1
|
Yang Q, Wang W, Cheng D, Wang Y, Han Y, Huang J, Peng X. Non-coding RNA in exosomes: Regulating bone metastasis of lung cancer and its clinical application prospect. Transl Oncol 2024; 46:102002. [PMID: 38797017 PMCID: PMC11153237 DOI: 10.1016/j.tranon.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is a highly prevalent malignancy with poor prognosis and rapid progression. It most frequently metastasizes to the bone, where it can pose a severe threat to the patient's survival. Once metastasized, the disease is often incurable and can result in severe complications such as hypercalcemia, bone pain, fractures, spinal cord compression, and subsequent paralysis. Exosomes are bilayer vesicle nanoparticles secreted by most of the extracellular vesicles, which can be found in almost all organisms and play an essential role in intercellular communication. Through their ability to regulate related bone cells, exosomes carry bioactive molecules, including proteins, lipids, and non-coding RNAs (ncRNAs), that can be extremely important in bone remodeling. Studies have been conducted on the role play by proteins, lncRNA, and microRNA-all ncRNAs-carried by exosomes in the bone metastases of lung cancer. In this review, the latest progress of the regulatory mechanism of ncRNAs carried by exosomes in lung cancer bone metastasis has been reviewed. The clinical use of exosomes as a promising biomarker, drug transporter, and therapeutic target was highlighted to offer a novel diagnostic and treatment approach for patients with lung cancer bone metastases.
Collapse
Affiliation(s)
- Qing Yang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dezhou Cheng
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yiling Wang
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yukun Han
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Jinbai Huang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China.
| |
Collapse
|
2
|
Du X, Chen Z, Shui W. Research progress of circRNA as a biomarker of osteoporosis. Front Genet 2024; 15:1378026. [PMID: 38798702 PMCID: PMC11119285 DOI: 10.3389/fgene.2024.1378026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis, as a chronic metabolic bone disease, has the characteristic of insidious disease progression, which often leads to relatively delayed disease diagnosis. Therefore, early screening for osteoporosis has become a major public health challenge. The latest research indicates that circRNA is widely involved in the regulation of bone metabolism and is closely related to the occurrence and development of osteoporosis. Based on its high degree of sequence conservation and stability, circRNA has the potential to become a new clinical biomarker. The study of biomarkers is generally based on body fluid samples or adjacent tissue samples, with blood being the most commonly used, which can be divided into sources such as serum, plasma, peripheral blood monocytes, and plasma exosomes. Therefore, this article aims to review the research status of circRNA as a biomarker of osteoporosis.
Collapse
Affiliation(s)
- Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zhongyao Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Wei Shui
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Hjazi A, Sukmana BI, Ali SS, Alsaab HO, Gupta J, Ullah MI, Romero-Parra RM, Alawadi AHR, Alazbjee AAA, Mustafa YF. Functional role of circRNAs in osteogenesis: A review. Int Immunopharmacol 2023; 121:110455. [PMID: 37290324 DOI: 10.1016/j.intimp.2023.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bayu Indra Sukmana
- Department of Oral Biology, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406 U.P., India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Ahmed H R Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| |
Collapse
|
4
|
Zou YC, Wu J, Zhao C, Luo ZR. Analysis of circular RNA expression profile of pathological bone formation in ankylosing spondylitis. Int J Rheum Dis 2023. [PMID: 36876652 DOI: 10.1111/1756-185x.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE To screen and analyze the function of specific CircRNAs involved in pathological bone formation in patients with ankylosing spondylitis (AS). METHODS From September 2019 to October 2020, hip capsule tissues obtained from 3 patients with AS developed hip joint fusion and 3 patients with femoral neck fracture (FNF) were obtained. The circular RNA expressions of hip capsule were analyzed by Arraystar CircRNA chip. qRT-PCR analysis wan performed to identify the expression patterns of differentially expression CircRNAs. RESULTS Our findings showed that there were 25 up-regulated and 39 down-regulated differential CircRNAs. Among these CircRNAs, we screened 10 highest up-regulatedCircRNAs and 13 lowest down-regulated CircRNAs (Fold Change≥2,P<0.05). In further verification analysis, hsa_circ_0067103, hsa_circ_0004496, and hsa_circ_0002649, ACTG1 were significantly upregulated, while hsa_circ_0020273, hsa_circ_0005699, and hsa_circ_0048764 were markly downregulated in AS tissue than FNF controls. CONCLUSION The expression of CircRNAs involved of pathological bone formation in AS were significantly different from those of control group. These differentially expressed Circular RNAs may be closely related to the occurrence and development of pathological bone formation in AS.
Collapse
Affiliation(s)
- Yu-Cong Zou
- The 5th People's Hospital of Foshan, Foshan, China
| | - Juan Wu
- Department of Rehabilitation, Suining Central Hospital, Suining, China
| | - Chang Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Rui Luo
- The 5th People's Hospital of Foshan, Foshan, China
| |
Collapse
|
5
|
BMSC-Derived Exosomal CircHIPK3 Promotes Osteogenic Differentiation of MC3T3-E1 Cells via Mitophagy. Int J Mol Sci 2023; 24:ijms24032785. [PMID: 36769123 PMCID: PMC9917928 DOI: 10.3390/ijms24032785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Exosome-based therapy is emerging as a promising strategy to promote bone regeneration due to exosomal bioactive cargos, among which circular RNA (circRNA) has recently been recognized as the key effector. The role of exosomal circRNA derived from bone marrow mesenchymal stem cells (BMSCs) has not been well-defined. The present study aimed to clarify the regulatory function and molecular mechanism of BMSC-derived exosomal circRNA in osteogenesis. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) were isolated and identified. BMSC-Exos' pro-osteogenic effect on MC3T3-E1 cells was validated by alkaline phosphatase (ALP) activity and Alizarin Red staining. Through bioinformatic analysis and molecular experiments, circHIPK3 was selected and verified as the key circRNA of BMSC-Exos to promote osteoblast differentiation of MC3T3-E1 cells. Mechanistically, circHIPK3 acted as an miR-29a-5p sponge and functioned in mitophagy via targeting miR-29a-5p and PINK1. Additionally, we showed that the mitophagy level of MC3T3-E1 cells were mediated by BMSC-Exos, which promoted the osteogenic differentiation. Collectively, our results revealed an important role for BMSC-derived exosomal circHIPK3 in osteogenesis. These findings provide a potentially effective therapeutic strategy for bone regeneration.
Collapse
|
6
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
7
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Liu Z, Li S, Xu S, A Bu Du Xi Ku NEBY, Wen J, Zeng X, Shen X, Xu P. Hsa_ Circ_0005044 Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating miR-296-3p/FOSL1. DNA Cell Biol 2023; 42:14-26. [PMID: 36576872 DOI: 10.1089/dna.2022.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of circ_0005044, miR-296-3p, and FOSL1 in DPSC osteogenic differentiation process. Circ_0005044, miR-296-3p, and FOSL1 were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Interactions between miR-296-3p, circ_0005044, and FOSL1 were assessed through luciferase reporter assays. Finally, an in vivo system was used to confirm the relevance of circ_0005044 to osteoblastic differentiation. As results, we detected significant circ_0005044 and FOSL1 upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant miR-296-3p downregulation. When knocking down circ_0005044 or overexpressed miR-296-3p, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that miR-296-3p was capable of binding to conserved sequences in the wild-type forms of both the circ_0005044 and FOSL1. Furthermore, knocking down circ_0005044 in vivo significantly attenuated bone formation. Therefore, the circ_0005044/miR-2964-3p/FOSL1 axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.
