1
|
Garcia CSC, Garcia PMC, Santos OBAF, Steffens D, Martins ST, Pranke P, Crespo JS, Henriques JAP, Roesch-Ely M. Red propolis extract associated to platelet-rich plasma and stromal cells with focus in cell therapy and functional tissue regeneration. AN ACAD BRAS CIENC 2024; 96:e20240100. [PMID: 39166613 DOI: 10.1590/0001-3765202420240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 08/23/2024] Open
Abstract
The use of platelet-rich plasma (PRP) and adipose-derived stromal cells (ADSC) have been investigated as a form of wound healing enhancement. The objective of this work was to evaluate the association of red propolis (RP) and PRP as inducers of ADSC for application in tissue regeneration. Adipose tissue post-collection and post-cryopreservation was isolated with type II collagenase, characterized by flow cytometry, and differentiated into osteogenic, chondrogenic and adipose cell. The viability of ADSC was evaluated when exposed to different concentrations of RP using the MTT and trypan blue assay. Acridine orange and ethidium bromide (AO/EB) was performed to evaluate cell death events. Horizontal migration methods were investigated in ADSC using autologous and homologous PRP associated with RP (PRP/RP). All assays were processed in triplicate. Flow cytometry and cellular differentiation showed that type II collagenase was effective for isolating ADSC post-collection and post-cryopreservation. RP extracts at concentrations of up to 50 μg.mL-1 presented no cytotoxic effects. Association of PRP and RP at 25 and 50 μg.ml-1 influenced ADSC migration, with total closure on the seventh day after exposition. The results here presented could stimulate proliferation of ADSC cells that may contribute directly or indirectly to the reconstructive process of tissue regeneration.
Collapse
Affiliation(s)
- Charlene S C Garcia
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Paulo Miguel C Garcia
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
- Brazilian Society of Plastic Surgery - SBCP, Rua Funchal 129, 2º andar, Vila Olímpia, 04551-060 São Paulo, SP, Brazil
| | - Otávio B A F Santos
- Brazilian Society of Anesthesiology - SBA, Rua Prof. Alfredo Gomes, 36, Botafogo, 22251-080 Rio de Janeiro, RJ, Brazil
| | - Daniela Steffens
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Sandro T Martins
- Universidade de Caxias do Sul, Area of Knowledge of Exact Sciences and Engineering, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Patricia Pranke
- Universidade Federal do Rio Grande do Sul, Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga, 2752, Azenha, 90610-000 Porto Alegre, RS, Brazil
- Stem Cell Research Institute, R. dos Andradas, 1464 - Conj 133, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Janaína S Crespo
- Universidade de Caxias do Sul, Area of Knowledge of Exact Sciences and Engineering, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - João Antonio P Henriques
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Mariana Roesch-Ely
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
2
|
Vaseghi A, Parchin RA, Chamanie KR, Herb M, Maleki H, Sadeghizadeh M. Encapsulation of propolis extracted with methylal in the chitosan nanoparticles and its antibacterial and cell cytotoxicity studies. BMC Complement Med Ther 2024; 24:165. [PMID: 38641781 PMCID: PMC11027551 DOI: 10.1186/s12906-024-04472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 μg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.
Collapse
Affiliation(s)
- Akbar Vaseghi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Ashrafi Parchin
- Excir Faravaran Sabalan Company, Ardabil Science and Technology Park, Ardabil, Iran
| | | | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, 50935, Germany
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne, 50939, Germany
- Center for Molecular Medicine Cologne, CMMC Research Center, Cologne, 50931, Germany
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad St, Tehran, Iran.
| |
Collapse
|
3
|
Gotardo LRM, de Carvalho FAL, Gomes Quirino DJ, Favaro-Trindade CS, de Alencar SM, de Oliveira AL, Trindade MA. Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract. Foods 2023; 12:4419. [PMID: 38137222 PMCID: PMC10742745 DOI: 10.3390/foods12244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Vacuum-packed lamb sausages with or without red propolis extract and a reduced sodium nitrite content were evaluated for oxidative and microbiological stability during storage for 21 days at 2 °C. The following treatments were evaluated: EN150 (control, base formulation (BF) + 500 mg/kg sodium erythorbate and 150 mg/kg sodium nitrite); EN75 (BF + 500 mg/kg sodium erythorbate and 75 mg/kg sodium nitrite); P1N75 (without the addition of erythorbate, BF + 1800 mg/kg propolis extract and 75 mg/kg sodium nitrite); and P2N75 (without the addition of erythorbate, BF + 3600 mg/kg propolis extract and 75 mg/kg sodium nitrite). Analyses were conducted to characterize the samples on day 0 with respect to the proximate composition (moisture, protein, fat, and ash) and sensory acceptance. Stability during refrigerated storage was evaluated on days 0, 7, 14 and 21 for the parameters pH, color profile (L*, a*, and b*), TBARs index (oxidative stability) and microbiological count of aerobic psychrotrophic microorganisms. Texture profile, cooking weight loss (WLC), peroxide index and free fatty acids were evaluated on days 0 and 21. The treatments with propolis and reduced nitrite (EN150 and P1N75) showed a red color intensity (a*) similar to the treatment with erythorbate and the same nitrite content (EN75) at the end of storage, maintaining the characteristic reddish color of the sausages. The extract slowed down lipid oxidation during storage, especially P2N75, which showed the lowest level of TBARS (0.39 mg MDA/kg) and the peroxide index (2.13 mEq g O2) on day 21. The residual nitrite value in EN75 was the lowest (p < 0.05) on day 21, showing that synthetic antioxidants are more efficient than the extract in nitrite reduction reactions. The results for the counts of psychrotrophic microorganisms showed that the extract did not have the expected antimicrobial effect on the growth of this microorganisms, and leveling the results revealed no differences (p < 0.05) between the treatments. Despite the red propolis extract not showing a significant antimicrobial improvement in lamb sausages, it can be considered a healthy option with good prospects for replacing synthetic antioxidants with a natural product.
