1
|
Thakur S, Mohanty P, Jadhav MS, Gaikwad AB, Jadhav HR. A perspective on the development of small molecular neprilysin inhibitors (NEPi) with emphasis on cardiorenal disease. Eur J Med Chem 2024; 280:116932. [PMID: 39378824 DOI: 10.1016/j.ejmech.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neprilysin is a cell surface metallo-endopeptidase, commonly identified as neutral endopeptidase (NEP), that plays a crucial role in the cleavage of peptides, for example, natriuretic peptides, angiotensin II, enkephalins, endothelin, bradykinin, substance P, glucagon-like peptide and amyloid beta. In the case of heart failure, a significant upsurge in NEP activity and expression enhances the degradation of natriuretic peptides. Therefore, NEP inhibitors have gained attention in the field of cardiology. NEP has been studied for over 40 years; however, it has recently gained attention with the US FDA approval of a fixed dose combination of sacubitril (NEP inhibitor) and valsartan (AT-1 inhibitor) for chronic heart failure treatment. The present review elucidates the role of neprilysin in cardiorenal disease, its pathophysiology, and how NEP inhibition benefits. It also summarizes the research advances in NEP inhibitors (NEPi) and their structure-activity relationships. Moreover, the review provides insight into NEPi effectiveness - alone or combined with other cardiorenal protective agents. It is expected to help medicinal chemists synthesize and develop novel NEPi.
Collapse
Affiliation(s)
- Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Priyanka Mohanty
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Madhav S Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India.
| |
Collapse
|
2
|
Ruan Y, Yu Y, Wu M, Jiang Y, Qiu Y, Ruan S. The renin-angiotensin-aldosterone system: An old tree sprouts new shoots. Cell Signal 2024; 124:111426. [PMID: 39306263 DOI: 10.1016/j.cellsig.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
Collapse
Affiliation(s)
- Yaqing Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiqin Wu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuliang Qiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| | - Shiwei Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| |
Collapse
|
3
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
4
|
Liu Y, Lu CY, Zheng Y, Zhang YM, Qian LL, Li KL, Tse G, Wang RX, Liu T. Role of angiotensin receptor-neprilysin inhibitor in diabetic complications. World J Diabetes 2024; 15:867-875. [PMID: 38766431 PMCID: PMC11099356 DOI: 10.4239/wjd.v15.i5.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cun-Yu Lu
- Department of Cardiology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Yi Zheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Min Zhang
- Department of Cardiology, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214062, Jiangsu Province, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Ku-Lin Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Metropolitan University, Hong Kong 999077, China
- Kent and Medway Medical School, Kent CT2 7NT, Canterbury, United Kingdom
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
5
|
Niranjan PK, Bahadur S. Recent Developments in Drug Targets and Combination Therapy for the Clinical Management of Hypertension. Cardiovasc Hematol Disord Drug Targets 2023; 23:226-245. [PMID: 38038000 DOI: 10.2174/011871529x278907231120053559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Raised blood pressure is the most common complication worldwide that may lead to atherosclerosis and ischemic heart disease. Unhealthy lifestyles, smoking, alcohol consumption, junk food, and genetic disorders are some of the causes of hypertension. To treat this condition, numerous antihypertensive medications are available, either alone or in combination, that work via various mechanisms of action. Combinational therapy provides a certain advantage over monotherapy in the sense that it acts in multi mechanism mode and minimal drug amount is required to elicit the desired therapeutic effect. Such therapy is given to patients with systolic blood pressure greater than 20 mmHg and/or diastolic blood pressure exceeding 10 mmHg beyond the normal range, as well as those suffering from severe cardiovascular disease. The selection of antihypertensive medications, such as calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and low-dose diuretics, hinges on their ability to manage blood pressure effectively and reduce cardiovascular disease risks. This review provides insights into the diverse monotherapy and combination therapy approaches used for elevated blood pressure management. In addition, it offers an analysis of combination therapy versus monotherapy and discusses the current status of these therapies, from researchbased findings to clinical trials.