Collapse
Affiliation(s)
- Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Jun Wen
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiongqun Zeng
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
Bone is a connective tissue that has important functions in the human body. Cells and the extracellular matrix (ECM) are key components of bone and are closely related to bone-related diseases. However, the outcomes of conventional treatments for bone-related diseases are not promising, and hence it is necessary to elucidate the exact regulatory mechanisms of bone-related diseases and identify novel biomarkers for diagnosis and therapy. Circular RNAs (circRNAs) are single-stranded RNAs that form closed circular structures without a 5' cap or 3' tail and polycyclic adenylate tails. Due to their high stability, circRNAs have the potential to be typical biomarkers. Accumulating evidence suggests that circRNAs are involved in bone-related diseases, including osteoarthritis, osteoporosis, osteosarcoma, multiple myeloma, intervertebral disc degeneration, and rheumatoid arthritis. Herein, we summarize the recent research progress on the characteristics and functions of circRNAs, and highlight the regulatory mechanism of circRNAs in bone-related diseases.
Collapse
Affiliation(s)
- Linghui HU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Wei WU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Jun ZOU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China,Jun ZOU,
| |
Collapse
|
10
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
11
|
Wang Z, Zhao Z, Gao B, Zhang L. Exosome mediated biological functions within skeletal microenvironment. Front Bioeng Biotechnol 2022; 10:953916. [PMID: 35935491 PMCID: PMC9355125 DOI: 10.3389/fbioe.2022.953916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Exosomes are membranous lipid vesicles fused with intracellular multicellular bodies that are released into the extracellular environment. They contain bioactive substances, including proteins, RNAs, lipids, and cytokine receptors. Exosomes in the skeletal microenvironment are derived from a variety of cells such as bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. Their biological function is key in paracrine or endocrine signaling. Exosomes play a role in bone remodeling by regulating cell proliferation and differentiation. Genetic engineering technology combined with exosome-based drug delivery can therapy bone metabolic diseases. In this review, we summarized the pathways of exosomes derived from different skeletal cells (i.e., BMSCs, osteoblasts, osteocytes, and osteoclasts) regulate the skeletal microenvironment through proteins, mRNAs, and non-coding RNAs. By exploring the role of exosomes in the skeletal microenvironment, we provide a theoretical basis for the clinical treatment of bone-related metabolic diseases, which may lay the foundation to improve bone tumor microenvironments, alleviate drug resistance in patients.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhonghan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Bo Gao, ; Lingli Zhang,
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Bo Gao, ; Lingli Zhang,
| |
Collapse
|
12
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
13
|
Zhang Y, Zhang H, Yuan G, Yang G. circKLF4 Upregulates Klf4 and Endoglin to Promote Odontoblastic Differentiation of Mouse Dental Papilla Cells via Sponging miRNA-1895 and miRNA-5046. Front Physiol 2022; 12:760223. [PMID: 35222058 PMCID: PMC8865004 DOI: 10.3389/fphys.2021.760223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
circular RNAs (circRNAs) is a broad and diverse endogenous subfamily of non-coding RNAs, regulating the gene expression by acting as a microRNA (miRNA) sponge. However, the biological functions of circRNAs in odontoblast differentiation remain largely unknown. Our preliminary study identified an unknown mouse circRNA by circRNA sequencing generated from mouse dental papilla and we termed it circKLF4. In this study, quantitative real-time PCR and in situ hybridization were used and demonstrated that circKLF4 was upregulated during odontoblastic differentiation. Gene knockdown and overexpression assays indicated that circKLF4 promoted odontoblastic differentiation of mouse dental papilla cells (mDPCs). Mechanistically, we found that circKLF4 increased the linear KLF4 expression in a microRNA-dependent manner. By mutating the binding sites of microRNA and circKLF4, we further confirmed that circKLF4 acted as sponge of miRNA-1895 and miRNA-5046 to promote the expression of KLF4. We then also found that ENDOGLIN was also up-regulated by circKLF4 by transfection of circKLF4 overexpression plasmids with or without microRNA inhibitor. In conclusion, circKLF4 increases the expression of KLF4 and ENDOGLIN to promote odontoblastic differentiation via sponging miRNA-1895 and miRNA-5046.
Collapse
|
14
|
Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:945310. [PMID: 35992137 PMCID: PMC9388761 DOI: 10.3389/fendo.2022.945310] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Manqi Gao
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiabin Sun
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| |
Collapse
|
15
|
Ye Y, Ke Y, Liu L, Xiao T, Yu J. CircRNA FAT1 Regulates Osteoblastic Differentiation of Periodontal Ligament Stem Cells via miR-4781-3p/SMAD5 Pathway. Stem Cells Int 2021; 2021:5177488. [PMID: 35003269 PMCID: PMC8731273 DOI: 10.1155/2021/5177488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of human periodontal ligament stem cells (PDLSCs) to differentiate into osteoblasts is significant in periodontal regeneration tissue engineering. In this study, we explored the role and mechanism of circRNA FAT1 (circFAT1) in the osteogenic differentiation of human PDLSCs. The proliferation capacity of PDLSCs was evaluated by EdU and CCK-8 assay. The abilities of circFAT1 and miR-4781-3p in regulating PDLSC differentiation were analyzed by western blot, reverse transcription-polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP), and Alizarin red staining (ARS). A nucleocytoplasmic separation experiment was utilized for circFAT1 localization. A dual-luciferase reporter assay confirmed the binding relationship between miR-4781-3p and circFAT1. It was showed that circFAT1 does not affect the proliferation of PDLSCs. The osteogenic differentiation of PDLSCs was benefited from circFAT1, which serves as a miRNA sponge for miR-4781-3p targeting SMAD5. Both knockdown of circFAT1 and overexpression of miR-4781-3p suppressed the osteogenic differentiation of PDLSCs. Thus, circFAT1 might be considered as a potential target of PDLSCs mediated periodontal bone regeneration.
Collapse
Affiliation(s)
- Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tong Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
16
|
Ping J, Li L, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. The Role of Long Non-Coding RNAs and Circular RNAs in Bone Regeneration: Modulating MiRNAs Function. J Tissue Eng Regen Med 2021; 16:227-243. [PMID: 34958714 DOI: 10.1002/term.3277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
Although bone is a self-healing organ and is able to repair and restore most fractures, large bone fractures, about 10%, are not repairable. Bone grafting, as a gold standard, and bone tissue engineering using biomaterials, growth factors, and stem cells have been developed to restore large bone defects. Since bone regeneration is a complex and multiple-step process and the majority of the human genome, about 98%, is composed of the non-protein-coding regions, non-coding RNAs (ncRNAs) play essential roles in bone regeneration. Recent studies demonstrated that long ncRNAs (lncRNAs) and circular RNAs (circRNAs), as members of ncRNAs, are widely involved in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA or circRNA/miRNA/mRNA regulatory network. The constructed network regulates the differentiation of stem cells into osteoblasts and their commitment to osteogenesis. This review will present the structure and biogenesis of lncRNAs and circRNAs, the mechanism of bone repair, and the bone tissue engineering in bone defects. Finally, we will discuss the role of lncRNAs and circRNAs in osteogenesis and bone fracture healing through constructing various lncRNA or circRNA/miRNA/mRNA networks and the involved pathways. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Laifeng Li
- Department of Traumatic Orthopaedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan, 250132, Shandong Province, China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, China
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Sun
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| |
Collapse
|
17
|
Geng Y, Chen J, Chang C, Zhang Y, Duan L, Zhu W, Mou L, Xiong J, Wang D. Systematic Analysis of mRNAs and ncRNAs in BMSCs of Senile Osteoporosis Patients. Front Genet 2021; 12:776984. [PMID: 34987549 PMCID: PMC8721150 DOI: 10.3389/fgene.2021.776984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Senile osteoporosis (SOP) is a worldwide age-related disease characterized by the loss of bone mass and decrease in bone strength. Bone mesenchymal stem cells (BMSCs) play an important role in the pathology of senile osteoporosis. Abnormal expression and regulation of non-coding RNA (ncRNA) are involved in a variety of human diseases. In the present study, we aimed to identify differentially expressed mRNAs and ncRNAs in senile osteoporosis patient-derived BMSCs via high-throughput transcriptome sequencing in combination with bioinformatics analysis. As a result, 415 mRNAs, 30 lncRNAs, 6 circRNAs and 27 miRNAs were found to be significantly changed in the senile osteoporosis group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to analyze the function of differentially expressed mRNAs and ncRNAs. The circRNA–miRNA–mRNA regulatory network was constructed using the cytoHubba plugin based on the Cytoscape software. Interestingly, circRNA008876-miR-150-5p-mRNA was the sole predicted circRNA-miRNA-mRNA network. The differential expression profile of this ceRNA network was further verified by qRT-PCR. The biological function of this network was validated by overexpression and knockdown experiments. In conclusion, circRNA008876-miR-150-5p-mRNA could be an important ceRNA network involved in senile osteoporosis, which provides potential biomarkers and therapeutic targets for senile osteoporosis.
