiu C, Cheng Y. Effect of Astragalus membranaceus polysaccharide on the serum cytokine levels and spermatogenesis of mice. Int J Biol Macromol 2019; 140:771-774. [PMID: 31446104 DOI: 10.1016/j.ijbiomac.2019.08.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Abstract
In this work, a water-soluble Astragalus membranaceus polysaccharide (AMP) was prepared by hot water extraction, and the effects of AMP on the serum cytokine levels and spermatogenesis of Kunming mice were investigated. Sixty Kunming mice were randomly divided into five groups: a normal control group, a model control group (treated with cyclophosphamide) and three treatment groups (treated with cyclophosphamide and 25, 50 and 75 mg/kg AMP). The effects of AMP on the serum cytokine levels and spermatogenesis of mice were evaluated. Intragastric treatment with different levels of AMP significantly increased serum interleukin-11, tumour necrosis factor-α and interferon-γ levels; protein expression and superoxide dismutase activity in testis; and sperm density, sperm movement and the rate of normal sperm morphology. In addition, AMP decreased the nitrate nitrogen level in the testes of Kunming mice compared with the model control group. The results indicated that AMP can ameliorate the immunity and spermatogenesis of mice with reproduction system impaired by cyclophosphamide.
Collapse
Affiliation(s)
- Chunjiang Qiu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, 59 Cangwu Road, Haizhou 222005, China
| | - Yuanxia Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, 59 Cangwu Road, Haizhou 222005, China.
| |
Collapse
|
33
|
Zhang J, Yue X, Zeng Y, Hua E, Wang M, Sun Y. Bacillus amyloliquefaciens levan and its silver nanoparticles with antimicrobial properties. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1523690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jiangang Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Xiaoping Yue
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Erbin Hua
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Min Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| |
Collapse
|
34
|
Marques MS, Zepon ΚM, Heckler JM, Morisso FDP, da Silva Paula MM, Κanis LA. One-pot synthesis of gold nanoparticles embedded in polysaccharide-based hydrogel: Physical-chemical characterization and feasibility for large-scale production. Int J Biol Macromol 2019; 124:838-845. [DOI: 10.1016/j.ijbiomac.2018.11.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
|
35
|
Shavandi A, Saeedi P, Ali MA, Jalalvandi E. Green synthesis of polysaccharide-based inorganic nanoparticles and biomedical aspects. FUNCTIONAL POLYSACCHARIDES FOR BIOMEDICAL APPLICATIONS 2019. [PMCID: PMC7151831 DOI: 10.1016/b978-0-08-102555-0.00008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biologically mediated inorganic nanoparticles (NPs) are considered as a green, cheap, and environmental-friendly materials, which connect the nanotechnology and biomedical sciences. Metallic NPs such as gold and silver NPs, synthesized using natural materials are an important branch of inorganic NPs with catalytic functionalities and a diverse range of biomedical applications such as antimicrobial application. Polysaccharides are excellent candidates to stabilize and control the size of NPs during the synthesis process. These polymers possess multiple binding sites, which facilitate attachment to the metal surface. As a result, polysaccharides can effectively create an organic-inorganic network of the metal NPs and confer a significant protection against aggregation and chemical modifications. This chapter discusses the methods of the preparation of polysaccharide-mediated NPs and reviews various types and diverse applications for these novel materials.
Collapse
|
36
|
Park HJ, Park SH. Induction of Apoptosis by Ethyl Acetate Fraction of Astragalus membranaceus in Human Non-small Cell Lung Cancer Cells: - Apoptosis Induction by Astragalus membranaceus. J Pharmacopuncture 2018; 21:268-276. [PMID: 30652053 PMCID: PMC6333190 DOI: 10.3831/kpi.2018.21.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Objectives The purpose of this study is to investigate the anti-cancer effects of different fractions of Astragalus membranaceus (AM) in human non-small cell lung cancer (NSCLC) cells. Methods We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AM. The cell death was examined by MTT assay and trypan blue exclusion assay. Apoptosis was detected by DAPI staining, annexin V-PI double staining and cell cycle analysis. The expression of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) was examined by western blot. Results Among various fractions of AM, the ethyl acetate fraction of AM (EAM) showed the strongest cytotoxic effect in NSCLC cells. EAM reduced the cell proliferation in a time- and dose-dependent manner in NSCLC cells. In addition, EAM induced the chromatin condensation, and increased the population of sub-G1 phase and annexin V-positive cells in a time-dependent manner, indicating that EAM induced apoptosis in NSCLC cells. Consistently, EAM enhanced the expression of cleaved caspase-8 and -9, and induced the accumulation of cleaved- poly (ADP-ribose) polymerase (PARP). Among MAPK proteins, only ERK was dephosphorylated by EAM, suggesting that ERK might be related with EAM-induced apoptosis. Conclusion Our results clearly demonstrate that EAM exhibited anti-cancer effects in NSCLC cells by induction of apoptosis. We provide a valuable evidence which suggests that AM could be a desirable therapeutic option for treatment of NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Departments of Pathology, College of Korean Medicine, Dong-eui University, Busan, Korea