Collapse
Affiliation(s)
- Luciana Ruggeri Menezes Gotardo
- School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga 13635-900, SP, Brazil; (L.R.M.G.); (C.S.F.-T.)
| | | | - Dannaya Julliethy Gomes Quirino
- School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga 13635-900, SP, Brazil; (L.R.M.G.); (C.S.F.-T.)
| | - Carmen Sílvia Favaro-Trindade
- School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga 13635-900, SP, Brazil; (L.R.M.G.); (C.S.F.-T.)
| | - Severino Mathias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo (USP), Piracicaba 13418-900, SP, Brazil
| | - Alessandra Lopes de Oliveira
- School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga 13635-900, SP, Brazil; (L.R.M.G.); (C.S.F.-T.)
| | - Marco Antonio Trindade
- School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga 13635-900, SP, Brazil; (L.R.M.G.); (C.S.F.-T.)
| |
Collapse
|
4
|
Antitumor Effects of Poplar Propolis on DLBCL SU-DHL-2 Cells. Foods 2023; 12:foods12020283. [PMID: 36673375 PMCID: PMC9857396 DOI: 10.3390/foods12020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Propolis is resinous natural product produced by Western honeybees using beeswax and plant and bud exudates, which has a wide range of biological activities, including antioxidation, antibacterial, anti-inflammation, immune regulation, antitumor, and so on. Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer, and accounts for about 30% of all lymphomas. The effect of poplar propolis on DLBCL has not been reported. The IC50 of propolis on the proliferation of DLBCL SU-DHL-2 cell line and its proteins and gene expressions were detected by CCK-8 kit, label-free proteomic, and RT-PCR. The results showed that the IC50 of propolis at the 5 × l05/mL cell for 24 h was 5.729 μg/mL. Label-free-based proteomics analysis showed that there were 115 differentially expressed proteins (61 up-regulated and 54 down-regulated proteins) between IC50 dose-treated and solvent control groups. There were 32.47% differential proteins located in the nucleus, 20.78% in the cytoplasm, and 14.29% in mitochondria. The most significant different pathway (p = 0.0016) of protein enrichment was ferroptosis (including glutamate-cysteine ligase regulatory subunit, ferritin, and heme oxygenase). The relative expression trend of 17 of the total 22 genes selected according to proteomics results was in line with their encoded protein. The highest protein-protein interaction was serine/threonine-protein kinase PLK, which interacted with 16 differential proteins. In conclusion, poplar propolis inhibited SU-DHL-2 cells via ferroptosis pathway, accelerating cell death and down-regulated serine/threonine-protein kinase PLK1, affecting apoptosis of cell. This result provides a theoretical basis for the treatment of DLBCL using propolis.