Collapse
Affiliation(s)
- Yiyun Geng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Jinfu Chen
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Chongfei Chang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Yifen Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Lisha Mou
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
- *Correspondence: Daping Wang,
| |
Collapse
|
18
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|
20
|
Zhang Z, Zhou H, Sun F, Han J, Han Y. Circ_FBLN1 promotes the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating let-7i-5p/FZD4 axis and Wnt/β-catenin pathway. J Bioenerg Biomembr 2021; 53:561-572. [PMID: 34424449 DOI: 10.1007/s10863-021-09917-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recently, more and more circular RNAs (circRNAs) have been identified in osteogenesis. In this study, we aimed to explore the effect of circ_FBLN1 on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). METHODS The protein levels of osteogenesis-related genes, let-7i-5p, frizzled class receptor 4 (FZD4), Ki67, Wnt6 and β-catenin were measured by western blot assay. The levels of circ_FBLN1, FBLN1 mRNA and FZD4 mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The feature of circ_FBLN1 was investigated by RNase R and Actinomycin D assays. Cell proliferation ability was evaluated by colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The targeting relationship between let-7i-5p and circ_FBLN1 or FZD4 was verified by dual-luciferase reporter assay. RESULTS Circ_FBLN1 level was enhanced during the osteogenic differentiation of hBMSCs. Silencing of circ_FBLN1 repressed cell proliferation and osteogenic differentiation in hBMSCs. For mechanism analysis, circ_FBLN1 was found to act as a sponge for let-7i-5p and FZD4 served as a direct target gene of let-7i-5p. Let-7i-5p was downregulated during the osteogenic differentiation of hBMSCs and let-7i-5p inhibition restored the effects of circ_FBLN1 knockdown on the proliferation and osteogenesis of hBMSCs. Moreover, let-7i-5p overexpression suppressed cell proliferation and osteogenesis in hBMSCs through targeting FZD4. In addition, circ_FBLN1 knockdown reduced the levels of Wnt6 and β-catenin in hBMSCs, indicating the inactivation of Wnt/β-catenin pathway. CONCLUSION Knockdown of circ_FBLN1 inhibited the proliferation and osteogenesis of hBMSCs by regulating let-7i-5p/FZD4 axis and repressing Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zilong Zhang
- Department of Spine, Zaozhuang Municipal Hospital, Zaozhuang City, Shandong Province, China
| | - Huachao Zhou
- Department of the Orthopaedic Trauma, Zaozhuang Mining Group Zaozhuang Hospital, Zaozhuang, Shandong, China
| | - Fei Sun
- Department of the Orthopaedic Trauma, Zaozhuang Mining Group Zaozhuang Hospital, Zaozhuang, Shandong, China
| | - Jianjian Han
- Department of the Orthopaedic Trauma, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Yongyuan Han
- Department of Orthopedics, No.4 Hospital Beijing University of Chinese Medicine, No.202 Xuezhuang Community, Zhongxin Street, Zaozhuang, 277101, Shandong, China.
| |
Collapse
|
21
|
He X, Ao H, Qiao Y, Li Z. 3D-printed porous scaffold promotes osteogenic differentiation of hADMSCs. Open Med (Wars) 2021. [PMID: 33521318 PMCID: PMC7811365 DOI: 10.1515/med-2021-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
To explore the role of a three-dimensional (3D)-printed porous titanium alloy scaffold (3D scaffold) in the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) and the underlying mechanism.
Methods
hADMSCs were divided into control and 3D scaffold groups. The osteogenic differentiation of hADMSCs and expression of osteogenic makers were estimated. Based on the information from published articles, five candidate circular RNAs were selected, and among them, hsa_circ_0019142 showed the most promising results. Finally, control group cells were overexpressed or silenced with the hsa_circ_0019142. Then, Alizarin red S (ARS) staining, calcium content analysis and estimation of alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), and collagen-1 (COL1) were performed to evaluate the role of hsa_circ_0019142 on osteogenic differentiation.
Results
Osteogenic differentiation of the hADMSCs was significantly higher in the 3D scaffold group than in the control group, as evidenced by ARS staining, increased calcium concentration, and elevated expression of above four osteogenic factors. qPCR revealed that the expression of hsa_circ_0019142 was significantly higher in the 3D scaffold group. Overexpression of hsa_circ_0019142 promoted the osteogenic differentiation of hADMSCs, while knockdown of hsa_circ_0019142 caused the opposite results.
Conclusion
The 3D-printed scaffold promoted osteogenic differentiation of hADMSCs by upregulating hsa_circ_0019142.
