1
|
Shan L, Park S, Barathikannan K, Chelliah R, Kim DG, Yang Z, Oh DH. Biopeptide-rich fermented hemp seeds: Boosting anti-inflammatory and immune responses through Lactiplantibacillus plantarum probiotic fermentation. Int J Biol Macromol 2024; 290:138782. [PMID: 39706455 DOI: 10.1016/j.ijbiomac.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Cannabis sativa L. (hemp) seeds are increasingly recognized as a promising food source rich in phytochemicals that support inflammatory and immunological reactions. This study investigates whether fermentation with Lactiplantibacillus plantarum can further enhance these functional properties, paving the way for hemp seeds to be developed into potent functional food ingredients. Aqueous, 70 % ethanol, and ethyl acetate extracts from both L. plantarum-fermented (FHS) and unfermented hemp seeds (HS) were evaluated for their anti-inflammatory activities using cell-based assays. The 70 % ethanol extract of FHS exhibited marked inhibitory effects on cytokines, including TNF-α, IL-1β, and IL-10, with fermentation significantly enhancing these effects by 25 %, 39.3 %, and 29.6 %, respectively, compared to the unfermented extracts. Additionally, mRNA expression analysis confirmed the strong immunomodulatory potential of the fermented extracts. Intracellular metabolomic analysis revealed that the 'antifolate resistance', 'nicotine addiction', 'aminoacyl-tRNA biosynthesis', and 'D-amino acid metabolism' are highlighted in the reasons for this enhancement. Furthermore, FHS significantly prolonged the survival of C. elegans exposed to pathogens, with gene expression analysis indicating modulation of the innate immune system via regulation of genes such as gcs-1, lys-1, dbl-1, pmk-1, elt-2, and dod-22. A comprehensive metabolomic and correlation analysis identified five novel bioactive peptides (AAELIGVP, AAVPYPQ, VFPEVAP, DVIGVPLG, PVPKVL) and bioactive acids (indoleacetic acid and homovanillic acid) that were enriched during fermentation, which are strongly linked to the enhanced anti-inflammatory and immunomodulatory effects observed. These findings suggest that L. plantarum-fermented hemp seeds hold significant promise as functional ingredients in anti-inflammatory and immunomodulatory food products, with potential applications in health and wellness industries.
Collapse
Affiliation(s)
- LingYue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, South Korea
| | - Kaliayn Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea; Saveetha School of Engineering, (SIMATS) University, Sriperumbudur, India
| | - Dong-Gyu Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea
| | - Zhen Yang
- Department of Food Science and Engineering, Hainan University, Hainan Province, China
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea.
| |
Collapse
|
2
|
Patel HV, Joshi JS, Shah FD. Implicating clinical utility of altered expression of PTCH1 & SMO in oral squamous cell carcinoma. J Mol Histol 2024; 55:379-389. [PMID: 38954185 DOI: 10.1007/s10735-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Oral cancer poses a significant burden on public health in India, with higher incidence and mortality rates. Despite advancements in treatment modalities, prognosis remains poor due to factors such as localized recurrence and lymph node metastasis, potentially influenced by cancer stem cells. Among signaling pathways implicated in CSC regulation, the Hedgehog pathway plays a crucial role in oral squamous cell carcinoma (OSCC). MATERIAL & METHODS 97 OSCC patients' tissue samples were collected and subjected to RNA isolation, cDNA synthesis and quantitative real-time PCR to analyze PTCH1 and SMO expression. Protein expression was assessed through immunohistochemistry. Clinicopathological parameters were correlated with gene and protein expression. Statistical analysis included Pearson chi-square tests, co-relation co-efficient tests, Kaplan-Meier survival analysis and ROC curve analysis. RESULTS PTCH1 expression correlated with lymphatic permeation (p = 0.002) and tumor stage (p = 0.002), while SMO expression correlated with lymph node status (p = 0.034) and tumor stage (p = 0.021). PTCH1 gene expression correlated with lymph node status (p = 0.024). High PTCH1 gene expression was associated with shorter survival in tongue cancer patients. ROC curve analysis indicated diagnostic potential for PTCH1 and SMO gene and cytoplasmic SMO expression in distinguishing malignant tissues from adjacent normal tissues. CONCLUSION PTCH1 and SMO play a crucial role in oral cancer progression, correlating with tumor stages and metastatic potential. Despite not directly influencing overall survival, PTCH1 expression at specific anatomical sites hints at its prognostic implications. PTCH1 and SMO exhibit diagnostic potential, suggesting their utility as molecular markers in oral cancer management and therapeutic strategies.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
- Gujarat University, Ahmedabad, Gujarat, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
3
|
Zhao JB, Fan MZ, Shi YX, Zhu YT, Gao SX, Li GL, Guan JC, Zhou P. Staphylococcal enterotoxin B exposed to pregnant rats inhibits the hedgehog signaling pathway in thymic T lymphocytes of the offspring. Microb Pathog 2024; 192:106723. [PMID: 38823465 DOI: 10.1016/j.micpath.2024.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 μg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.