Collapse
|
5
|
de Freitas KS, da Silva LHD, Squarisi IS, de Souza Oliveira LT, Ribeiro AB, Alves BS, Esperandim TR, de Melo MRS, Ozelin SD, Lemes DC, Bastos JK, Veneziani RCS, Tavares DC. Red propolis exhibits chemopreventive effect associated with antiproliferative and anti-inflammatory activities. Toxicol Res (Camb) 2022; 11:750-757. [PMID: 36337250 PMCID: PMC9618114 DOI: 10.1093/toxres/tfac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION Red propolis is synthetized from exudates of Dalbergia ecastophyllum (L) Taub. and Symphonia globulifera L.f., presents isoflavones, guttiferone E, xanthochymol, and oblongifolin B and has anti-inflammatory, antioxidant, and antiproliferative activities. OBJECTIVES This study aimed to evaluate the antigenotoxic and anticarcinogenic potential of red propolis hydroalcoholic extract (RPHE) in rodents. METHODS The influence of RPHE in doxorubicin (DXR)-induced genotoxicity was investigated through the micronucleus test in Swiss mice. Blood samples were also collected to investigate oxidative stress, hepatotoxicity, and nephrotoxicity. Was investigated the influence of RPHE in 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci, as well as its influence in proliferating cell nuclear antigen (PCNA) and the cyclooxygenase-2 (COX-2) expression in colon of rats, by immunohistochemistry. RESULTS The results showed that RPHE (48 mg/kg) reduced DXR-induced genotoxicity. Animals treated with DXR showed significantly lower GSH serum levels in comparison to the negative control. RPHE treatments did not attenuated significantly the DXR-induced GSH depletion. No difference was observed in cytotoxicity parameters of mice hematopoietic tissues between the treatment groups, as well as the biochemical parameters of hepatotoxicity and nephrotoxicity. RPHE (12 mg/kg) reduced the DMH-induced carcinogenicity and toxicity, as well as DMH-induced PCNA and COX-2 expression in colon tissue. CONCLUSION Therefore, was observed that the RPHE has chemopreventive effect, associated to antiproliferative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Karoline Soares de Freitas
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Lucas Henrique Domingos da Silva
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Iara Silva Squarisi
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Lucas Teixeira de Souza Oliveira
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Arthur Barcelos Ribeiro
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Bianca Silva Alves
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Tábata Rodrigues Esperandim
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Matheus Reis Santos de Melo
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Saulo Duarte Ozelin
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Danieli Cristina Lemes
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café Ave, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Rodrigo Cassio Sola Veneziani
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Denise Crispim Tavares
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| |
Collapse
|
6
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
7
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
8
|
Comparison of the Biological Potential and Chemical Composition of Brazilian and Mexican Propolis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Propolis is a resinous substance collected by bees from plants and its natural product is available as a safe therapeutic option easily administered orally and readily available as a natural supplement and functional food. In this work, we review the most recent scientific evidence involving propolis from two countries (Brazil and Mexico) located in different hemispheres and with varied biomes. Brazil has a scientifically well documented classification of different types of propolis. Although propolis from Brazil and Mexico present varied compositions, they share compounds with recognized biological activities in different extraction processes. Gram-negative bacteria growth is inhibited with lower concentrations of different types of propolis extracts, regardless of origin. Prominent biological activities against cancer cells and fungi were verified in the different types of extracts evaluated. Antiprotozoal activity needs to be further evaluated for propolis of both origins. Regarding the contamination of propolis (e.g., pesticides, toxic metals), few studies have been carried out. However, there is evidence of chemical contamination in propolis by anthropological action. Studies demonstrate the versatility of using propolis in its different forms (extracts, products, etc.), but several potential applications that might improve the value of Brazilian and Mexican propolis should still be investigated.
Collapse
|
9
|
Niyomtham N, Koontongkaew S, Yingyongnarongkul BE, Utispan K. Apis mellifera propolis enhances apoptosis and invasion inhibition in head and neck cancer cells. PeerJ 2021; 9:e12139. [PMID: 34589307 PMCID: PMC8434809 DOI: 10.7717/peerj.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023] Open
Abstract
Background Propolis is a resinous product accumulated from several plant sources that possess a wide range of therapeutic properties, including anti-cancer activities. However, the role of honeybee-produced propolis on head and neck squamous carcinoma (HNSCC) is not well understood. The aim of this study was to investigate the effects of Apis mellifera propolis on apoptosis and invasiveness in HNSCC cell lines. Methods Ethyl acetate extract of propolis (EAEP) was prepared from A. mellifera beehives using liquid–liquid extraction. High-performance liquid chromatography coupled with electrospray ionization-time of flight-mass spectrometry (HPLC-ESI-TOF-MS) was used to determine the flavonoids in EAEP. Isogenic HNSCC cell lines derived from primary (HN30 and HN4) and metastatic site (HN31 and HN12) were used in this study. The cytotoxicity, apoptosis, invasion, and MMP activity of EAEP on HNSCC cells were determined using an MTT assay, flow cytometry, Matrigel invasion assay, and gelatinase zymography, respectively. Results We found that EAEP exhibited cytotoxic activity and induced apoptosis in the HNSCC cell lines. Furthermore, EAEP significantly decreased HNSCC cell invasion by reducing MMP-2 and MMP-9 activity. Two flavonoids, galangin and apigenin, were identified in EAEP by HPLC-ESI-TOF-MS. The results suggest that EAEP promotes apoptosis and exerts anti-invasion potential by inhibiting MMP-2 and MMP-9 activity in HNSCC cell lines. These inhibitory effects may be mediated by galangin and apigenin.