| | - Shin-Hyung Park
- Departments of Pathology, College of Korean Medicine, Dong-eui University, Busan, Korea
| |
Collapse
|
37
|
Ran L, Zou Y, Cheng J, Lu F. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 2018; 125:392-403. [PMID: 30529352 DOI: 10.1016/j.ijbiomac.2018.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
In recent years, silver nanoparticles have widely been used in antibacterial dressings to solve antibiotic resistance problems. However, traditional methods for reducing silver nanoparticles are usually toxic. To overcome this problem, Sanghuangporus sanghuang polysaccharides (FSHPs) were used as a green reducing agent to prepare silver nanoparticles (AgNPs) with a size of 3-35 nm. The FSHPs‑silver nanoparticles (FSHPs-Ag) composite with chitosan solution were then freeze-dried to obtain a porous sponge dressing of chitosan-FSHPs-Ag (CS-FSHPs-Ag). The internal pores of CS-FSHPs-Ag were between 50 and 100 μm and had good swelling and water retention properties, which could provide a moist environment for wounds. Based on the experimental results, the appropriate concentration of AgNPs required for CS-FSHPs-Ag to inhibit Escherichia coli and Staphylococcus aureus was determined. Moreover, there was no statistically significant difference between the material treatment and the blank control group, indicating that the material almost showed no toxicity to L929 cells. Finally, this material was used for dressing animal wounds. The results showed that the CS-FSHPs-Ag promoted wound contraction and internal tissue growth better than the wounds treated with Aquacel® Ag, which indicated that the CS-FSHPs-Ag has a great potential as an ideal wound dressing material.
Collapse
Affiliation(s)
- Luoxiao Ran
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Yini Zou
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Junwen Cheng
- The Key Laboratory of Biological and Chemical Utilization of Zhejiang Province, Zhejiang Forestry Academy, Hangzhou 310023, China
| | - Fei Lu
- College of Textile and Garments, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
38
|
Yu J, Ji H, Yang Z, Liu A. Relationship between structural properties and antitumor activity of Astragalus polysaccharides extracted with different temperatures. Int J Biol Macromol 2018; 124:469-477. [PMID: 30452984 DOI: 10.1016/j.ijbiomac.2018.11.156] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022]
Abstract
This study investigated the effects of different temperatures on structural characterization and antitumor activity of polysaccharides from Astragalus membranaceus. APS4 and APS90 were extracted at 4°C and 90°C, respectively, and purified by Sephadex G-200 column. APS4-90 were obtained from APS4 after treatment at 90°C for 6h. MTT results showed that APS4 possessed the highest inhibitory effects on MGC-803, A549 and HepG2 cells. HPGPC analysis showed that the average molecular weights of these polysaccharides were approximately 1.5×106Da, while the asymmetrical peak of APS4-90 suggested heat degradation and configuration changes of APS4. GC, NMR and methylation results showed that these three polysaccharides had similar monosaccharide components (mainly contain glucose), and their backbones were composed of (1→2)‑α‑d‑Glcp. However, APS4 showed higher content of (1→2,6)‑α‑d‑Glcp compared to APS4-90 and APS90, which indicated that higher branched degree would be responsible for the stronger in vitro antitumor activity in APS4. These results were also confirmed by specific rotation and SEM analysis. Our study suggested that APS4 had the potential application for cancer treatment.
Collapse
Affiliation(s)
- Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - Zhizhi Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
39
|
Wu S. Effect of dietary Astragalus membranaceus polysaccharide on the growth performance and immunity of juvenile broilers. Poult Sci 2018; 97:3489-3493. [PMID: 29897509 DOI: 10.3382/ps/pey220] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the effects of dietary Astragalus membranaceus polysaccharide (AMP) supplementation on the growth performance and immunity of juvenile broilers. High-performance liquid chromatography spectrum and sugar composition analysis indicated that AMP is a heteropolysaccharide with a molecular weight of 11,078 Da and consists of glucose, galactose, rhamnose, and arabinose. Four diets supplemented with four different levels of AMP (0, 0.5, 1, and 2 g kg-1) were formulated and tested for their effects on the growth performance and immunity of juvenile broilers. After 6 wk of feeding, the juvenile broilers fed with AMP-containing diets exhibited higher body weight gains; the activities of digestive enzymes (amylase, lipase, and protease), superoxide dismutase and glutathione peroxidase; and serum IgG, IgM, and IgA levels; and lower malondialdehyde level than the control. However, excessive AMP dose (>1 g kg-1) could not improve its efficiency further. Results indicate that dietary administration of AMP can improve the growth performance and immune responses of juvenile broilers.