Collapse
Affiliation(s)
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Sulaiman A, Chambers J, Chilumula SC, Vinod V, Kandunuri R, McGarry S, Kim S. At the Intersection of Cardiology and Oncology: TGFβ as a Clinically Translatable Therapy for TNBC Treatment and as a Major Regulator of Post-Chemotherapy Cardiomyopathy. Cancers (Basel) 2022; 14:1577. [PMID: 35326728 PMCID: PMC8946238 DOI: 10.3390/cancers14061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for the majority of breast cancer-related deaths due to the lack of specific targets for effective treatments. While there is immense focus on the development of novel therapies for TNBC treatment, a persistent and critical issue is the rate of heart failure and cardiomyopathy, which is a leading cause of mortality and morbidity amongst cancer survivors. In this review, we highlight mechanisms of post-chemotherapeutic cardiotoxicity exposure, evaluate how this is assessed clinically and highlight the transforming growth factor-beta family (TGF-β) pathway and its significance as a mediator of cardiomyopathy. We also highlight recent findings demonstrating TGF-β inhibition as a potent method to prevent cardiac remodeling, fibrosis and cardiomyopathy. We describe how dysregulation of the TGF-β pathway is associated with negative patient outcomes across 32 types of cancer, including TNBC. We then highlight how TGF-β modulation may be a potent method to target mesenchymal (CD44+/CD24-) and epithelial (ALDHhigh) cancer stem cell (CSC) populations in TNBC models. CSCs are associated with tumorigenesis, metastasis, relapse, resistance and diminished patient prognosis; however, due to plasticity and differential regulation, these populations remain difficult to target and continue to present a major barrier to successful therapy. TGF-β inhibition represents an intersection of two fields: cardiology and oncology. Through the inhibition of cardiomyopathy, cardiac damage and heart failure may be prevented, and through CSC targeting, patient prognoses may be improved. Together, both approaches, if successfully implemented, would target the two greatest causes of cancer-related morbidity in patients and potentially lead to a breakthrough therapy.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Jason Chambers
- Schulich School of Medicine, Western University, London, ON N6A5C1, Canada;
| | - Sai Charan Chilumula
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Vishak Vinod
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Rohith Kandunuri
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Sarah McGarry
- Children’s Mercy Hospital Kansas City, 2401 Gillham Rd, Kansas City, MO 64108, USA;
| | - Sung Kim
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| |
Collapse
|
7
|
Advances in the Treatment Strategies in Hypertension: Present and Future. J Cardiovasc Dev Dis 2022; 9:jcdd9030072. [PMID: 35323620 PMCID: PMC8949859 DOI: 10.3390/jcdd9030072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the most frequent chronic and non-communicable disease all over the world, with about 1.5 billion affected individuals worldwide. Its impact is currently growing, particularly in low-income countries. Even in high-income countries, hypertension remains largely underdiagnosed and undertreated, with consequent low rates of blood pressure (BP) control. Notwithstanding the large number of clinical observational studies and randomized trials over the past four decades, it is sad to note that in the last few years there has been an impressive paucity of innovative studies. Research focused on BP mechanisms and novel antihypertensive drugs is slowing dramatically. The present review discusses some advances in the management of hypertensive patients, and could play a clinical role in the years to come. First, digital/health technology is expected to be increasingly used, although some crucial points remain (development of non-intrusive and clinically validated devices for ambulatory BP measurement, robust storing systems enabling rapid analysis of accrued data, physician-patient interactions, etc.). Second, several areas should be better outlined with regard to BP diagnosis and treatment targets. Third, from a therapeutic standpoint, existing antihypertensive drugs, which are generally effective and well tolerated, should be better used by exploiting available and novel free and fixed combinations. In particular, spironolactone and other mineral-corticoid receptor antagonists should be used more frequently to improve BP control. In particular, some drugs initially developed for conditions different from hypertension including heart failure and diabetes have demonstrated to lower BP significantly and should therefore be considered. Finally, renal artery denervation is another procedure that has proven effective in the management of hypertension.
Collapse
|
8
|
Zhang X, Zhou Y, Ma R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J Diabetes Complications 2022; 36:108056. [PMID: 34893426 DOI: 10.1016/j.jdiacomp.2021.108056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is one of the main causes of end-stage renal disease (ESRD) and all-cause mortality in diabetic patients, despite the extensive use of angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB). Angiotensin receptor-neprilysin inhibitor (ARNI), combining ARB and neutral endopeptidase inhibitor (NEPI), is likely to have potential favorable effects in DKD. This review summarizes existing preclinical and clinical studies on mechanism of ARNI and its potential effects on DKD. In preclinical studies, ARNI manifested its renoprotective effects by improving natriuresis, ameliorating inflammation, oxidative stress and renal dysfunction, and slowing down glomerulosclerosis and tubulointerstitial injury of kidney, but its effect on proteinuria is still controversial. Beneficial effects of ARNI on blood glucose regulation and glycometabolism have also been reported. There are no clinical studies of ARNI that specifically focus on DKD patients so far. ARNI has application potential in DKD, but there still need clinical studies that focus on DKD patients to determine its effectiveness, safety and underlying mechanism.
Collapse
Affiliation(s)
- Xingjian Zhang
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Zhou
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruixia Ma
- Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
9
|
Zhang Y, Jiang Y, Yang W, Shen L, He B. Chronic Secondary Cardiorenal Syndrome: The Sixth Innovative Subtype. Front Cardiovasc Med 2021; 8:639959. [PMID: 33768118 PMCID: PMC7985164 DOI: 10.3389/fcvm.2021.639959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yipeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res 2021; 44:740-755. [PMID: 33731923 PMCID: PMC7967108 DOI: 10.1038/s41440-021-00643-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is responsible for maintaining blood pressure and vascular tone. Modulation of the RAAS, therefore, interferes with essential cellular processes and leads to high blood pressure, oxidative stress, inflammation, fibrosis, and hypertrophy. Consequently, these conditions cause fatal cardiovascular and renal complications. Thus, the primary purpose of hypertension treatment is to diminish or inhibit overactivated RAAS. Currently available RAAS inhibitors have proven effective in reducing blood pressure; however, beyond hypertension, they have failed to treat end-target organ injury. In addition, RAAS inhibitors have some intolerable adverse effects, such as hyperkalemia and hypotension. These gaps in the available treatment for hypertension require further investigation of the development of safe and effective therapies. Current research is focused on the combination of existing and novel treatments that neutralize the angiotensin II type I (AT1) receptor-mediated action of the angiotensin II peptide. Preclinical studies of peptide- and nonpeptide-based therapeutic agents demonstrate their conspicuous impact on the treatment of cardiovascular diseases in animal models. In this review, we will discuss novel therapeutic agents being developed as RAAS inhibitors that show prominent effects in both preclinical and clinical studies. In addition, we will also highlight the need for improvement in the efficacy of existing drugs in the absence of new prominent antihypertensive drugs.