Collapse
Affiliation(s)
- Nattisa Niyomtham
- Walailak University International College of Dentistry, Walailak University, Bangkok, Thailand
| | - Sittichai Koontongkaew
- Walailak University International College of Dentistry, Walailak University, Bangkok, Thailand
| | | | | |
Collapse
|
10
|
Wu J, Xu W, Ma L, Sheng J, Ye M, Chen H, Zhang Y, Wang B, Liao M, Meng T, Zhou Y, Chen H. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY) 2021; 13:18191-18222. [PMID: 34289449 PMCID: PMC8351708 DOI: 10.18632/aging.203156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
This investigation attempted to discern whether formononetin restrained progression of triple-negative breast cancer (TNBC) by blocking lncRNA AFAP1-AS1-miR-195/miR-545 axis. We prepared TNBC cell lines (i.e. MDA-MB-231 and BT-549) and normal human mammary epithelial cell line (i.e. MCF-10A) in advance, and the TNBC cell lines were, respectively, transfected by pcDNA3.1-lncRNA AFAP1-AS1, si-lncRNA AFAP1-AS1, pcDNA6.2/GW/EmGFP-miR-545 or pcDNA6.2/GW/EmGFP-miR-195. Resistance of TNBC cells in response to 5-Fu, adriamycin, paclitaxel and cisplatin was evaluated through MTT assay, while potentials of TNBC cells in proliferation, migration and invasion were assessed via CCK8 assay and Transwell assay. Consequently, silencing of lncRNA AFAP1-AS1 impaired chemo-resistance, proliferation, migration and invasion of TNBC cells (P<0.05), and over-expression of miR-195 and miR-545, which were sponged and down-regulated by lncRNA AFAP1-AS1 (P<0.05), significantly reversed the promoting effect of pcDNA3.1-lncRNA AFAP1-AS1 on proliferation, migration, invasion and chemo-resistance of TNBC cells (P<0.05). Furthermore, CDK4 and Raf-1, essential biomarkers of TNBC progression, were, respectively, subjected to target and down-regulation of miR-545 and miR-195 (P<0.05), and they were promoted by pcDNA3.1-lncRNA AFAP1-AS1 at protein and mRNA levels (P<0.05). Additionally, formononetin significantly decreased expressions of lncRNA AFAP1-AS1, CDK4 and Raf-1, while raised miR-195 and miR-545 expressions in TNBC cells (P<0.05), and exposure to it dramatically contained malignant behaviors of TNBC cells (P<0.05). In conclusion, formononetin alleviated TNBC malignancy by suppressing lncRNA AFAP1-AS1-miR-195/miR-545 axis, suggesting that molecular targets combined with traditional Chinese medicine could yield significant clinical benefits in TNBC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Jiayu Sheng
- Department of Breast Surgery, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hao Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuzhu Zhang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bing Wang
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Mingjuan Liao
- Department of Traditional Chinese Medicine, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Meng
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yue Zhou
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| |
Collapse
|
11
|
dos Santos CM, de Souza Mesquita LM, Braga ARC, de Rosso VV. Red Propolis as a Source of Antimicrobial Phytochemicals: Extraction Using High-Performance Alternative Solvents. Front Microbiol 2021; 12:659911. [PMID: 34168628 PMCID: PMC8217612 DOI: 10.3389/fmicb.2021.659911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Propolis is a resinous material rich in flavonoids and involved in several biological activities such as antimicrobial, fungicide, and antiparasitic functions. Conventionally, ethanolic solutions are used to obtain propolis phytochemicals, which restrict their use in some cultures. Given this, we developed an alcohol-free high-performance extractive approach to recover antibacterial and antioxidants phytochemicals from red propolis. Thus, aqueous-solutions of ionic liquids (IL) and eutectic solvents were used and then tested for their total flavonoids, antioxidant, and antimicrobial activities. The surface-responsive technique was applied regarding some variables, namely, the time of extraction, the number of extractions, and cavitation power (W), to optimize the process (in terms of higher yields of flavonoids and better antioxidant activity). After that, four extractions with the same biomass (repetitions) using 1-hexyl-3-methylimidazolium chloride [C6mim]Cl, under the operational conditions fixed at 3.3 min and 300 W, were able to recover 394.39 ± 36.30 mg RuE. g-1 of total flavonoids, with total antioxidant capacity evaluated up to 7595.77 ± 5.48 μmol TE. g-1 dried biomass, besides inhibiting the growth of Staphylococcus aureus and Salmonella enteritidis bacteria (inhibition halo of 23.0 ± 1.0 and 15.7 ± 2.1, respectively). Aiming at the development of new technologies, the antimicrobial effect also presented by [C6mim]Cl may be appealing, and future studies are required to understand possible synergistic actions with propolis phytochemicals. Thereby, we successfully applied a completely alcohol-free method to obtain antimicrobials phytochemicals and highly antioxidants from red propolis, representing an optimized process to replace the conventional extracts produced until now.