Collapse
Affiliation(s)
- Xuebin He
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Huafei Ao
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Ying Qiao
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zhengwen Li
- Ear-Nose-Throat Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
22
|
Liu Z, Liu Q, Chen S, Su H, Jiang T. Circular RNA Circ_0005564 promotes osteogenic differentiation of bone marrow mesenchymal cells in osteoporosis. Bioengineered 2021; 12:4911-4923. [PMID: 34374320 PMCID: PMC8806437 DOI: 10.1080/21655979.2021.1959865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular RNA (CircRNA) plays a potential role in bone formation. We aimed to study the circRNAs expression profiles and their functions in osteogenic differentiation of human bone marrow stromal cells (BMSCs). Firstly, we established osteogenic differentiation of BMSCs displaying increased mRNA expression of osteogenic differentiation marker (RUNX2, OPN, and OCN), increased ALP activity and protein expression, and increased mineralized nodules formation, as well as morphological alteration. Then, we employed high-throughput sequencing to analyze circRNA expression and found that 3440 and 3893 circRNAs in non-induced and induced groups, respectively. We further validated the 10 differentially expressed circRNAs with the most significant difference between induced and non-induced groups. Among these ten circRNAs, five of them with more than one miRNA binding site were used to construct a ceRNA network exhibiting 81 miRNAs and 182 target mRNAs. Furthermore, among these five circRNAs, we found only circ_0005564 significantly reduced the mRNA expression of RUNX2, OPN, and OCN. The circularity of circ_0005564 was verified. Our results showed that knockdown of circ_0005564 inhibited osteoblast differentiation in BMSCs. Taken together, our study demonstrates that circ_0005564 is a potential positive regulator of osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shanchuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haitao Su
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Wang W, Qiao SC, Wu XB, Sun B, Yang JG, Li X, Zhang X, Qian SJ, Gu YX, Lai HC. Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death Dis 2021; 12:628. [PMID: 34145224 PMCID: PMC8213782 DOI: 10.1038/s41419-021-03915-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
With an increasing aging society, China is the world’s fastest growing markets for oral implants. Compared with traditional oral implants, immediate implants cause marginal bone resorption and increase the failure rate of osseointegration, but the mechanism is still unknown. Therefore, it is important to further study mechanisms of tension stimulus on osteoblasts and osteoclasts at the early stage of osseointegration to promote rapid osseointegration around oral implants. The results showed that exosomes containing circ_0008542 from MC3T3-E1 cells with prolonged tensile stimulation promoted osteoclast differentiation and bone resorption. Circ_0008542 upregulated Tnfrsf11a (RANK) gene expression by acting as a miR-185-5p sponge. Meanwhile, the circ_0008542 1916-1992 bp segment exhibited increased m6A methylation levels. Inhibiting the RNA methyltransferase METTL3 or overexpressing the RNA demethylase ALKBH5 reversed osteoclast differentiation and bone resorption induced by circ_0008542. Injection of circ_0008542 + ALKBH5 into the tail vein of mice reversed the same effects in vivo. Site-directed mutagenesis study demonstrated that 1956 bp on circ_0008542 is the m6A functional site with the abovementioned biological functions. In conclusion, the RNA methylase METTL3 acts on the m6A functional site of 1956 bp in circ_0008542, promoting competitive binding of miRNA-185-5p by circ_0008542, and leading to an increase in the target gene RANK and the initiation of osteoclast bone absorption. In contrast, the RNA demethylase ALKBH5 inhibits the binding of circ_0008542 with miRNA-185-5p to correct the bone resorption process. The potential value of this study provides methods to enhance the resistance of immediate implants through use of exosomes releasing ALKBH5.
Collapse
Affiliation(s)
- Wei Wang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shi-Chong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiang-Bing Wu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bao Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jin-Gang Yang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xing Li
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiao Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shu-Jiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying-Xin Gu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Hong-Chang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
24
|
Sun N, Liang Y, Hu B, Feng J, Lin G, Chen X, Rui G. circSKIL promotes the ossification of cervical posterior longitudinal ligament by activating the JNK/STAT3 pathway. Exp Ther Med 2021; 22:761. [PMID: 34035858 PMCID: PMC8135123 DOI: 10.3892/etm.2021.10193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a hyperostotic spinal condition that involves genetic factors as well as non-genetic factors, and its underlying molecular mechanism is largely unknown. Recently, circular RNAs (circRNAs) have been attracting the attention of researchers since they have important regulatory roles in many diseases, including bone metabolism disorders. The present study aimed to investigate the role of circRNA SKI-like proto-oncogene (circSKIL) in OPLL disease progression. First, primary posterior longitudinal ligament cells from patients with cervical spondylotic myelopathy (CSM) without OPLL (control group) and CSM patients with OPLL (OPLL group) were isolated, and the expression levels of circSKIL in ligament cells was found to be significantly increased in the OPLL group compared with control. This result was also confirmed in OPLL tissues. Next, circSKIL was overexpressed in control ligament cells, and the proliferation, mineralization, and osteogenic differentiation of ligament cells were found to be significantly enhanced; the phosphorylation levels of both JNK and STAT3 were upregulated. By contrast, the knockdown of circSKIL in OPLL ligament cells inhibited proliferation, mineralization, and osteogenic differentiation and inactivated the JNK/STAT3 pathway. Therefore, circSKIL may have a significant role in osteogenic differentiation and could serve as a potential target to prevent OPLL progression.
Collapse
Affiliation(s)
- Naikun Sun
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yunbang Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Baoshan Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jinyi Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Guangxun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xin Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Gang Rui
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
25
|
Yu C, Wu D, Zhao C, Wu C. CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. J Bone Miner Metab 2021; 39:360-371. [PMID: 33070258 DOI: 10.1007/s00774-020-01164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Calcified aortic valve disease (CAVD) is characterized by valve thickening and calcification. Osteoblast differentiation is one of the key steps of valve calcification. CircRNAs is involved in osteogenic differentiation of multiple mesenchymal cells. However, the function of circRNA TGFBR2 (TGFBR2) in CAVD remained unclear. We explored the effect and mechanism of TGFBR2 in modulating CAVD. MATERIALS AND METHODS Human aortic valve interstitial cells (VICs) were subjected to osteogenic induction, and transfected with TGFBR2, miR-25-3p mimic and siTWIST1. The relationship between miR-25-3p and GFBR2 was predicted by starBase and confirmed by luciferase reporter and Person's correlation test. The relationship between miR-25-3p and TWIST1 was predicted by TargetScan and confirmed by luciferase reporter assay. The expressions of TGFBR2, miR-25-3p, TWIST1, osteoblast markers (RUNX2 and OPN) were detected by Western blot or/and qRT-PCR. Alkaline phosphatase (ALP) activity and calcium nodule was determined by colorimetric method and Alizarin Red S staining. RESULTS The expression of TGFBR2 was down-regulated and that of miR-25-3p was up-regulated in calcific valves and osteogenic VICs. TGFBR2 was inversely correlated with miR-25-3p expression in calcific valves. TGFBR2 sponged miR-25-3p to regulate TWIST1 expression in osteogenic VICs. During osteogenic differentiation, ALP activity, calcium nodule, the levels of osteoblast markers were increased in VICs. MiR-25-3p overexpression or TWIST1 knockdown reversed the inhibitory effect of TGFBR2 overexpression on ALP activity, calcium nodule, the expressions of RUNX2 and OPN in osteogenic VICs. CONCLUSION The findings indicated that TGFBR2/miR-25-3p/TWIST1 axis regulates osteoblast differentiation in VICs, supporting the fact that TGFBR2 is a miRNA sponge in CAVD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China.