Collapse
|
11
|
Randhawa VK, Dhanvantari S, Connelly KA. How Diabetes and Heart Failure Modulate Each Other and Condition Management. Can J Cardiol 2020; 37:595-608. [PMID: 33276047 DOI: 10.1016/j.cjca.2020.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) and diabetes mellitus (DM) confer considerable burden on the health care system. Although these often occur together, DM can increase risk of HF, whereas HF can accelerate complications of DM. HF is a clinical syndrome resulting from systolic or diastolic impairment caused by ischemic, nonischemic (eg, DM), or other etiologies. HF exists along a spectrum from stage A (ie, persons at risk of DM) to stage D (ie, refractory HF from end-stage DM cardiomyopathy [DMCM]). HF is further categorized by reduced, midrange, and preserved ejection fraction (EF). In type 2 DM, the most prevalent form of DM, several pathophysiological mechanisms (eg, insulin resistance and hyperglycemia) can contribute to myocardial damage, leading to DMCM. Management of HF and DM and patient outcomes are guided by EF and drug efficacy. In this review, we focus on the interplay between HF and DM on disease pathophysiology, management, and patient outcomes. Specifically, we highlight the role of novel antihyperglycemic (eg, sodium glucose cotransporter 2 inhibitors) and HF therapies (eg, renin-angiotensin-aldosterone system inhibitors) on HF outcomes in patients with DM and HF.
Collapse
Affiliation(s)
- Varinder Kaur Randhawa
- Cardiovascular Medicine, Kaufman Center for Heart Failure, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Savita Dhanvantari
- Metabolism and Diabetes, Imaging Program, Lawson Health Research Institute and Medical Biophysics, Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kim A Connelly
- Division of Cardiology, Department of Medicine, St Michael's Hospital, Keenan Research Centre for Biomedical Research, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Spannella F, Giulietti F, Filipponi A, Sarzani R. Effect of sacubitril/valsartan on renal function: a systematic review and meta-analysis of randomized controlled trials. ESC Heart Fail 2020; 7:3487-3496. [PMID: 32960491 PMCID: PMC7754726 DOI: 10.1002/ehf2.13002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
A worsening renal function is prevalent among patients with cardiovascular disease, especially heart failure (HF). Sacubitril/valsartan appears to prevent worsening of renal function and progression of chronic kidney disease (CKD) as compared with renin-angiotensin system (RAS) inhibitors alone in HF patients. It is unclear whether these advantages are present in HF patients only, or can be extended to other categories of patients, in which this drug was studied. We performed a systematic review and meta-analysis to assess the consistency of effect size regarding renal outcome across randomized controlled trials (RCTs) that compared sacubitril/valsartan with RAS inhibitors in patients with or without HF. We searched Medline (PubMed), Scopus, and Thomson Reuters Web of Science databases until June 2020. We took into account RCTs that compared sacubitril/valsartan with a RAS inhibitor and reported data regarding renal function. We used random-effects models to obtain summary odds ratio (OR) with 95% confidence interval (CI). We extracted hazard ratios for renal outcomes, glomerular filtration rate slopes or rates of renal adverse events. Sensitivity analyses were performed by moderator analysis and random-effects meta-regression. The search revealed 10 RCTs (published between 2012 and 2019) on 16 456 subjects. Sacubitril/valsartan resulted in a lower risk of renal dysfunction as compared with RAS inhibitors alone [k = 10; pooled OR = 0.70 (95% CI 0.57-0.85); P < 0.001], with a moderate inconsistency between studies [Q(9) = 15.18; P = 0.086; I2 = 40.73%]. A stronger association was found in studies including older patients (k = 10; β = -0.047730; P = 0.020) or HF patients with preserved ejection fraction [pooled OR = 0.53 (0.41-0.68) vs. 0.76 (0.57-1.01) for studies on HF patients with reduced ejection fraction; P for comparison = 0.065]. The effect size did not change with different comparators (angiotensin-converting enzyme inhibitors vs. angiotensin II type 1 receptor blockers, P = 0.279). No significant association was found when the analysis was restricted to studies on non-HF patients [k = 3; pooled OR = 0.86 (0.61-1.22); P = 0.403] and studies with high risk of bias [k = 3; pooled OR = 0.34 (0.08-1.44); P = 0.143]. Our findings support the role of sacubitril/valsartan on preservation of renal function, especially in older patients and HF patients with preserved ejection fraction. However, evidence is currently limited to HF patients, while the renal outcome of sacubitril/valsartan therapy outside the HF setting needs to be further investigated.