Collapse
Affiliation(s)
- Cíntia M. dos Santos
- Postgraduate Program in Nutrition, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. de Souza Mesquita
- Postgraduate Program in Interdisciplinary Health Science, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Anna Rafaela C. Braga
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Veridiana V. de Rosso
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
12
|
Chinese Propolis Suppressed Pancreatic Cancer Panc-1 Cells Proliferation and Migration via Hippo-YAP Pathway. Molecules 2021; 26:molecules26092803. [PMID: 34068565 PMCID: PMC8126155 DOI: 10.3390/molecules26092803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most malignant cancers with high mortality. Therefore, it is of great urgency to develop new agents that could improve the prognosis of Pancreatic cancer patients. Chinese propolis (CP), a flavonoid-rich beehive product, has been reported to have an anticancer effect. In this study, we applied CP to the human Pancreatic cancer cell line Panc-1 to verify its impact on tumor development. CP induced apoptosis in Panc-1 cells from 12.5 µg/mL in a time- and dose-dependent manner with an IC50 value of approximately 50 µg/mL. Apoptosis rate induced by CP was examined by Annexing FITC/PI assay. We found that 48 h treatment with 50 µg/mL CP resulted in 34.25 ± 3.81% apoptotic cells, as compared to 9.13 ± 1.76% in the control group. We further discovered that the Panc-1 cells tended to be arrested at G2/M phase after CP treatment, which is considered to contribute to the anti-proliferation effect of CP. Furthermore, our results demonstrated that CP suppressed Panc-1 cell migration by regulating epithelial-mesenchymal transition (EMT). Interestingly, the Hippo pathway was activated in Panc-1 cells after CP treatment, serving as a mechanism for the anti-pancreatic cancer effect of CP. These findings provide a possibility of beehive products as an alternative treatment for pancreatic cancer.
Collapse
|
13
|
Silveira MAD, De Jong D, Berretta AA, Galvão EBDS, Ribeiro JC, Cerqueira-Silva T, Amorim TC, Conceição LFMRD, Gomes MMD, Teixeira MB, Souza SPD, Santos MHCAD, San Martin RLA, Silva MDO, Lírio M, Moreno L, Sampaio JCM, Mendonça R, Ultchak SS, Amorim FS, Ramos JGR, Batista PBP, Guarda SNFD, Mendes AVA, Passos RDH. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother 2021; 138:111526. [PMID: 34311528 PMCID: PMC7980186 DOI: 10.1016/j.biopha.2021.111526] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes challenging immune and inflammatory phenomena. Though various therapeutic possibilities have been tested against coronavirus disease 2019 (COVID-19), the most adequate treatment has not yet been established. Propolis is a natural product with considerable evidence of immunoregulatory and anti-inflammatory activities, and experimental data point to potential against viral targets. We hypothesized that propolis can reduce the negative effects of COVID-19. Methods In a randomized, controlled, open-label, single-center trial, hospitalized adult COVID-19 patients were treated with a standardized green propolis extract (EPP-AF®️) as an adjunct therapy. Patients were allocated to receive standard care plus an oral dose of 400 mg or 800 mg/day of green propolis for seven days, or standard care alone. Standard care included all necessary interventions, as determined by the attending physician. The primary end point was the time to clinical improvement, defined as the length of hospital stay or oxygen therapy dependency duration. Secondary outcomes included acute kidney injury and need for intensive care or vasoactive drugs. Patients were followed for 28 days after admission. Results We enrolled 124 patients; 40 were assigned to EPP-AF®️ 400 mg/day, 42 to EPP-AF®️ 800 mg/day, and 42 to the control group. The length of hospital stay post-intervention was shorter in both propolis groups than in the control group; lower dose, median 7 days versus 12 days (95% confidence interval [CI] −6.23 to −0.07; p = 0.049) and higher dose, median 6 days versus 12 days (95% CI −7.00 to −1.09; p = 0.009). Propolis did not significantly affect the need for oxygen supplementation. In the high dose propolis group, there was a lower rate of acute kidney injury than in the controls (4.8 vs 23.8%), (odds ratio [OR] 0.18; 95% CI 0.03–0.84; p = 0.048). No patient had propolis treatment discontinued due to adverse events. Conclusions Addition of propolis to the standard care procedures resulted in clinical benefits for the hospitalized COVID-19 patients, especially evidenced by a reduction in the length of hospital stay. Consequently, we conclude that propolis can reduce the impact of COVID-19.