Collapse
Affiliation(s)
- Jia-Bao Zhao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Meng-Zhu Fan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yin-Xing Shi
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yu-Ting Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Guang-Lin Li
- Majored in Biological Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| | - Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
4
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol 2023; 14:1279264. [PMID: 37954583 PMCID: PMC10639160 DOI: 10.3389/fimmu.2023.1279264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease caused by disruptions in the body's immune microenvironment. In the early stages of ALF, Kupffer cells (KCs) become depleted and recruit monocytes derived from the bone marrow or abdomen to replace the depleted macrophages entering the liver. These monocytes differentiate into mature macrophages, which are activated in the immune microenvironment of the liver and polarized to perform various functions. Macrophage polarization can occur in two directions: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. Controlling the ratio and direction of M1 and M2 in ALF can help reduce liver injury. However, the liver damage caused by pyroptosis should not be underestimated, as it is a caspase-dependent form of cell death. Inhibiting pyroptosis has been shown to effectively reduce liver damage induced by ALF. Furthermore, macrophage polarization and pyroptosis share common binding sites, signaling pathways, and outcomes. In the review, we describe the role of macrophage polarization and pyroptosis in the pathogenesis of ALF. Additionally, we preliminarily explore the relationship between macrophage polarization and pyroptosis, as well as their effects on ALF.
Collapse
Affiliation(s)
| | - Shi Ouyang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Wu X, He W, Mu X, Liu Y, Deng J, Liu Y, Nie X. Macrophage polarization in diabetic wound healing. BURNS & TRAUMA 2022; 10:tkac051. [PMID: 36601058 PMCID: PMC9797953 DOI: 10.1093/burnst/tkac051] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Indexed: 12/31/2022]
Abstract
Impaired wound healing is one of the severe complications of diabetes. Macrophages have been shown to play a vital role in wound healing. In different wound environments, macrophages are classified into two phenotypes: classically activated macrophages and alternatively activated macrophages. Dysregulation of macrophage phenotypes leads to severely impaired wound healing in diabetes. Particularly, uncontrolled inflammation and abnormal macrophage phenotype are important reasons hindering the closure of diabetic wounds. This article reviews the functions of macrophages at various stages of wound healing, the relationship between macrophage phenotypic dysregulation and diabetic wound healing and the mechanism of macrophage polarization in diabetic wound healing. New therapeutic drugs targeting phagocyte polarization to promote the healing of diabetic wounds might provide a new strategy for treating chronic diabetic wound healing.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane 4102, Australia
| |
Collapse
|
8
|
Wu Y, Hong L, Ling Z, Hu X, Liu Z, Li P, Ling Z. Golgi scaffold protein
PAQR3
as a candidate suppressor of gastric cardia adenocarcinoma via regulating
TGF
‐β/Smad pathway. J Clin Lab Anal 2022; 36:e24617. [PMID: 35870178 PMCID: PMC9459307 DOI: 10.1002/jcla.24617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives To investigate the function of PAQR3 in gastric cardia adenocarcinoma (GCA) and understand the possible mechanism of PAQR3 in regulating epithelial–mesenchymal transition (EMT). Methods We detected PAQR3 protein in 146 GCA tissues and paired normal adjacent tissues (PNTs) specimens using immunohistochemical analysis, and explored its clinical significance. The expression levels of PAQR3 protein in 20 GCA tissues, their paired PNTs, HGC27, SGC7901, and GES‐1 cells were analyzed by Western blot. Wild‐type PAQR3 was overexpressed in HGC27 cells. The effects of PAQR3 overexpression on the function of HGC27 cells and its underlying mechanisms were then analyzed through a series of cell and molecular biology experiments. Results PAQR3 was significantly down‐regulated in GCA tissues when compared with paired PNTs (p < 