Collapse
Affiliation(s)
- Francesco Spannella
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Federico Giulietti
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Andrea Filipponi
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Riccardo Sarzani
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| |
Collapse
|
13
|
Ryu R, Tran H, Bahjri K. Association of Sacubitril/Valsartan with Metabolic Parameters in Patients with Reduced Ejection Fraction Heart Failure at a Multidisciplinary Clinic. Metab Syndr Relat Disord 2020; 19:115-118. [PMID: 33155868 DOI: 10.1089/met.2020.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Sacubitril/valsartan was approved for New York Heart Association (NYHA) class II-IV heart failure with reduced ejection fraction (HFrEF) in 2015, based on the results of the PARADIGM-HF trial, which showed a reduction in cardiovascular (CV) death and heart failure hospitalization, compared with enalapril. A subsequent subgroup analysis of the trial showed glycemic improvement for patients on sacubitril/valsartan compared with those on enalapril. Methods: This was a retrospective observational study at the Loma Linda University (LLU) International Heart Institute (IHI). The aim was to evaluate the association of sacubitril/valsartan with glycemic index and other metabolic parameters, including change in hemoglobin A1C (HbA1C), blood pressure (BP), ejection fraction (EF), body weight, and lipid profile from baseline and at 3, 6, and 12 months. The rates of CV-related hospitalizations and total hospitalizations were also assessed. Results: The change in mean HbA1C from baseline was not significantly different at 1 year (P = 0.993). The mean EF was significantly higher and the mean diastolic BP was significantly lowered. Body weight and lipid parameters remained unchanged. Both the rates of CV-related hospitalizations and total hospitalizations were significantly lowered. For the prespecified subgroup analysis of diabetic HFrEF patients, the mean HbA1C was nonsignificant at 12 months (mean difference -0.48, P = 0.993). Conclusion: A non-significant reduction in HbA1C was associated in HFrEF patients with diabetes mellitus. Large randomized trials are needed to confirm our findings regarding the potential metabolic benefits of sacubitril/valsartan.
Collapse
Affiliation(s)
- Rachel Ryu
- Department of Pharmacy Practice and Administration, Western University College of Pharmacy, Pomona, California, USA
| | - Huyentran Tran
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Khaled Bahjri
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| |
Collapse
|
14
|
Sankhe R, Pai SRK, Kishore A. Tumour suppression through modulation of neprilysin signaling: A comprehensive review. Eur J Pharmacol 2020; 891:173727. [PMID: 33160935 DOI: 10.1016/j.ejphar.2020.173727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
Peptidases are emerging as promising drug targets in tumour suppression. Neprilysin, also known as neutral endopeptidase, is a cell surface peptidase that degrades various peptides such as angiotensin II, endothelin I, Substance P, etc., and reduces their local concentration. Neprilysin is expressed in various tissues such as kidney, prostate, lung, breast, brain, intestine, adrenal gland, etc. The tumour-suppressor mechanisms of neprilysin include its peptidase activity that degrades mitogenic growth factors such as fibroblast growth factor-2 and insulin-like growth factors, and the protein-protein interaction of neprilysin with phosphatase and tensin homolog, focal adhesion kinase, ezrin/radixin/moesin, and phosphoinositide 3-kinase. Studies have shown that the levels of neprilysin play an important role in malignancies. NEP is downregulated in prostate, renal, lung, breast, urothelial, cervical, hepatic cancers, etc. Histone deacetylation and hypermethylation of the neprilysin promoter region are the common mechanisms involved in the downregulation of neprilysin. Downregulation of the peptidase promotes angiogenesis, cell survival and cell migration. This review presents an overview of the role of neprilysin in malignancy, the tumour suppression mechanisms of neprilysin, the epigenetic mechanisms responsible for downregulation of neprilysin, and the potential pharmacological approaches to upregulate neprilysin levels and its activity.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
15
|
Sankhe R, Rathi E, Manandhar S, Kumar A, Pai SRK, Kini SG, Kishore A. Repurposing of existing FDA approved drugs for Neprilysin inhibition: An in-silico study. J Mol Struct 2020; 1224:129073. [PMID: 32834116 PMCID: PMC7422802 DOI: 10.1016/j.molstruc.2020.129073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Drug repurposing of FDA approved drugs from ZINC 12 database was done using the crystal structure of extracellular domain of human NEP (PDB ID: 5JMY) The interactions with catalytic triad of HIS583, HIS587 and GLU646 are important for NEP inhibition. Based on XP molecular docking, binding energy, IFD-SP and MD simulation top 4 NEP inhibitors were identified. ZINC000000601283 and ZINC000003831594 were found to be stable during MD simulation and may act as NEP inhibitors.