| | - Dannan Wu
- Department of Pharmacy, Hainan General Hospital, Haikou, 570311, Hainan, China
| | - Chong Zhao
- Department of English, School of Foreign Languages, Qiongtai Normal University, Haikou, 571127, Hainan, China
| | - Chaoguang Wu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China
| |
Collapse
|
26
|
Lin Z, Tang X, Wan J, Zhang X, Liu C, Liu T. Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol 2021; 18:2136-2149. [PMID: 33896374 DOI: 10.1080/15476286.2021.1913551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cells are a class of undifferentiated cells with great self-renewal and differentiation capabilities that can differentiate into mature cells in specific tissue types. Stem cell differentiation plays critical roles in body homoeostasis, injury repair and tissue generation. The important functions of stem cell differentiation have resulted in numerous studies focusing on the complex molecular mechanisms and various signalling pathways controlling stem cell differentiation. Circular RNAs (circRNAs) are a novel class of noncoding RNAs with a covalently closed structure present in eukaryotes. Numerous studies have highlighted important biological functions of circRNAs, and they play multiple regulatory roles in various physiological and pathological processes. Importantly, multiple lines of evidence have shown the abnormal expression of numerous circRNAs during stem cell differentiation, and some play a role in regulating stem cell differentiation, highlighting the role of circRNAs as novel biomarkers of stem cell differentiation and novel targets for stem cell-based therapy. In this review, we systematically summarize and discuss recent advances in our understanding of the roles and underlying mechanisms of circRNAs in modulating stem cell differentiation, thus providing guidance for future studies to investigate stem cell differentiation and stem cell-based therapy.Abbreviations: CircRNAs: circular RNAs; ESCs: embryonic stem cells; ADSCs: adipose-derived mesenchymal stem cells; ecircRNAs: exonic circRNAs; EIciRNAs: exon-intron circRNAs; eiRNAs: circular intronic RNAs; tricRNAs: tRNA intronic circRNAs; pol II: polymerase II; snRNP: small nuclear ribonucleoprotein; m6A: N6-methyladenosine; AGO2: Argonaute 2; RBPs: RNA-binding proteins; MBNL: muscleblind-like protein 1; MSCs: mesenchymal stem cells; hiPSCs: human induced pluripotent stem cells; hiPSC-CMs: hiPSC-derived cardiomyocytes; hBMSCs: human bone marrow mesenchymal stem cells; hADSCs: human adipose-derived mesenchymal stem cells; hDPSCs: human dental pulp stem cells; RNA-seq: high-throughput RNA sequencing; HSCs: haematopoietic stem cells; NSCs: neural stem cells; EpSCs: epidermal stem cells; hESCs: human embryonic stem cells; mESCs: murine embryonic stem cells; MNs: motor neurons; SSUP: small subunit processome; BMSCs: bone marrow-derived mesenchymal stem cells; OGN: osteoglycin; GIOP: glucocorticoid‑induced osteoporosis; CDR1as: cerebellar degeneration-related protein 1 transcript; SONFH: steroid-induced osteogenesis of the femoral head; rBMSCs: rat bone marrow-derived mesenchymal stem cells; QUE: quercetin; AcvR1b: activin A receptor type 1B; BSP: bone sialoprotein; mADSCs: mouse ADSCs; PTBP1: polypyrimidine tract-binding protein; ER: endoplasmic reticulum; hUCMSCs: MSCs derived from human umbilical cord; MSMSCs: maxillary sinus membrane stem cells; SCAPs: stem cells from the apical papilla; MyoD: myogenic differentiation protein 1; MSTN: myostatin; MEF2C: myocyte enhancer factor 2C; BCLAF1: BCL2-associated transcription factor 1; EpSCs: epidermal stem cells; ISCs: intestinal stem cells; NSCs: neural stem cells; Lgr5+ ISCs: crypt base columnar cells; ILCs: innate lymphoid cells.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunfeng Liu
- Department of Orthopedics, Suzhou Kowloon Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Suzhou, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, Wei F. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med 2021; 25:4501-4515. [PMID: 33837664 PMCID: PMC8093972 DOI: 10.1111/jcmm.16541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
CDR1as is a well‐identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness‐related genes and impairs the cell's multi‐differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness‐related genes and enhances these abilities. Furthermore, our results indicate that the RNA‐binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness‐related genes in PDLSCs by inhibiting miR‐7‐mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.
Collapse
Affiliation(s)
- Xiuge Gu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ye Jin
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mengying Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
28
|
Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis 2021; 12:340. [PMID: 33795657 PMCID: PMC8016856 DOI: 10.1038/s41419-021-03586-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis is the most prevailing primary bone disease and a growing health care burden. The aim of this study was to clarify the functional roles and mechanisms of the circ-ITCH regulating osteogenic differentiation of osteoporosis. Circ-ITCH and yes-associated protein 1 (YAP1) levels were downregulated, but the miR‐214 level was upregulated in osteoporotic mice and patients. Knockdown of circ-ITCH inhibited the alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) during osteogenic induction. Furthermore, miR-214 was a target of circ-ITCH, knockdown of miR-214 could impede the regulatory effects of sh-circ-ITCH on osteogenic differentiation. Moreover, miR-214 suppressed hBMSCs osteogenic differentiation by downregulating YAP1. Finally, in vivo experiments indicated that overexpression of circ-ITCH could improve osteogenesis in ovariectomized mice. In conclusion, circ-ITCH upregulated YAP1 expression to promote osteogenic differentiation in osteoporosis via sponging miR-214. Circ-ITCH could act as a novel therapeutic target for osteoporosis.
Collapse
|
29
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Yang Z, He T, Chen Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front Cell Dev Biol 2021; 9:619329. [PMID: 33748107 PMCID: PMC7973088 DOI: 10.3389/fcell.2021.619329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
The muscle growth and development of livestock animals is a complex, multistage process, which is regulated by many factors, especially the genes related to muscle development. In recent years, it has been reported frequently that circular RNAs (circRNAs) are involved widely in cell proliferation, cell differentiation, and body development (including muscle development). However, the research on circRNAs in muscle growth and development of livestock animals is still in its infancy. In this paper, we briefly introduce the discovery, classification, biogenesis, biological function, and degradation of circRNAs and focus on the molecular mechanism and mode of action of circRNAs as competitive endogenous RNAs in the muscle development of livestock and poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle development in livestock in terms of transcription, translation, and mRNAs. The purpose of this article is to discuss the multiple regulatory roles of circRNAs in the process of muscle development in livestock, to provide new ideas for the development of a new co-expression regulation network, and to lay a foundation for enriching livestock breeding and improving livestock economic traits.
Collapse
Affiliation(s)
- Zhenguo Yang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tianle He
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingyun Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Kar NS, Ferguson D, Zhang N, Waldorff EI, Ryaby JT, DiDonato JA. Pulsed-electromagnetic-field induced osteoblast differentiation requires activation of genes downstream of adenosine receptors A2A and A3. PLoS One 2021; 16:e0247659. [PMID: 33630907 PMCID: PMC7906300 DOI: 10.1371/journal.pone.0247659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Pulsed-electromagnetic-field (PEMF) treatment was found to enhance cellular differentiation of the mouse preosteoblast, MC3T3-E1, to a more osteoblastic phenotype. Differentiation genes such as Alp, BSPI, cFos, Ibsp, Osteocalcin, Pthr1 and Runx2 showed increased expression in response to PEMF stimulation. Detailed molecular mechanisms linking PEMF to the activation of these genes are limited. Two adenosine receptors known to be modulated in response to PEMF, Adora2A and Adora3, were functionally impaired by CRISPR-Cas9-mediated gene disruption, and the consequences of which were studied in the context of PEMF-mediated osteoblastic differentiation. Disruption of Adora2A resulted in a delay of Alp mRNA expression, but not alkaline phosphatase protein expression, which was similar to that found in wild type cells. However, Adora3 disruption resulted in significantly reduced responses at both the alkaline phosphatase mRNA and protein levels throughout the PEMF stimulation period. Defects observed in response to PEMF were mirrored using a chemically defined growth and differentiation-inducing media (DM). Moreover, in cells with Adora2A disruption, gene expression profiles showed a blunted response in cFos and Pthr1 to PEMF treatment; whereas cells with Adora3 disruption had mostly blunted responses in AlpI, BSPI, Ibsp, Osteocalcin and Sp7 gene activation. To demonstrate specificity for Adora3 function, the Adora3 open reading frame was inserted into the ROSA26 locus in Adora3 disrupted cells culminating in rescued PEMF responsiveness and thereby eliminating the possibility of off-target effects. These results lead us to propose that there are complementary and parallel positive roles for adenosine receptor A2A and A3 in PEMF-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Niladri S. Kar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Daniel Ferguson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Nianli Zhang
- Orthofix, Inc., Lewisville, TX, United States of America
| | | | - James T. Ryaby
- Orthofix, Inc., Lewisville, TX, United States of America
| | - Joseph A. DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
32
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Ratsma DMA, Zillikens MC, van der Eerden BCJ. Upstream Regulators of Fibroblast Growth Factor 23. Front Endocrinol (Lausanne) 2021; 12:588096. [PMID: 33716961 PMCID: PMC7952762 DOI: 10.3389/fendo.2021.588096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) has been described as an important regulator of mineral homeostasis, but has lately also been linked to iron deficiency, inflammation, and erythropoiesis. FGF23 is essential for the maintenance of phosphate homeostasis in the body and activating mutations in the gene itself or inactivating mutations in its upstream regulators can result in severe chronic hypophosphatemia, where an unbalanced mineral homeostasis often leads to rickets in children and osteomalacia in adults. FGF23 can be regulated by changes in transcriptional activity or by changes at the post-translational level. The balance between O-glycosylation and phosphorylation is an important determinant of how much active intact or inactive cleaved FGF23 will be released in the circulation. In the past years, it has become evident that iron deficiency and inflammation regulate FGF23 in a way that is not associated with its classical role in mineral metabolism. These conditions will not only result in an upregulation of FGF23 transcription, but also in increased cleavage, leaving the levels of active intact FGF23 unchanged. The exact mechanisms behind and function of this process are still unclear. However, a deeper understanding of FGF23 regulation in both the classical and non-classical way is important to develop better treatment options for diseases associated with disturbed FGF23 biology. In this review, we describe how the currently known upstream regulators of FGF23 change FGF23 transcription and affect its post-translational modifications at the molecular level.