0.0001). The expression level of PAQR3 in GCA tissues was significantly negatively correlated with Helicobacter pylori infection (p = 0.000), venous invasion (p = 0.000), invasion depth (p = 0.000), lymph node metastasis (p = 0.022), tumor stage (p = 0.000), and patient survival (p = 0.009). Downregulation of PAQR3 was highly correlated with increased EMT signature and activated TGF‐β/Smad pathway in GCA tissues. Overexpression of PAQR3 in HGC27 cells negatively regulates its cellular functions, such as cell proliferation and migration, and suppresses EMT. Mechanistically, overexpression of PAQR3 significantly down‐regulates the protein expression levels of TGF‐1, p‐Smad2, and p‐Smad3 in HGC27 cells. Conclusion PAQR3 was significantly down‐regulated in GCA tissues, HGC27, and SGC7901 cells. PAQR3 significantly inhibits the proliferation, migration, and invasion of HGC27 cells. Mechanistically, PAQR3 can inhibit the EMT process in HGC27 cells by regulating TGF‐β/Smad signaling pathway.
Collapse
Affiliation(s)
- Ying‐Li Wu
- Zhejiang Cancer Institute Cancer Hospital of the University of Chinese Academy of Sciences; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences Hangzhou China
- Department of anaesthesiology Cancer Hospital of the University of Chinese Academy of Sciences; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences Hangzhou China
| | - Lian‐Lian Hong
- Zhejiang Cancer Institute Cancer Hospital of the University of Chinese Academy of Sciences; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences Hangzhou China
| | - Zhe‐Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xuan‐Yu Hu
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou China
| | - Zhu Liu
- Zhejiang Cancer Institute Cancer Hospital of the University of Chinese Academy of Sciences; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences Hangzhou China
| | - Pei Li
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou China
| | - Zhi‐Qiang Ling
- Zhejiang Cancer Institute Cancer Hospital of the University of Chinese Academy of Sciences; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences Hangzhou China
| |
Collapse
|
9
|
Scrapie-Responsive Gene 1 Promotes Chondrogenic Differentiation of Umbilical Cord Mesenchymal Stem Cells via Wnt5a. Stem Cells Int 2022; 2022:9124277. [PMID: 35126528 PMCID: PMC8813292 DOI: 10.1155/2022/9124277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Repair of cartilage defects, a common condition resulting from many factors, is still a great challenge. Based on their chondrogenic differentiation ability, mesenchymal stem cell- (MSC-) based cartilage regeneration is a promising approach for cartilage defect repair. However, MSC differentiation into chondroblasts or related cell lineages is elaborately controlled by stem cell differentiation stage factors and affected by an array of bioactive elements, which may impede the efficient production of target cells. Thus, identifying a single transcription factor to promote chondrogenic differentiation is critical. Herein, we explored the mechanism by which scrapie-responsive gene 1 (SCRG1), a candidate gene for cartilage regeneration promotion, regulates chondrogenic differentiation of MSCs. Methods Expression of SCRG1 was detected in umbilical cord-derived MSCs (UCMSCs) by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis during chondrogenic differentiation. The function of SCRG1 in chondrogenic potential was evaluated after gene knockdown or overexpression by lentiviral vectors. Finally, a rabbit cartilage defect model was established to evaluate the effect of SCRG1 on cartilage repair in vivo. Results Expression of SCRG1 was upregulated during in vitro chondrogenic differentiation of UCMSCs. SCRG1 knockdown inhibited chondrogenic differentiation of UCMSCs, while SCRG1 overexpression promoted chondrogenic differentiation of UCMSCs in vitro. In addition, UCMSC overexpressing SCRG1 promoted cartilage repair in vivo. Mechanistically, SCRG1 promoted chondrogenic differentiation via upregulation of Wnt5a expression and subsequent inhibition of β-catenin. Conclusion Our results showed that SCRG1 promotes chondrogenic differentiation of UCMSCs by inhibiting canonical Wnt/β-catenin signaling through Wnt5a. Our findings provide a future target for chondrogenic differentiation and cartilage regeneration.