Neprilysin (NEP) is a neutral endopeptidase with diverse physiological roles in the body. NEP's role in degradation of diverse classes of peptides such as amyloid beta, natriuretic peptide, substance P, angiotensin, endothelins, etc., is associated with pathologies of alzheimer's, kidney and heart diseases, obesity, diabetes and certain malignancies. Hence, the functional inhibition of NEP in the above systems can be a good therapeutic target. In the present study, in-silico drug repurposing approach was used to identify NEP inhibitors. Molecular docking was carried out using GLIDE tool. 2934 drugs from the ZINC12 database were screened using high throughput virtual screening (HTVS) followed by standard precision (SP) and extra precision (XP) docking. Based on the XP docking score and ligand interaction, the top 8 hits were subjected to free ligand binding energy calculation, to filter out 4 hits (ZINC000000001427, ZINC000001533877, ZINC000000601283, and ZINC000003831594). Further, induced fit docking-standard precision (IFD-SP) and molecular dynamics (MD) studies were performed. The results obtained from MD studies suggest that ZINC000000601283-NEP and ZINC000003831594-NEP complexes were most stable for 20ns simulation period as compared to ZINC000001533877-NEP and ZINC000000001427-NEP complexes. Interestingly, ZINC000000601283 and ZINC000003831594 showed similarity in binding with the reported NEP inhibitor sacubitrilat. Findings from this study suggest that ZINC000000601283 and ZINC000003831594 may act as NEP inhibitors. In future studies, the role of ZINC000000601283 and ZINC000003831594 in NEP inhibition should be tested in biological systems to evaluate therapeutic effect in NEP associated pathological conditions.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| |
Collapse
|
16
|
Angiotensin receptor neprolysin inhibitors: a novel approach to prevent cardiorenal disease in diabetes mellitus. J Hypertens 2020; 38:608-609. [PMID: 32132433 DOI: 10.1097/hjh.0000000000002378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Malek V, Gaikwad AB. Telmisartan and thiorphan combination treatment attenuates fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovasc Res 2020; 115:373-384. [PMID: 30184174 DOI: 10.1093/cvr/cvy226] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
Aims LCZ696, a first-generation dual angiotensin receptor-neprilysin inhibitor (ARNi), is effective in treating heart failure patients. However, the role of ARNis in treating diabetic cardiomyopathy is poorly understood. This study evaluates the efficacy of a novel combination of telmisartan [angiotensin receptor blocker (ARB)] and thiorphan [neprilysin inhibitor (NEPi)] in ameliorating diabetic cardiomyopathy while, at the same time, exploring the relevant underlying molecular mechanism(s). Methods and results Diabetes was induced by administration of streptozotocin (55 mg/kg, i.p.) in male Wistar rats. After 4 weeks, diabetic rats were subjected to either thiorphan (0.1 mg/kg/day, p.o.) or telmisartan (10 mg/kg/day, p.o.) monotherapy, or their combination, for a period of 4 weeks. Metabolic and morphometric alterations, failing ventricular functions, and diminished baroreflex indicated development of diabetic cardiac complications. Apart from morphometric alterations, all pathological consequences were prevented by telmisartan and thiorphan combination therapy. Diabetic rats exhibited significant modulation of the natriuretic peptide system, a key haemodynamic regulator; this was normalized by combination therapy. Histopathological studies showed augmented myocardial fibrosis, demonstrated by increased % PSR-positive area, with combination therapy giving the best improvement in these indices. More importantly, the combination of thiorphan and telmisartan was superior in attenuating inflammatory (NF-κB/MCP-1), profibrotic (TGF-β/Smad7) and apoptotic (PARP/Caspase-3) cascades compared to respective monotherapies when treating rats with diabetic cardiomyopathy. In addition, diabetic heart chromatin was in a state of active transcription, indicated by increased histone acetylation (H2AK5Ac, H2BK5Ac, H3K9Ac, and H4K8Ac) and histone acetyltransferase (PCAF and Ac-CBP) levels. Interestingly, combination treatment was sufficiently potent to normalize these alterations. Conclusion The protective effect of novel ARB and NEPi combination against diabetic cardiomyopathy can be attributed to inhibition of inflammatory, profibrotic, and apoptotic cascades. Moreover, reversal of histone acetylation assists its protective effect.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
18
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
19
|
Fu S, Chang Z, Luo L, Deng J. Therapeutic Progress and Knowledge Basis on the Natriuretic Peptide System in Heart Failure. Curr Top Med Chem 2019; 19:1850-1866. [PMID: 31448711 DOI: 10.2174/1568026619666190826163536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Notwithstanding substantial improvements in diagnosis and treatment, Heart Failure (HF) remains a major disease burden with high prevalence and poor outcomes worldwide. Natriuretic Peptides (NPs) modulate whole cardiovascular system and exhibit multiple cardio-protective effects, including the counteraction of the Renin-Angiotensin-Aldosterone System (RAAS) and Sympathetic Nervous System (SNS), promotion of vasodilatation and natriuresis, and inhibition of hypertrophy and fibrosis. Novel pharmacological therapies based on NPs may achieve a valuable shift in managing patients with HF from inhibiting RAAS and SNS to a reversal of neurohormonal imbalance. Enhancing NP bioavailability through exogenous NP administration and inhibiting Neutral Endopeptidase (NEP) denotes valuable therapeutic strategies for HF. On the one hand, NEP-resistant NPs may be more specific as therapeutic choices in patients with HF. On the other hand, NEP Inhibitors (NEPIs) combined with RAAS inhibitors have proved to exert beneficial effects and reduce adverse events in patients with HF. Highly effective and potentially safe Angiotensin Receptor Blocker Neprilysin Inhibitors (ARNIs) have been developed after the failure of NEPIs and Vasopeptidase Inhibitors (VPIs) due to lacking efficacy and safety. Therapeutic progress and knowledge basis on the NP system in HF are summarized in the current review.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhenyu Chang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Juelin Deng