Collapse
|
34
|
Zhou J, Qiu C, Fan Z, Liu T, Liu T. Circular RNAs in stem cell differentiation: a sponge-like role for miRNAs. Int J Med Sci 2021; 18:2438-2448. [PMID: 33967622 PMCID: PMC8100645 DOI: 10.7150/ijms.56457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs that play a critical role during cellular signal transduction, gene transcription and translation. With the rapid advancement of bioinformatics analysis tools and high-throughput RNA sequencing, numerous circRNAs with important biological features have been identified. They function as competing endogenous RNAs (ceRNAs) of microRNAs and as such exhibit the potential to act as biomarkers for stem cell differentiation. In the recent past, several studies have shown the involvement of circRNAs in stem cells differentiation. The present review summarizes the molecular characteristics, biogenesis and mechanisms of newly identified circRNAs in the differentiation of stem cells. In conclusion, circRNAs regulate the stem cells differentiation via their ambient binding efficacy to modulate miRNA expression, as well as related gene translation. We believe that this review will provide reference guidance for future studies on stem cell differentiation.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Zhihua Fan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Tianyi Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
35
|
Zhai Q, Zhao Y, Wang L, Dai Y, Zhao P, Xiang X, Liu K, Du W, Tian W, Yang B, Li T, Wang L. CircRNA hsa_circ_0008500 Acts as a miR-1301-3p Sponge to Promote Osteoblast Mineralization by Upregulating PADI4. Front Cell Dev Biol 2020; 8:602731. [PMID: 33363159 PMCID: PMC7759526 DOI: 10.3389/fcell.2020.602731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) are regarded as pivotal regulators in bone metabolism. However, the role of circRNAs in osteoblast mineralization remains largely unknown. Herein, we explored the expression profiles of circRNAs in 4 groups of osteoblasts with varying mineralization processes. Hsa_circ_0008500 (circ8500), which is upregulated in the RNA-seq data, is sifted through 194 candidate circRNAs in osteoblasts during mineralization. We characterize the features of novel circRNAs and find that the elevated expression of circ8500 promotes osteoblast mineralization. Mechanistically, circ8500 contains a critical binding site for miR-1301-3p. We further show that circ8500 competitively binds miR-1301-3p to abolish its suppressive effect on peptidyl arginine deiminase 4 (PADI4). PADI4 works as a binding partner of RUNX2 and stabilizes its protein expression levels by inhibiting the ubiquitin-proteasome pathway. This work provides new insights on the circRNA patterns in osteoblasts and the role of PADI4 in matrix mineralization.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Yi Zhao
- School of Stomatology, Shandong University, Jinan, China
| | - Linping Wang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Yan Dai
- School of Stomatology, Shandong University, Jinan, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Kui Liu
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Wenyan Du
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Baoye Yang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Tao Li
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Lianqing Wang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| |
Collapse
|
36
|
Evaluation of Preosteoblast MC3T3-E1 Cells Cultured on a Microporous Titanium Membrane Fabricated Using a Precise Mechanical Punching Process. MATERIALS 2020; 13:ma13225288. [PMID: 33266468 PMCID: PMC7700521 DOI: 10.3390/ma13225288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The surface topography of Titanium (Ti) combined toughness and biocompatibility affects the attachment and migration of cells. Limited information of morphological characteristics, formed by precise machining in micron order, is currently available on the Ti that could promote osteoconduction. In the present study, a pure Ti membrane was pierced with precise 25 μm square holes at 75 μm intervals and appear burrs at the edge of aperture. We defined the surface without burrs as the “Head side” and that with burrs as the “Tail side”. The effects of the machining microtopography on the proliferation and differentiation of the preosteoblasts (MC3T3-E1 cells) were investigated. The cells were more likely to migrate to, and accumulate in, the aperture of holes on the head side, but grew uniformly regardless of holes on the tail side. The topography on the both surfaces increased osteopontin gene expression levels. Osteocalcin expression levels were higher on the head side than one on the blank scaffold and tail side (p < 0.05). The osteocalcin protein expression levels were higher on the tail side than on the head side after 21 days of cultivation, and were comparable to the proportion of the calcified area (p < 0.05). These results demonstrate the capacity of a novel microporous Ti membrane fabricated using a precise mechanical punching process to promote cell proliferation and activity.
Collapse
|
37
|
Huang Z, Ding Y, Zhang L, He S, Jia Z, Gu C, Wang T, Li H, Li X, Jin Z, Ding Y, Yang J. Upregulated circPDK1 Promotes RCC Cell Migration and Invasion by Regulating the miR-377-3P-NOTCH1 Axis in Renal Cell Carcinoma. Onco Targets Ther 2020; 13:11237-11252. [PMID: 33173313 PMCID: PMC7648593 DOI: 10.2147/ott.s280434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background Circular RNAs (circRNAs) are novel clusters of endogenous noncoding RNAs (ncRNAs) that are involved in the regulation of multiple biological processes in diverse types of cancers. However, the roles and precise mechanisms of circRNAs in renal cell carcinoma (RCC) occurrence and progression have not been clearly elucidated. Methods We identified the aberrantly expressed circRNAs in RCC by high-throughput RNA-seq assay and used qRT-PCR to test the expression level of circRNAs in RCC tissues. Loss-of-function experiments were executed to detect the biological roles of circPDK1 in the RCC cells both in vivo and in vitro. RNA Fish, luciferase reporter assays and Western blotting were used to explore the molecular mechanism of circPDK1 function. All data were expressed as the means ± standard error of the mean (SEM). Student’s t-test, one-way ANOVA, Cox regression, an LSD-t-test, Pearson’s chi-squared test, a Log-rank test, and linear regression analyses were used to evaluate the group differences. P < 0.05 was considered significant. Results CircPDK1 was overexpressed in RCC tissues and positively associated with patient tumor metastasis and renal cell invasion. The in vivo functional assays also revealed that circPDK1 drove RCC xenograft metastasis. CircPDK1 was mainly located in the cytoplasm, serving as a sponge of miR-377-3P to regulate RCC invasion and metastasis through NOTCH1 (Notch Homolog 1). Ectopic express of NOTCH1 in RCC cell lines will block the metastasis inhibition effect after circPDK1 knockdown. Conclusion CircPDK1 is aberrantly expressed in RCC and promotes the metastasis of RCC cells mainly through sponging miR-377-3P and reducing its negative regulation of NOTCH1. Thus, circPDK1 may act as a therapeutic target and biomarker for RCC.