Collapse
|
10
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases’ morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
11
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
12
|
Chen W, Liu Y, Chen J, Ma Y, Song Y, Cen Y, You M, Yang G. The Notch signaling pathway regulates macrophage polarization in liver diseases. Int Immunopharmacol 2021; 99:107938. [PMID: 34371331 DOI: 10.1016/j.intimp.2021.107938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
The liver is not only the main metabolic site of exogenous compounds and drugs, but also an important immune organ in the human body. When a large number of nonself substances (such as drugs, alcohol, pathogens, microorganisms and their metabolites) enter the liver, they will cause serious liver diseases, including liver fibrosis, liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Macrophages are the first line of defense against the invasion of exogenous pathogens and significant cellular components of the innate immune system. Macrophages have strong heterogeneity and plasticity. When different pathogens invade the body, they cause different types of polarization of macrophages through different molecular mechanisms. Notch signaling is considered to be the key regulator of the biological function of macrophages. Activating Notch signaling can regulate the differentiation of macrophages into M1 and play a role in promoting inflammation and antitumor activity, while blocking Notch signaling can polarize macrophages to M2, suppressing inflammation and promoting tumor growth. However, there are few studies on regulation of macrophage polarization by the Notch signaling pathway in liver diseases. Therefore, in this review, we will introduce the role of the Notch signaling pathway in regulating macrophage polarization in liver diseases.
Collapse
Affiliation(s)
- Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
13
|
Shi XM, Bai YC, Gao YR, Bu N, Song HY, Huang LH, Zhao YH, Wang SH. Comprehensive Analysis of Differentially Expressed lncRNAs miRNAs and mRNA and Their ceRNA Network of Patients With Rare-Earth Pneumoconiosis. Front Genet 2021; 12:700398. [PMID: 34349786 PMCID: PMC8326912 DOI: 10.3389/fgene.2021.700398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and mRNA and investigate their regulatory networks. Our results identified a total of 125 lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to the response of cells to stimulation, Hedgehog signaling pathway and so on. We also constructed lncRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in REP. We found that in the competitive endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the target gene. The expression results were verified by qRT-PCR and the protein interaction networks of differentially expressed genes were constructed via the STRING database. OncoLnc online platform was used to do the lung cancer survival analysis among the top five mRNA analyzed by Protein-protein interaction (PPI) network analysis. We found miR-16-2-3p may used as biomarker for REP, because it is closely related to the occurrence and prognosis of REP through inflammatory reaction and in lung squamous cell carcinoma, its expression levels were positively correlated with the overall survival rate of patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-hang Zhao
- School of Public Health, Baotou Medical College, Baotou, China
| | - Su-hua Wang
- School of Public Health, Baotou Medical College, Baotou, China
| |
Collapse
|
14
|
Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord 2021; 19:1439-1446. [PMID: 33520845 DOI: 10.1007/s40200-020-00670-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Objective The present study sought to evaluate the miR-34a/Sirtuin1/p53 pro-apoptotic pathway, and reveal its modulation in diabetic rats undergoing swimming exercise. Methods Twenty-eight male Wistar rats were divided into four groups. They were inducted to develop diabetes by injection of streptozotocin. After 12 weeks of swimming, the pancreatic tissue of these rats were removed to be evaluated for the expression level of Sitruin1/P53/miR-34a through qPCR. Results Findings indicated a marked rise in the expression of