Collapse
Affiliation(s)
- Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Eco-environment, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China.,Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| |
Collapse
|
40
|
Barros CHN, Fulaz S, Stanisic D, Tasic L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB). Antibiotics (Basel) 2018; 7:E69. [PMID: 30072622 PMCID: PMC6163489 DOI: 10.3390/antibiotics7030069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant bacteria (MDRB) are extremely dangerous and bring a serious threat to health care systems as they can survive an attack from almost any drug. The bacteria's adaptive way of living with the use of antimicrobials and antibiotics caused them to modify and prevail in hostile conditions by creating resistance to known antibiotics or their combinations. The emergence of nanomaterials as new antimicrobials introduces a new paradigm for antibiotic use in various fields. For example, silver nanoparticles (AgNPs) are the oldest nanomaterial used for bactericide and bacteriostatic purposes. However, for just a few decades these have been produced in a biogenic or bio-based fashion. This review brings the latest reports on biogenic AgNPs in the combat against MDRB. Some antimicrobial mechanisms and possible silver resistance traits acquired by bacteria are also presented. Hopefully, novel AgNPs-containing products might be designed against MDR bacterial infections.
Collapse
Affiliation(s)
- Caio H N Barros
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil.
| | - Stephanie Fulaz
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil.
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil.
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil.
| |
Collapse
|
41
|
Polysaccharide from Rhizopus nigricans inhibits the invasion and metastasis of colorectal cancer. Biomed Pharmacother 2018; 103:738-745. [DOI: 10.1016/j.biopha.2018.04.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
|
42
|
Zhou R, Chen H, Chen J, Chen X, Wen Y, Xu L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [PMID: 29523109 PMCID: PMC5845298 DOI: 10.1186/s12906-018-2148-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Astragalus membranaceus (AM) is a commonly used herb in traditional Chinese medicine (TCM), which has been used as an essential tonic to treat various diseases for more than 2000 years. In this study, we aimed to investigate the biological effects of extract from AM on breast cancer cell and its mechanism. Methods To prepare the extract, dried AM were ground and extracted with water extraction-ethanol supernatant method. Then the main isoflavones in the extract was detect by HPLC analysis. Furthermore, the anti-proliferative activity of AM extract was examined by MTT assay and morphological observation. Cell apoptosis was evaluated with flow cytometric analysis. The expressions of total and phosphorylated PI3K, GS3Kβ, Akt and mTOR were determined by western blot analysis. Results HPLC analysis demonstrated that AM extract contained with four kinds of isoflavones, campanulin, ononin, calycosin and formononetin. The MTT test and morphological observation indicated that cells proliferation of MCF-7, SK-BR-3 and MDA-MB-231were inhibited by AM extract in a dose dependent manner. Furthermore, flow cytometric analysis displayed that after treated with 25 μg/ml and 50 μg/ml AM extract, apoptosis of breast cancer cells was significantly increased as compared with DMSO and blank control group (all p < 0.05). Western blot analysis found that the level of p-PI3K, p-GS3Kβ, p-Akt, and p-mTOR were significantly decreased, but the level of total-mTOR was observably increased as compared with DMSO control group. Conclusions Taken together, the inhibited cell proliferation and induced cell apoptosis effect of AM extract via PI3K/AKT/mTOR pathway confirmed the anti-tumor potential of AM. Therefore, our findings provide a new insight into anti-cancer effect of AM extract as a promising agent in breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12906-018-2148-2) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
44
|
Liu YJ, Mo XL, Tang XZ, Li JH, Hu MB, Yan D, Peng W, Wu CJ. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction. Molecules 2017; 22:E965. [PMID: 28598407 PMCID: PMC6152705 DOI: 10.3390/molecules22060965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
In this study, the ultrasound-assisted extraction of polysaccharides (PSA) from Pinelliae Rhizoma Praeparatum Cum Alumine (PRPCA) was optimized by response surface methodology (RSM). The structural characteristics of PSA were analyzed by UV-vis spectroscopy, infrared spectroscopy, scanning electron microscopy, high performance gel permeation chromatography and high performance liquid chromatography, respectively. In addition, antioxidant and antimicrobial activities of PSA were studied by different in vitro assays. Results indicated that the optimal extraction conditions were as follows: the ratio of water to raw of 30 mL/g, extraction time of 46.50 min, ultrasonic temperature of 72.00 °C, and ultrasonic power of 230 W. Under these conditions, the obtained PSA yield (13.21 ± 0.37%) was closely agreed with the predicted yield by the model. The average molecular weights of the PSA were estimated to be 5.34 × 10³ and 6.27 × 10⁵ Da. Monosaccharide composition analysis indicated that PSA consisted of mannose, galactose uronic acid, glucose, galactose, arabinose with a molar ratio of 1.83:0.55:75.75:1.94:0.45. Furthermore, PSA exhibited moderate antioxidant and antibacterial activities in vitro. Collectively, this study provides a promising strategy to obtain bioactive polysaccharides from processed products of herbal medicines.
Collapse
Affiliation(s)
- Yu-Jie Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xue-Lin Mo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Zhang Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiang-Hua Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mei-Bian Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dan Yan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chun-Jie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Research Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine of People's Republic of China, Chengdu 611137, China.
| |
Collapse
|