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
20
|
Sankhe R, Kinra M, Mudgal J, Arora D, Nampoothiri M. Neprilysin, the kidney brush border neutral proteinase: a possible potential target for ischemic renal injury. Toxicol Mech Methods 2019; 30:88-99. [PMID: 31532266 DOI: 10.1080/15376516.2019.1669246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neprilysin (NEP) is an endogenously induced peptidase for modulating production and degradation of various peptides in humans. It is most abundantly present in kidney and regulates the intrinsic renal homeostatic mechanism. Recently, drugs inhibiting NEP have been approved for the use in heart failure. In the context of increased prevalence of ischemia associated renal failure, NEP could be an attractive target for treating kidney failure. In the kidney, targeting NEP may possess potential benefits as well as adverse consequences. The unfavorable outcomes of NEP are mainly attributed to the degradation of the natriuretic peptides (NPs). NPs are involved in the inhibition of the renin-angiotensin-aldosterone system (RAAS) and activation of the sympathetic system contributing to the tubular and glomerular injury. In contrary, NEP exerts the beneficial effect by converting angiotensin-1 (Ang I) to angiotensin-(1-7) (Ang-(1-7)), thus activating MAS-related G-protein coupled receptor. MAS receptor antagonizes angiotensin type I receptor (AT-1R), reduces reactive oxygen species (ROS) and inflammation, thus ameliorating renal injury. However, the association of NEP with complex cascades of renal ischemia remains vague. Therefore, there is a need to evaluate the putative mechanism of NEP and its overlap with other signaling cascades in conditions of renal ischemia.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
21
|
Malek V, Sharma N, Gaikwad AB. Simultaneous inhibition of neprilysin and activation of ACE2 prevented diabetic cardiomyopathy. Pharmacol Rep 2019; 71:958-967. [PMID: 31470292 DOI: 10.1016/j.pharep.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neprilysin inhibitors (NEPi) are assisting the renin-angiotensin system (RAS) inhibitors in halting diabetic cardiomyopathy (DCM). Away from conventional tactic, a recent report revealed the renoprotective potential of NEPi and angiotensin-converting enzyme (ACE2) activator combination therapy against diabetic nephropathy. However, this combination so far not evaluated against DCM, thus the present investigation aiming the same. METHODS Streptozotocin-induced (55 mg/kg, ip) type 1 diabetic (T1D) male Wistar rats were treated with either monotherapy of thiorphan (0.1 mg/kg/day, po) or diminazene aceturate (5 mg/kg/day, po), or their combination therapy, for four weeks. After hemodynamic measurements, all the rats' heart and plasma were collected for biochemistry, ELISA, histopathology, and immunoblotting. RESULTS Metabolic perturbations and failing cardiac functions associated with diabetes were markedly attenuated by combination therapy. Besides, unfavourable alterations in RAS and natriuretic peptides system (NPS) were corrected by combination therapy. Interestingly, combination therapy significantly increased plasma and heart cGMP levels compared to T1D and monotherapy receiving rats. Moreover, rats receiving combination therapy exhibited significant inhibition of activated NF-κB, TGF-β and apoptotic signalling, and a notable reduction in cardiac fibrosis when compared to T1D rats. Expressions of posttranslational histone modifications markers; H3K4Me2 and its methyltransferases (SET7/9 and RBBP5) were significantly enhanced in T1D hearts, which were significantly reduced by combination therapy. CONCLUSIONS The NEPi and ACE2 activator combination therapy effectively prevented DCM by normalising RAS and NPS activities, increasing cGMP, inhibiting inflammatory, pro-fibrotic and apoptotic signalling, and reversing H3K4Me2 and its methyl transferases expressions.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
22
|
Sharma N, Malek V, Mulay SR, Gaikwad AB. Angiotensin II type 2 receptor and angiotensin-converting enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic rats. Life Sci 2019; 235:116796. [PMID: 31470003 DOI: 10.1016/j.lfs.2019.116796] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
AIM Depressor arm of the renin-angiotensin system (RAS) exerts reno-protective effects in chronic kidney diseases like diabetic nephropathy. However, same is still elusive under AKI and hyperglycaemia comorbidity. Hence, the present study delineates the role of angiotensin-II type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2) in AKI under normal and hyperglycaemia condition. METHODS Non-diabetic (ND) and Streptozotocin-induced diabetes mellitus (DM) rats were subjected to ischemic renal injury (IRI). Rats underwent IRI were treated with an AT2R agonist, C21 (0.3 mg/kg/day, i.p.) or ACE2 activator, Dize, (5 mg/kg/day, p.o.) either alone or as combination therapy. Renal histopathology and immunohistochemistry, proximal tubular fraction isolation, ELISA, immunoblotting and qRT-PCR were performed for subsequent analysis. KEY FINDINGS Rats subjected to IRI displayed an increase in plasma ACE, AT1R, AT2R, Ang II, and reduction in ACE2, Ang-(1-7) expressions, with augmented renal inflammation and apoptosis. These changes were more prominent in diabetic rats with IRI. Co-administration of C21 and Dize augmented ACE2, Ang-(1-7), AT2R and MasR expressions, and attenuated tubular injury in both DM and ND rats. CONCLUSION We demonstrated that pharmacological activation of AT2R and ACE2 protects DM and ND rats from IRI by preventing oxidative stress, inflammation and apoptosis-mediated tubular damage.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