miR-34 and P53 (P < 0.01) as well as a significant decrease in expression of Sitruin1 (P < 0.01) in the diabetic group. In contrast, swimming resulted in a significant decrease in miR-34a expression (P < 0.01), and a prominent rise in the level of Sitruin1 in the swimming-trained-diabetic group (P < 0.01). Additionally, high, moderate and low apoptosis rate were observed in the pancreatic tissue of the diabetic, swimming-trained diabetic, and control groups, respectively. Conclusion Our findings suggested a correlation between pancreatic tissue apoptosis rate and miR-34a/Sitruin1/p53 signaling, that was subject to modulation by training. Graphical abstract
Collapse
|
15
|
Tandon I, Waghmode A, Sharma NK. Cancer Stem Cells Equipped with Powerful Hedgehog Signaling and Better Epigenetic Memory: Avenues to Look for Cancer Therapeutics. Curr Cancer Drug Targets 2020; 19:877-884. [PMID: 31393247 DOI: 10.2174/1568009619666190808155432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/16/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Complex nature of the tumor is depicted at the cellular landscape by showing heterogeneity in the presence of cancer cells, cancer-associated stromal cells, mesenchymal stem cells and cancer stem cells (CSCs). One of the plausible views in cancer formation is suggested as the theory of cancer CSCs that is known as a source of initiation of tumorigenesis. In essence, these powerful CSCs are equipped with high Sonic Hedgehog (SHH) signaling and epigenetic memory power that support various tumor hallmarks. Truly, nature justifies its intent by limiting these stem cells with a potential to turn into CSCs and in turn suppressing the high risk of humans and other organisms. In short, this mini-review addresses the contribution of SHH signaling to allow reprogramming of epigenetic memory within CSCs that support tumor hallmarks. Besides, this paper explores therapeutic approaches to mitigate SHH signaling that may lead to a blockade of the pro-tumor potential of CSCs.
Collapse
Affiliation(s)
- Ishita Tandon
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Asawari Waghmode
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| |
Collapse
|
16
|
Zhou N, Ma X, Hu W, Ren P, Zhao Y, Zhang T. Effect of RGD content in poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-alt-maleic acid) hydrogels on the expansion of ovarian cancer stem-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111477. [PMID: 33255056 DOI: 10.1016/j.msec.2020.111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) affects cell behaviors, such as survival, proliferation, motility, invasion, and differentiation. The arginine-glycine-aspartic acid (RGD) sequence is present in several ECM proteins, such as fibronectin, collagen type I, fibrinogen, laminin, vitronectin, and osteopontin. It is very critical to develop ECM-like substrates with well-controlled features for the investigation of influence of RGD on the behavior of tumor cells. In this study, poly(ethylene glycol) (PEG)-crosslinked poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)) hydrogels (PEMM) with different RGD contents were synthesized, fully characterized, and established as in vitro culture platforms to investigate the effects of RGD content on cancer stem cell (CSC) enrichment. The morphology, proliferation, and viability of SK-OV-3 ovarian cancer cells cultured on hydrogels with different RGD contents, the expression of CSC markers and malignant signaling pathway-related genes, and drug resistance were systematically evaluated. The cell aggregates formed on the hydrogel surface with a lower RGD content acquired certain CSC-like properties, thus drug resistance was enhanced. In contrast, the drug sensitivity of cells on the higher RGD content surface increased because of less CSC-like properties. However, the presence of RGD in the stiff hydrogels (PEMM2) had less effect on the stemness expression than did its presence in the soft hydrogels (PEMM1). The results suggest that RGD content and matrix stiffness can lead to synergetic effects on the expression of cancer cell stemness and the epithelial-mesenchymal transition (EMT), interleukin-6 (IL-6), and Wnt pathways.