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo (USP), Ribeirão Preto, SP 14049-900, Brazil
| | - Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP 14020-670, Brazil
| | - Erica Batista Dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Juliana Caldas Ribeiro
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Universidade de Salvador - UNIFACS, Avenida Luís Viana, 3100-3146 Pituaçu, Imbuí, Salvador 41720-200, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | - Thiago Cerqueira-Silva
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador 40296-710, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Thais Chaves Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil; Universidade do Estado da Bahia (UNEB), Rua Silveira Martin 2555, Cabula, Salvador 41150-000, BA , Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | | | - Raissa Lanna Araújo San Martin
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Márcio de Oliveira Silva
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Monique Lírio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Lis Moreno
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Julio Cezar Miranda Sampaio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Renata Mendonça
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Silviana Salles Ultchak
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Fabio Santos Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - João Gabriel Rosa Ramos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Paulo Benigno Pena Batista
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Suzete Nascimento Farias da Guarda
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Ana Verena Almeida Mendes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Rogerio da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | |
Collapse
|
14
|
Bhuyan DJ, Alsherbiny MA, Low MN, Zhou X, Kaur K, Li G, Li CG. Broad-spectrum pharmacological activity of Australian propolis and metabolomic-driven identification of marker metabolites of propolis samples from three continents. Food Funct 2021; 12:2498-2519. [PMID: 33683257 DOI: 10.1039/d1fo00127b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Propolis is a by-product of honeybee farming known for its broad therapeutic benefits around the world and is extensively used in the health food and beverage industry. Despite Australia being one of the world's megadiverse countries with rich flora and fauna, Australian propolis samples have not been explored adequately with most in vitro and in vivo studies centred on their Brazilian and Chinese counterparts. In view of this, our study was designed to investigate the chemical composition and anti-proliferative, antibacterial, antifungal, anti-inflammatory and antioxidant properties of Australian propolis (AP-1) extract to draw a comparison with Brazilian (BP-1) and Chinese propolis (CP-1) extracts. The AP-1 extract displayed significantly greater anti-proliferative activity against the MCF7 and the MDA-MB-231 metastatic breast adenocarcinoma cell lines compared to BP-1 and CP-1 (p < 0.05). Similar trends were also observed in the antibacterial (Escherichia coli and Staphylococcus aureus), anti-inflammatory (lipopolysaccharide-induced RAW264.7 macrophages) and antioxidant assays (ABTS, DPPH and CUPRAC) with AP-1 exhibiting more potent activity than BP-1 and CP-1. The ultra-high performance liquid chromatography (UPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (qTOF-MS) and chemometrics implementing unsupervised PCA and supervised OPLS-DA analyses of the propolis samples from Australia, China and Brazil revealed 67 key discriminatory metabolites belonging to seven main chemical classes including flavonoids, triterpenes, acid derivatives, stilbenes, steroid derivatives, diterpenes and miscellaneous compounds. Additionally, seven common phenolic compounds were quantified in the samples. Further mechanistic studies are necessary to elucidate the modes of action of Australian propolis for its prospective use in the food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep 2021; 11:1974. [PMID: 33479338 PMCID: PMC7820602 DOI: 10.1038/s41598-021-81281-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are highlighted due to their low toxicity, compatibility with the human body, high surface area to volume ratio, and surfaces that can be easily modified with ligands. Biosynthesis of AuNPs using plant extract is considered a simple, low-cost, and eco-friendly approach. Brazilian Red Propolis (BRP), a product of bees, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. Here, we described the biosynthesis of AuNPs using BRP extract (AuNPextract) and its fractions (AuNPhexane, AuNPdichloromethane, AuNPethyl acetate) and evaluated their structural properties and their potential against microorganisms and cancer cells. AuNPs showed a surface plasmon resonance (SPR) band at 535 nm. The sizes and morphologies were influenced by the BRP sample used in the reaction. FTIR and TGA revealed the involvement of bioactive compounds from BRP extract or its fractions in the synthesis and stabilization of AuNPs. AuNPdichloromethane and AuNPhexane exhibited antimicrobial activities against all strains tested, showing their efficacy as antimicrobial agents to treat infectious diseases. AuNPs showed dose-dependent cytotoxic activity both in T24 and PC-3 cells. AuNPdichloromethane and AuNPextract exhibited the highest in vitro cytotoxic effect. Also, the cytotoxicity of biogenic nanoparticles was induced by mechanisms associated with apoptosis. The results highlight a potential low-cost green method using Brazilian red propolis to synthesize AuNPs, which demonstrated significant biological properties.
Collapse
Affiliation(s)
- C E A Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - L B Silva
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - G V Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - T S Silva
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - S R Ambrosio
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - R C S Veneziani
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - P D Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
16
|
3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity. Molecules 2020; 25:molecules25215082. [PMID: 33147742 PMCID: PMC7662765 DOI: 10.3390/molecules25215082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA–Ps scaffolds are very useful structures for wound dressing applications.
Collapse
|
17
|
Chinese Propolis Inhibits the Proliferation of Human Gastric Cancer Cells by Inducing Apoptosis and Cell Cycle Arrest. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2743058. [PMID: 32774408 PMCID: PMC7396018 DOI: 10.1155/2020/2743058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Special Chinese propolis sourced from the Changbai Mountains (CBMP) in Northeast China is rich in specific flavonoids and phenolic acids and its bioactivity has not been reported. This study aimed to investigate the antiproliferative effect of CBMP on cancer cells and its molecular mechanisms. Different cancer cell lines were treated with the ethanol extracts of CBMP for 24 hours before the cell viability and mechanism measurements. The results showed CBMP had weak activities against human pancreatic cancer cell PANC1, human lung cancer cell A549, human colon cancer cell HCT116, human liver cancer cell HepG2, human bladder cancer cell T24, and human breast cancer cell MDA-MB-231, but it significantly inhibited the growth of human gastric cancer SGC-7901 cells, caused cell apoptosis and cell cycle arrest in S phase, with increased production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential (MMP). The results indicate that Chinese propolis sourced from the Changbai Mountains selectively inhibits the proliferation of human gastric cancer SGC-7901 cells by inducing both death receptor-induced apoptosis and mitochondria-mediated apoptosis, and cell cycle arrest in S phase. These activities and mechanisms help understand the anticancer action of propolis and its active compounds.