Collapse
Affiliation(s)
- Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Yinghui Ding
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Lu Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 42000, People's Republic of China
| | - Siyuan He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Chaohui Gu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Yafei Ding
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, People's Republic of China
| |
Collapse
|
38
|
He T, Liu W, Cao L, Liu Y, Zou Z, Zhong Y, Wang H, Mo Y, Peng S, Shuai C. CircRNAs and LncRNAs in Osteoporosis. Differentiation 2020; 116:16-25. [PMID: 33157509 DOI: 10.1016/j.diff.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a systemic bone disease with bone fragility and increased fracture risk. The non-coding RNAs (ncRNAs) have appeared as important regulators of cellular signaling and pertinent human diseases. Studies have demonstrated that circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) are involved in the progression of osteoporosis through a variety of pathways, and are considered as targets for the prophylaxis and treatment of osteoporosis. Based on an in-depth understanding of their roles and mechanisms in osteoporosis, we summarize the functions and molecular mechanisms of circRNAs and lncRNAs involved in the progression of osteoporosis and provide some new insights for the prognosis, diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tiantian He
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Institute of Metabolism and Endocrinology, The Second Xiang-Ya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Zou
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Wang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China.
| |
Collapse
|
39
|
Differential Expression and Bioinformatic Analysis of the circRNA Expression in Migraine Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4710780. [PMID: 33178826 PMCID: PMC7607275 DOI: 10.1155/2020/4710780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022]
Abstract
Background CircRNAs are noncoding RNA molecules that have recently been described and shown to regulate miRNA functionality. While recent studies have suggested such circRNAs to be associated with pain related diseases in humans, no comprehensive migraine-related circRNA profiles have been generated, and there is currently no clear understanding of whether they can serve as regulators of migraine pathology. Methods We initially conducted a circRNA microarray analysis of the plasma of migraine patients and healthy controls. Based upon these data, we then selected 8 differentially expressed circRNAs and confirmed their expression in more migraine patient plasma samples via real-time PCR. We then performed functional and pathway enrichment analyses. Lastly, using a robust rank aggregation approach, we constructed a ceRNA network according to predicted circRNA-miRNA and miRNA-mRNA pairs in these migraine patient samples. Results We were able to detect 2039 circRNAs in our patient samples, with 794 of 1245 these circRNAs being up- and downregulated in migraine patients relative to controls, respectively (fold change ≥ 1.5, p < 0.01). A qRT-PCR analysis confirmed that the expression of hsa_circRNA_100236, hsa_circRNA_102413, and hsa_circRNA_000367 was significantly enhanced in migraine patients, whereas the expression of hsa_circRNA_103809, hsa_circRNA_103670, and hsa_circRNA_101833 was significantly reduced in these individuals relative to healthy controls. We found these differentially regulated circRNAs to be associated with numerous predicted biological processes, with enrichment analyses suggesting that they may modulate the PI3K-Akt signaling so as to promote inflammation to drive migraine development. However, further research will be needed to formally test these mechanistic possibilities and to validate these circRNAs as potential biomarkers of migraine patients. Conclusions Our results offer new potential insights into the mechanistic basis of this condition and suggest that hsa_circRNA_000367 and hsa_circRNA_102413 may offer value as regulators of migraine pathology.
Collapse
|
40
|
Exosomal circLPAR1 Promoted Osteogenic Differentiation of Homotypic Dental Pulp Stem Cells by Competitively Binding to hsa-miR-31. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6319395. [PMID: 33062690 PMCID: PMC7539105 DOI: 10.1155/2020/6319395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Human dental pulp stem cells (DPSCs) hold great promise in bone regeneration. However, the exact mechanism of osteogenic differentiation of DPSCs remains unknown, especially the role of exosomes played in. The DPSCs were cultured and received osteogenic induction; then, exosomes from osteogenic-induced DPSCs (OI-DPSC-Ex) at different time intervals were isolated and sequenced for circular RNA (circRNA) expression profiles. Gradually, increased circular lysophosphatidic acid receptor 1 (circLPAR1) expression was found in the OI-DPSC-Ex coincidentally with the degree of osteogenic differentiation. Meanwhile, results from osteogenic differentiation examinations showed that the OI-DPSC-Ex had osteogenic effect on the recipient homotypic DPSCs. To investigate the mechanism of exosomal circLPAR1 on osteogenic differentiation, we verified that circLPAR1 could competently bind to hsa-miR-31, by eliminating the inhibitory effect of hsa-miR-31 on osteogenesis, therefore promoting osteogenic differentiation of the recipient homotypic DPSCs. Our study showed that exosomal circRNA played an important role in osteogenic differentiation of DPSCs and provided a novel way of utilization of exosomes for the treatment of bone deficiencies.
Collapse
|
41
|
The emerging roles of circular RNAs in regulating the fate of stem cells. Mol Cell Biochem 2020; 476:231-246. [PMID: 32918186 DOI: 10.1007/s11010-020-03900-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
Abstract
Circular RNAs(circRNAs) are a large family of RNAs shaping covalently closed ring-like molecules and have become a hotspot with thousands of newly published studies. Stem cells are undifferentiated cells and have great potential in medical treatment due to their self-renewal ability and differentiation capacity. Abundant researches have unveiled that circRNAs have unique expression profile during the differentiation of stem cells and could serve as promising biomarkers of these cells. There are key circRNAs relevant to the differentiation, proliferation, and apoptosis of stem cells with certain mechanisms such as sponging miRNAs, interacting with proteins, and interfering mRNA translation. Moreover, several circRNAs have joined in the interplay between stem cells and lymphocytes. Our review will shed lights on the emerging roles of circRNAs in regulating the fate of diverse stem cells.