Collapse
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
17
|
Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether-alt-maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020; 6:3310-3326. [DOI: 10.1021/acsbiomaterials.9b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Sheervalilou R, Lotfi H, Shirvaliloo M, Sharifi A, Nazemiyeh M, Zarghami N. Circulating MiR-10b, MiR-1 and MiR-30a Expression Profiles in Lung Cancer: Possible Correlation with Clinico-pathologic Characteristics and Lung Cancer Detection. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:118-129. [PMID: 32215263 DOI: 10.22088/ijmcm.bums.8.2.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Circulating microRNAs have been recognized as promising biomarkers for the detection of lung cancer. The objective of this study was to evaluate miR-10b, miR-1 and, miR-30a in the plasma samples of lung cancer patients to confirm any possible relevance in the early detection of lung cancer. Plasma samples from 47 non-small-cell lung cancer patients and 41 cancer-free subjects were evaluated for selected microRNAs using the real-time PCR method. To evaluate the tobacco smoking effects on microRNAs expression, the studied groups were categorized into two subgroups: never-smokers and smokers. MiR-1/miR-30a expression levels were significantly reduced in lung cancer, while the miR-10b level was significantly elevated. We found that smoking had significant effects on the levels of circulating microRNAs in the smokers of the cancer-free group (a significant up-regulation of miR-10b and significant down-regulation of miR-1/miR-30a), and lung cancer patients (a significant elevation of miR-10b). Receiver operating characteristic curve analysis showed that miR-10b with an area under the curve of 0.861, and miR-1/miR-30a with values of0.905 and 0.889 for the same parameter, could distinguish non-small-cell lung cancer patients from cancer-free subjects. Our findings demonstrated significant differences in the expression of microRNAs in lung cancer and the considerable effects of smoking on microRNAs levels. Area under curve analysis showed that miR-10b with 78% sensitivity/78% specificity, miR-1 with 95% sensitivity/80% specificity and miR-30a with 87% sensitivity/83% specificity,might be good (miR-10b/miR-30a) and excellent (miR-1) markers for lung cancer detection.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nazemiyeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Bahmanpour Z, Sheervalilou R, Choupani J, Shekari Khaniani M, Montazeri V, Mansoori Derakhshan S. A new insight on serum microRNA expression as novel biomarkers in breast cancer patients. J Cell Physiol 2019; 234:19199-19211. [PMID: 31026062 DOI: 10.1002/jcp.28656] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
Breast cancer (BC) is one of the widespread lethal diseases affecting a large number of women worldwide. As such, employing and identifying significant markers for detecting BC in different stages can assist in better diagnosis and management of the disease. Several diverse markers have been introduced for diagnosis, but their limitations, including low specificity and sensitivity, reduce their application. microRNAs (miRNAs), as short noncoding RNAs, have been shown to significantly influence gene expression in different disease pathologies, especially BC. Clearly, among different samples used for detecting miRNA expressions, circulating miRNAs present as promising and useful biomarkers. Among different body fluid samples, serum serves as one of the most reliable samples, thanks to its high stability under various severe conditions and some unique features. Extensive research has suggested that BC-related miRNAs can remain stable in the serum. The objective of this review is to describe different samples used for detecting miRNAs in BC subjects with emphasis on serum miRNAs. So, this study highlights serum miRNAs with the potential of acting as biomarkers for different stages of BC. We reviewed the possible correlation between potential miRNAs and the risk of early breast cancer, metastatic breast cancer, response to chemotherapy, and relapse.