23
|
Esser N, Zraika S. Neprilysin inhibition: a new therapeutic option for type 2 diabetes? Diabetologia 2019; 62:1113-1122. [PMID: 31089754 PMCID: PMC6579747 DOI: 10.1007/s00125-019-4889-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Neprilysin is a widely expressed peptidase with broad substrate specificity that preferentially hydrolyses oligopeptide substrates, many of which regulate the cardiovascular, nervous and immune systems. Emerging evidence suggests that neprilysin also hydrolyses peptides that play an important role in glucose metabolism. In recent studies in humans, a dual angiotensin receptor-neprilysin inhibitor (ARNi) improved glycaemic control and insulin sensitivity in individuals with type 2 diabetes and/or obesity. Moreover, preclinical studies have also reported that neprilysin inhibition, alone or in combination with renin-angiotensin system blockers, elicits beneficial effects on glucose homeostasis. Since neprilysin inhibitors have been approved for the treatment of heart failure, their repurposing for treating type 2 diabetes would provide a novel therapeutic strategy. In this review, we evaluate existing evidence from preclinical and clinical studies in which neprilysin is deleted/inhibited, we highlight potential mechanisms underlying the beneficial glycaemic effects of neprilysin inhibition, and discuss possible deleterious effects that may limit the efficacy and safety of neprilysin inhibitors in the clinic. We also review the favourable impact neprilysin inhibition can have on diabetic complications, in addition to glucose control. Finally, we conclude that neprilysin inhibitors may be a useful therapeutic option for treating type 2 diabetes; however, their combination with angiotensin II receptor blockers is needed to circumvent deleterious consequences of neprilysin inhibition alone.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Malek V, Sharma N, Gaikwad AB. Histone Acetylation Regulates Natriuretic Peptides and Neprilysin Gene Expressions in Diabetic Cardiomyopathy and Nephropathy. Curr Mol Pharmacol 2019; 12:61-71. [PMID: 30465518 DOI: 10.2174/1874467212666181122092300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Natriuretic peptide system (NPS) alterations are involved in pathogenesis of diabetic cardiomyopathy (DCM) and nephropathy (DN), however its epigenetic regulation is still unclear. Interestingly, histone acetylation epigenetically regulates neprilysin expression in Alzheimer's disease. OBJECTIVES The present study was aimed at delineating role of histone acetylation in regulation of NPS in DCM and DN. METHODS Streptozotocin (55 mg/kg, i.p.)-induced diabetic male Wistar rats were used to mimic pathogenesis of DCM and DN. After haemodynamic measurements, all the rat's plasma, heart and kidney were collected for biochemistry, ELISA, protein isolation and western blotting, RT-PCR and chromatin immunoprecipitation (ChIP) assay. RESULTS Diabetic rats heart and kidney exhibited activation of NF-κB and TGF-β signalling with increased histone acetyl transferases (PCAF/CBP) expressions and augmented H2AK5Ac, H2BK5Ac, H3K18Ac, and H4K8Ac levels. ChIP assay results showed increased enrichment of H3K18Ac and H2BK5Ac at Nppa, Nppb (Heart) and Mme promoter (Heart/Kidney) in diabetic rats. Enrichment of H2AK5Ac was augmented on Nppa and Mme promoters in diabetic heart, while it remained unchanged on Nppb promoter in heart and Mme promoter in kidney. CONCLUSION Augmented histone acetylation at promoter regions of NPS gene(s), at least in a part, is responsible for increased expressions of ANP, BNP and NEP in diabetic heart and kidney. Hence, histone acetylation inhibitors can be considered as novel therapeutic targets against DCM and DN.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
25
|
Malek V, Sharma N, Sankrityayan H, Gaikwad AB. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy. Life Sci 2019; 221:159-167. [PMID: 30769114 DOI: 10.1016/j.lfs.2019.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/16/2023]
Abstract
AIMS Renin-angiotensin system (RAS) and natriuretic peptides system (NPS) perturbations govern the development of diabetic nephropathy (DN). Hence, in search of a novel therapy against DN, present study targeted both, NPS and RAS simultaneously using a neprilysin inhibitor (NEPi) in combination with either angiotensin receptor blocker (ARB) or angiotensin-converting enzyme 2 (ACE2) activator. METHODS We induced diabetes in male Wistar rats by a single dose of streptozotocin (55 mg/kg, i.p.). After four weeks, we treated diabetic rats with thiorphan, telmisartan or diminazene aceturate (Dize) 0.1, 10, 5 mg/kg/day, p.o. alone as monotherapy, or both thiorphan/telmisartan or thiorphan/Dize as combination therapy, for four weeks. Then, plasma and urine biochemistry were performed, and kidneys from all the groups were collected and processed separately for histopathology, ELISA and Western blotting. KEY FINDINGS Proposed combination therapies attenuated metabolic perturbations, prevented renal functional decline, and normalised adverse alterations in renal ACE, ACE2, Ang-II, Ang-(1-7), neprilysin and cGMP levels in diabetic rats. Histopathological evaluation revealed a significant reduction in glomerular and tubulointerstitial fibrosis by combination therapies. Importantly, combination therapies inhibited inflammatory, profibrotic and apoptotic signalling, way better than respective monotherapies, in preventing DN. CONCLUSION Renoprotective potential of thiorphan (NEPi)/telmisartan (ARB) and thiorphan/Dize (ACE2 activator) combination therapies against the development of DN is primarily attributed to normalisation of RAS and NPS components and inhibition of pathological signalling related to inflammation, fibrosis, and apoptosis. Hence, we can conclude that NEPi/ARB and NEPi/ACE2 activator combination therapies might be new therapeutic strategies in preventing DN.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