Collapse
|
42
|
Cao Z, Zhang Y, Wei S, Zhang X, Guo Y, Han B. Comprehensive circRNA expression profile and function network in osteoblast-like cells under simulated microgravity. Gene 2020; 764:145106. [PMID: 32889059 DOI: 10.1016/j.gene.2020.145106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of non-coding RNA with a stable structure formed by special loop splicing. Research increasingly suggests that circRNAs play a vital role in the pathogenesis and progression of various diseases. However, the roles of circRNAs in osteoblast differentiation under microgravity remain largely unknown. Here, we investigated the roles and mechanobiological response of circRNAs in osteoblasts under simulated microgravity. METHODS Differential circRNA and mRNA expression profiles of MC3T3-E1 cells during exposure to microgravity were screened by RNA transcriptome sequencing technology (RNA-seq). The selected RNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied for gene function analyses. RESULTS A total of 427 circRNAs and 1912 mRNAs were differentially expressed along with osteogenic differentiation in the simulated microgravity group (SMG) compared to the control group (CON). Of these, 232 circRNAs and 991 mRNAs were upregulated, whereas 95 circRNAs and 921 mRNAs were downregulated (fold change ≥ 2, p < 0.05). The results showed that the parental genes of circRNAs and mRNAs were mainly enriched in anatomical structure morphogenesis, anchoring junction and protein binding. KEGG analysis results showed that the differentially expressed mRNAs were enriched in the regulation of the actin cytoskeleton, focal adhesion, and Ras signalling pathway. Subsequently, 9 core regulatory genes, including 6 mRNAs and 3 circRNAs, were identified based on their possible function in osteoblast differentiation. Based on this analysis, circ_014154 was selected as the target circRNA, which likely plays important roles in osteogenic differentiation processes under microgravity. The circRNA-miRNA-mRNA network showed that circRNAs might act as miRNA sponges to regulate osteoblast differentiation. CONCLUSION By presenting a better understanding of the molecular mechanisms of genes and circRNAs in simulated microgravity, the present study will provide a novel view of circRNAs in the regulation of osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Zhen Cao
- College of Biotechnology of Guilin Medical University, Guilin 541199, China
| | - Yang Zhang
- Institute of Medical Service and Technology, Academy of Military Science, Tianjin 300161, China
| | - Shuping Wei
- Institute of Medical Service and Technology, Academy of Military Science, Tianjin 300161, China
| | - Xizheng Zhang
- Institute of Medical Service and Technology, Academy of Military Science, Tianjin 300161, China
| | - Yong Guo
- College of Biotechnology of Guilin Medical University, Guilin 541199, China
| | - Biao Han
- College of Biotechnology of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
43
|
Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P, Fan X. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ 2020; 28:283-302. [PMID: 32814879 PMCID: PMC7853044 DOI: 10.1038/s41418-020-0600-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Na Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
44
|
Wu J, Ren W, Zheng Z, Huang Z, Liang T, Li F, Shi Z, Jiang Q, Yang X, Guo L. Mmu_circ_003795 regulates osteoblast differentiation and mineralization in MC3T3‑E1 and MDPC23 by targeting COL15A1. Mol Med Rep 2020; 22:1737-1746. [PMID: 32582985 PMCID: PMC7411298 DOI: 10.3892/mmr.2020.11264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that exhibit important regulatory roles in various biological processes. However, the role of circRNAs and their potential role in osteoblast differentiation and mineralization is unclear. The aim of the present study was to investigate the expression of mmu_circ_003795 and its effect on collagen type XV α 1 chain (COL15A1). First, it was identified that the expression levels of mmu_circ_003795 and osteopontin (OPN) were upregulated in the induced cells. Silencing of mmu_circ_003795 reduced the gene and protein levels of COL15A1 and OPN, whereas the expression level of mmu-microRNA (miR)-1249-5p was upregulated. In addition, after 7 or 14 days of induction, alkaline phosphatase and Alizarin Red-S staining were decreased in the mmu_circRNA_003795 inhibitory group compared with the negative control group. In conclusion, mmu_circ_003795 may regulate osteoblast differentiation and mineralization in MC3T3-E1 and MDPC23 cells via mmu-miR-1249-5p by targeting COL15A1.
Collapse
Affiliation(s)
- Jingwen Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Wen Ren
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zhu Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Tingting Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Fuyao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zhan Shi
- Faculty of Arts and Science, Human Biology Program, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Qianzhou Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xuechao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Lvhua Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| |
Collapse
|
45
|
Li C, Wang F, Zhang R, Qiao P, Liu H. Comparison of Proliferation and Osteogenic Differentiation Potential of Rat Mandibular and Femoral Bone Marrow Mesenchymal Stem Cells In Vitro. Stem Cells Dev 2020; 29:728-736. [PMID: 32122257 DOI: 10.1089/scd.2019.0256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chuanjie Li
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Feifan Wang
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Rong Zhang
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Pengyan Qiao
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongchen Liu
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
46
|
Di Agostino S, Riccioli A, De Cesaris P, Fontemaggi G, Blandino G, Filippini A, Fazi F. Circular RNAs in Embryogenesis and Cell Differentiation With a Focus on Cancer Development. Front Cell Dev Biol 2020; 8:389. [PMID: 32528957 PMCID: PMC7266935 DOI: 10.3389/fcell.2020.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the recent years thousands of non-coding RNAs have been identified, also thanks to highthroughput sequencing technologies. Among them, circular RNAs (circRNAs) are a well-represented class characterized by the high sequence conservation and cell type specific expression in eukaryotes. They are covalently closed loops formed through back-splicing. Recently, circRNAs were shown to regulate a variety of cellular processes functioning as miRNA sponges, RBP binding molecules, transcriptional regulators, scaffold for protein translation, as well as immune regulators. A growing number of studies are showing that deregulated expression of circRNAs plays important and decisive actions during the development of several human diseases, including cancer. The research on their biogenesis and on the various molecular mechanisms in which they are involved is going very fast, however, there are still few studies that address their involvement in embryogenesis and eukaryotic development. This review has the intent to describe the most recent progress in the study of the biogenesis and molecular activities of circRNAs providing insightful information in the field of embryogenesis and cell differentiation. In addition, we describe the latest research on circRNAs as novel promising biomarkers in diverse types of tumors.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Riccioli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Filippini
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
47
|
Wang Y, Jiang Z, Yu M, Yang G. Roles of circular RNAs in regulating the self-renewal and differentiation of adult stem cells. Differentiation 2020; 113:10-18. [DOI: 10.1016/j.diff.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
48
|
Ji F, Pan J, Shen Z, Yang Z, Wang J, Bai X, Tao J. The Circular RNA circRNA124534 Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Modulation of the miR-496/β-Catenin Pathway. Front Cell Dev Biol 2020; 8:230. [PMID: 32318572 PMCID: PMC7146058 DOI: 10.3389/fcell.2020.00230] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) have been found to be a crucial role in stem cell-associated bone regeneration. However, the functions and underlying mechanisms of circRNAs in the osteogenic differentiation of human dental pulp stem cells (hDPSCs) remain largely unclear. We found that overexpression of circRNA124534 unexpectedly promoted DPSCs osteogenesis in vitro and in vivo. Our results confirmed circRNA124534, acting as a miRNA sponge, directly interacts with miR-496 and consequently regulates β-catenin, which in turn exerts osteogenesis of DPSCs. Enforced expression of miR-496 reversed the osteogenesis of circRNA124534, and suppression of miR-496 enhanced the osteogenic differentiation of DPSCs by promoting β-catenin. In conclusion, our findings demonstrate functions of circRNA124534 in modulating osteogenic differentiation through the miR-496/β-catenin pathway; thus, providing a novel potential target for therapy.
Collapse
Affiliation(s)
- Fang Ji
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Pan
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhecheng Shen
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhao Yang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jian Wang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuebing Bai
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Tao
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Nano/Micro Hierarchical Bioceramic Coatings for Bone Implant Surface Treatments. MATERIALS 2020; 13:ma13071548. [PMID: 32230848 PMCID: PMC7178122 DOI: 10.3390/ma13071548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Bone implants with surface modifications that promote the physiological activities of osteoblasts are the first step for osseointegration in bone repair. Hydroxyapatite is the main inorganic component in mammal bones and teeth, and nanoscaled hydroxyapatite promotes the adhesion of osteoblastic cells. In this study, we created a nano/micro hierarchical structure using micro-arc oxidation coatings and hydrothermal treatments at 150 °C, 175 °C, and 200 °C for 2, 6, 12, and 24 h. After undergoing hydrothermal treatment for 24 h, CaTiO3 began forming regular-shaped crystals at the surface at 175 °C. In order to decrease the CaTiO3 formations and increase the apatite fabrication, a shorter time of hydrothermal treatment was required at 175 °C. There was still surface damage on samples treated for 6 h at 175 °C; however, the nano/micro hierarchical structures were formed in 2 h at 175 °C. The normalized alkaline phosphatase (ALP) activities of the MC3T3-E1 cells with micro-arc oxidation (MAO) coatings and nano/micro hierarchical bioceramics coatings were 4.51 ± 0.26 and 7.36 ± 0.51 μmol p-NP/mg protein (*** P value of <0.001), respectively. The MC3T3-E1 cells with coatings showed highly statistically significant results in terms of the ALP activity. This proposed nano/micro hierarchical structure promoted cell proliferation and osteogenic differentiation of the osteoblast MC3T3-E1 cells. This study realized a promising nano system for osseointegration via bone implant surface treatments, which can promote the physiological activities of osteoblasts.
Collapse
|
50
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|