Collapse
Affiliation(s)
- Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Choupani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Montazeri
- Department of Pathology, Imam Khomeini Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:126. [PMID: 30866999 PMCID: PMC6416947 DOI: 10.1186/s13046-019-1105-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background Cancer stem cells (CSCs) play an important role in the development of pancreatic cancer. We previously showed that the microRNA miR-137 is downregulated in clinical samples of pancreatic cancer, and its expression negatively regulates the proliferation and invasiveness of pancreatic cancer cells. Methods The stemness features of pancreatic cancer cells was detected by flow cytometry, immunofluorescence and sphere formation assay. Xenograft mouse models were used to assess the role of miR-137 in stemness features of pancreatic cancer cells in vivo. Dual-luciferase reporter assays were used to determine how miR-137 regulates KLF12. Bioinformatics and Chromatin immunoprecipitation analysis of KLF12 recruitment to the DVL2 promoters. Involvement of the Wnt/β-catenin pathways was investigated by western blot and Immunohistochemistry. Results miR-137 inhibits pancreatic cancer cell stemness in vitro and vivo. KLF12 as miR-137 target inhibits CSC phenotype in pancreatic cancer cells. Suppression of KLF12 by miR-137 inhibits Wnt/β-catenin signalling. KLF12 expression correlates with DVL2 and canonical Wnt pathway in clinical pancreatic cancer. Conclusion Our results suggest that miR-137 reduces stemness features of pancreatic cancer cells by Targeting KLF12-associated Wnt/β-catenin pathways and may identify new diagnostic and therapeutic targets in pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1105-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019; 141:466-480. [DOI: 10.1016/j.phrs.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
|
23
|
Wei ZJ, Fan BY, Liu Y, Ding H, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, Li A, Feng SQ. MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regen Res 2019; 14:1462-1469. [PMID: 30964074 PMCID: PMC6524508 DOI: 10.4103/1673-5374.253532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
Collapse
Affiliation(s)
- Zhi-Jian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao-Shuai Tang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Da-Yu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-Xiao Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yuan Zheng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ang Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Akbarzadeh M, Majidinia M, Fekri Aval S, Mahbub S, Zarghami N. Molecular Targeting of Notch Signaling Pathway by DAPT in Human Ovarian Cancer: Possible Anti Metastatic Effects. Asian Pac J Cancer Prev 2018; 19:3473-3477. [PMID: 30583672 PMCID: PMC6428525 DOI: 10.31557/apjcp.2018.19.12.3473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian cancer is one of the most important gynecological malignancies, causing significant mortality.
Recently, there has been extensive attention to the involvement of signaling cascades in its initiation/progression. In this
study, we focused on the possible role of Notch signal transduction in proliferation and metalloproteinase 2 and 9 function
in human ovarian cancer OVCAR-3 cells. Methods: MTT proliferation assays were used to evaluate effects of a DAPT
inhibitor on cell proliferation. For measurement of Hes-1 mRNA levels, quantitative reverse transcription polymerase
chain reaction (qRT-PCR) was applied following 48 h incubation with the inhibitor. In addition, metalloproteinase
(MMPs) activity was assessed by zymography. Results: Inhibition of Notch signaling resulted in a significant reduction
in OVCAR-3 cell proliferation. Additionally, DAPT treatment of cells significantly decreased Hes-1 mRNA levels
(p < 0.05) as well as activity of MMP-2 and -9 (p < 0.05). Conclusion: Our results suggested that suppression of Notch
signaling by a specific inhibitor can effectively decrease proliferation and the potential for metastasis of OVCAR-3 cells
via a reduction in the activity of metalloproteinases 2 and 9. Thus, pharmacological targeting of the Notch signaling
pathway could be a promising future treatment for ovarian cancer.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | | | | | | | | |
Collapse
|
25
|
Samadani AA, Norollahi SE, Rashidy-Pour A, Mansour-Ghanaei F, Nemati S, Joukar F, Afshar AM, Ghazanfari S, Safizadeh M, Rostami P, Gatei M. Cancer signaling pathways with a therapeutic approach: An overview in epigenetic regulations of cancer stem cells. Biomed Pharmacother 2018; 108:590-599. [DOI: 10.1016/j.biopha.2018.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
|
26
|
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother 2018; 106:1668-1677. [PMID: 30170355 DOI: 10.1016/j.biopha.2018.07.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger a big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. The reciprocal behavior of miRNAs in the regulation of epigenetic modifiers, while being regulated by them, unlocks a new opportunity in order to design some epigenetic-based miRNAs able to silence or sensitize these effectors in leukemia.
Collapse
Affiliation(s)
- Fatemeh Memari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Joneidi
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Aval SF, Zarghami N, Alizadeh E, Mohammadi SA. The effect of ketorolac and triamcinolone acetonide on adipogenic and hepatogenic differentiation through miRNAs 16/15/195: Possible clinical application in regenerative medicine. Biomed Pharmacother 2018; 97:675-683. [DOI: 10.1016/j.biopha.2017.10.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
|
28
|
MicroRNAs and adipocytokines: Promising biomarkers for pharmacological targets in diabetes mellitus and its complications. Biomed Pharmacother 2017; 93:1326-1336. [DOI: 10.1016/j.biopha.2017.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
|
29
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|