Collapse
|
18
|
de Vasconcelos ACP, Morais RP, Novais GB, da S Barroso S, Menezes LRO, Dos Santos S, da Costa LP, Correa CB, Severino P, Gomes MZ, Albuquerque Júnior RLC, Cardoso JC. In situ photocrosslinkable formulation of nanocomposites based on multi-walled carbon nanotubes and formononetin for potential application in spinal cord injury treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102272. [PMID: 32730980 DOI: 10.1016/j.nano.2020.102272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CN) have been studied to treat spinal cord injuries because of its electrical properties and nanometric dimensions. This work aims to develop a photopolymerizable hydrogel containing CN functionalized with an anti-inflammatory molecule to be used in situ on spinal cord injuries. The CN functionalization step was done using the drug (formononetin). The nanocomposites were characterized by morphological analysis, FTIR, Raman Spectroscopy, thermal analysis and cytotoxicity assays (MTT and HET-CAM). The nanocomposites were incorporated into gelatin methacryloyl hydrogel and exposed to UV light for photopolymerization. The volume of the formulation and the UV exposition time were also analyzed. The CN characterization showed that formononetin acted as a functionalization agent. The functionalized CN showed safe characteristics and can be incorporated in photocrosslinkable formulation. The UV exposition time for the formulation photopolymerization was compatible with the cell viability and also occurred in the injury site.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luiz P da Costa
- Federal University of Amazonas (UFAM), Itacoatiara/AM, Brazil.
| | | | - Patrícia Severino
- Tiradentes University (UNIT), Aracaju/SE, Brazil; Technology and Research Institute (ITP), Aracaju/SE, Brazil.
| | - Margarete Z Gomes
- Tiradentes University (UNIT), Aracaju/SE, Brazil; Technology and Research Institute (ITP), Aracaju/SE, Brazil.
| | | | - Juliana C Cardoso
- Tiradentes University (UNIT), Aracaju/SE, Brazil; Technology and Research Institute (ITP), Aracaju/SE, Brazil.
| |
Collapse
|
19
|
de Figueiredo KA, da Silva HDP, Miranda SLF, Gonçalves FJDS, de Sousa AP, de Figueiredo LC, Feres M, Bueno-Silva B. Brazilian Red Propolis Is as Effective as Amoxicillin in Controlling Red-Complex of Multispecies Subgingival Mature Biofilm In Vitro. Antibiotics (Basel) 2020; 9:antibiotics9080432. [PMID: 32707856 PMCID: PMC7459511 DOI: 10.3390/antibiotics9080432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of Brazilian Red Propolis (BRP) extract on seven-day-old multispecies subgingival biofilms. Mixed biofilm cultures containing 31 species associated with periodontal health or disease were grown for six days on a Calgary device. Then, mature biofilms were treated for 24 h with BRP extract at different concentrations (200-1600 µg/mL), amoxicillin (AMOXI) at 54 µg/mL (positive control) or vehicle (negative control). Biofilm metabolic activity was determined by colorimetry, and bacterial counts/proportions were determined by DNA-DNA hybridization. Data were analyzed by Kruskal-Wallis and Dunn's tests. Treatment with BRP at 1600, 800 and 400 μg/mL reduced biofilm metabolic activity by 56%, 56% and 57%, respectively, as compared to 65% reduction obtained with AMOXI. Mean total cell counts were significantly reduced in all test groups (~50-55%). Lower proportions of red, green and yellow complex species were observed upon treatment with BRP (400 µg/mL) and AMOXI, but only AMOXI reduced the proportions of Actinomyces species. In conclusion, BRP extract was as effective as AMOXI in killing seven-day-old multispecies biofilm pathogens and did not affect the levels of the host-compatible Actinomyces species. These data suggest that BRP may be an alternative to AMOXI as an adjunct in periodontal therapy. In vivo studies are needed to validate these results.
Collapse
|
20
|
Banzato TP, Gubiani JR, Bernardi DI, Nogueira CR, Monteiro AF, Juliano FF, de Alencar SM, Pilli RA, Lima CAD, Longato GB, Ferreira AG, Foglio MA, Carvalho JED, Vendramini-Costa DB, Berlinck RGS. Antiproliferative Flavanoid Dimers Isolated from Brazilian Red Propolis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1784-1793. [PMID: 32525315 DOI: 10.1021/acs.jnatprod.9b01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein reported are results of the chemical and biological investigation of red propolis collected at the Brazilian Northeast coastline. New propolones A-D (1-4), with a 3-{3-[(2-phenylbenzofuran-3-yl)methyl]phenyl}chromane skeleton; propolonones A-C (5-7), with a 3-[3-(3-benzylbenzofuran-2-yl)phenyl]chromane skeleton; and propolol A (8), with a 6-(3-benzylbenzofuran-2-yl)-3-phenylchromane skeleton, were isolated as constituents of Brazilian red propolis by cytotoxicity-guided assays and structurally identified by analysis of their spectroscopic data. Propolone B (2) and propolonone A (5) display significant cytotoxic activities against an ovarian cancer cell line expressing a multiple drug resistance phenotype when compared with doxorubicin.