26
|
Davidson EP, Coppey LJ, Shevalye H, Obrosov A, Yorek MA. Vascular and Neural Complications in Type 2 Diabetic Rats: Improvement by Sacubitril/Valsartan Greater Than Valsartan Alone. Diabetes 2018; 67:1616-1626. [PMID: 29941448 DOI: 10.2337/db18-0062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/15/2018] [Indexed: 11/13/2022]
Abstract
Previously, we had shown that a vasopeptidase inhibitor drug containing ACE and neprilysin inhibitors was an effective treatment for diabetic vascular and neural complications. However, side effects prevented further development. This led to the development of sacubitril/valsartan, a drug containing angiotensin II receptor blocker and neprilysin inhibitor that we hypothesized would be an effective treatment for diabetic peripheral neuropathy. Using early and late intervention protocols (4 and 12 weeks posthyperglycemia, respectively), type 2 diabetic rats were treated with valsartan or sacubitril/valsartan for 12 weeks followed by an extensive evaluation of vascular and neural end points. The results demonstrated efficacy of sacubitril/valsartan in improving vascular and neural function was superior to valsartan alone. In the early intervention protocol, sacubitril/valsartan treatment was found to slow progression of these deficits and, with late intervention treatment, was found to stimulate restoration of vascular reactivity, motor and sensory nerve conduction velocities, and sensitivity/regeneration of sensory nerves of the skin and cornea in a rat model of type 2 diabetes. These preclinical studies suggest that sacubitril/valsartan may be an effective treatment for diabetic peripheral neuropathy, but additional studies will be needed to investigate these effects further.
Collapse
Affiliation(s)
- Eric P Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA
- Department of Veterans Affairs, Iowa City VA Health Care System, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
27
|
Thomas MC. Perspective Review: Type 2 Diabetes and Readmission for Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2018; 12:1179546818779588. [PMID: 29899670 PMCID: PMC5992798 DOI: 10.1177/1179546818779588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Heart failure is a leading cause for hospitalisation and for readmission, especially in patients over the age of 65. Diabetes is an increasingly common companion to heart failure. The presence of diabetes and its associated comorbidity increases the risk of adverse outcomes and premature mortality in patients with heart failure. In particular, patients with diabetes are more likely to be readmitted to hospital soon after discharge. This may partly reflect the greater severity of heart disease in these patients. In addition, agents that reduce the chances of readmission such as β-blockers, renin-angiotensin-aldosterone system blockers, and mineralocorticoid receptor antagonists are underutilised because of the perceived increased risks of adverse drug reactions and other limitations. In some cases, readmission to hospital is precipitated by acute decompensation of heart failure (re-exacerbation) leading to pulmonary congestion and/or refractory oedema. However, it appears that for most of the patients admitted and then discharged with a primary diagnosis of heart failure, most readmissions are not due to heart failure, but rather due to comorbidity including arrhythmia, infection, adverse drug reactions, and renal impairment/reduced hydration. All of these are more common in patients who also have diabetes, and all may be partly preventable. The many different reasons for readmission underline the critical value of multidisciplinary comprehensive care in patients admitted with heart failure, especially those with diabetes. A number of new strategies are also being developed to address this area of need, including the use of SGLT2 inhibitors, novel nonsteroidal mineralocorticoid antagonists, and neprilysin inhibitors.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Centeno JM, Miranda-Gómez L, López-Morales MA, Jover-Mengual T, Burguete MC, Marrachelli VG, Castelló-Ruiz M, Aliena-Valero A, Alborch E, Miranda FJ. Diabetes modifies the role of prostanoids and potassium channels which regulate the hypereactivity of the rabbit renal artery to BNP. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:501-511. [DOI: 10.1007/s00210-018-1478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
|
29
|
Circulating Biomarkers in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:89-108. [PMID: 29392578 DOI: 10.1007/5584_2017_140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological markers have served for diagnosis, risk stratification and guided therapy of heart failure (HF). Our knowledge regarding abilities of biomarkers to relate to several pathways of HF pathogenesis and reflect clinical worsening or improvement in the disease is steadily expanding. Although there are numerous clinical guidelines, which clearly diagnosis, prevention and evidence-based treatment of HF, a strategy regarding exclusion of HF, as well as risk stratification of HF, nature evolution of disease is not well established and requires more development. The aim of the chapter is to discuss a role of biomarker-based approaches for more accurate diagnosis, in-depth risk stratification and individual targeting in treatment of patients with HF.
Collapse
|