Collapse
Affiliation(s)
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Cláudio R Nogueira
- Faculty of Science and Technology, Federal University of Grande Dourados, 79804-970, Dourados, MS, Brazil
| | - Afif F Monteiro
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Fernanda F Juliano
- Department of Agri-food Industry, Food and Nutrition, University of São Paulo, Piracicaba, SP, Brazil
| | - Severino M de Alencar
- Department of Agri-food Industry, Food and Nutrition, University of São Paulo, Piracicaba, SP, Brazil
| | - Ronaldo A Pilli
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carolina A de Lima
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Giovanna B Longato
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | | | | | | | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
21
|
de Carvalho FMDA, Schneider JK, de Jesus CVF, de Andrade LN, Amaral RG, David JM, Krause LC, Severino P, Soares CMF, Caramão Bastos E, Padilha FF, Gomes SVF, Capasso R, Santini A, Souto EB, de Albuquerque-Júnior RLC. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020; 10:biom10050726. [PMID: 32384801 PMCID: PMC7277404 DOI: 10.3390/biom10050726] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brazilian red propolis has been proposed as a new source of compounds with cytotoxic activity. Red propolis is a resinous material of vegetal origin, synthesized from the bees of the Appis mellifera family, with recognized biological properties. To obtain actives of low polarity and high cytotoxic profile from red propolis, in this work, we proposed a new solvent accelerated extraction method. A complete 23 factorial design was carried out to evaluate the influence of the independent variables or factors (e.g., temperature, number of cycles, and extraction time) on the dependent variable or response (i.e., yield of production). The extracts were analyzed by gas chromatography coupled with mass spectrometry for the identification of chemical compounds. Gas chromatography analysis revealed the presence of hydrocarbons, alcohols, ketones, ethers, and terpenes, such as lupeol, lupenone, and lupeol acetate, in most of the obtained extracts. To evaluate the cytotoxicity profile of the obtained bioactives, the 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide colorimetric assay was performed in different tumor cell lines (HCT116 and PC3). The results show that the extract obtained from 70 °C and one cycle of extraction of 10 min exhibited the highest cytotoxic activity against the tested cell lines. The highest yield, however, did not indicate the highest cytotoxic activity, but the optimal extraction conditions were indeed dependent on the temperature (i.e., 70 °C).
Collapse
Affiliation(s)
- Felipe Mendes de Andrade de Carvalho
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Jaderson Kleveston Schneider
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Carla Viviane Freitas de Jesus
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Luciana Nalone de Andrade
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | - Ricardo Guimarães Amaral
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | | | - Laíza Canielas Krause
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Patrícia Severino
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Cleide Mara Faria Soares
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Elina Caramão Bastos
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Francine Ferreira Padilha
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Silvana Vieira Flores Gomes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| | - Ricardo Luiz Cavalcanti de Albuquerque-Júnior
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| |
Collapse
|
22
|
Sepúlveda C, Núñez O, Torres A, Guzmán L, Wehinger S. Antitumor Activity of Propolis: Recent Advances in Cellular Perspectives, Animal Models and Possible Applications. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- César Sepúlveda
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Olinda Núñez
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Alejandra Torres
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Luis Guzmán
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Jiang D, Rasul A, Batool R, Sarfraz I, Hussain G, Mateen Tahir M, Qin T, Selamoglu Z, Ali M, Li J, Li X. Potential Anticancer Properties and Mechanisms of Action of Formononetin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5854315. [PMID: 31467899 PMCID: PMC6699357 DOI: 10.1155/2019/5854315] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Nature, a vast reservoir of pharmacologically active molecules, has been most promising source of drug leads for the cure of various pathological conditions. Formononetin is one of the bioactive isoflavones isolated from different plants mainly from Trifolium pratense, Glycine max, Sophora flavescens, Pycnanthus angolensis, and Astragalus membranaceus. Formononetin has been well-documented for its anti-inflammatory, anticancer, and antioxidant properties. Recently anticancer activity of formononetin is widely studied. This review aims to highlight the pharmacological potential of formononetin, thus providing an insight of its status in cancer therapeutics. Formononetin fights progression of cancer via inducing apoptosis, arresting cell cycle, and halting metastasis via targeting various pathways which are generally modulated in several cancers. Although reported data acclaims various biological properties of formononetin, further experimentation on mechanism of its action, medicinal chemistry studies, and preclinical investigations are surely needed to figure out full array of its pharmacological and biological potential.
Collapse
Affiliation(s)
- Dongjun Jiang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Azhar Rasul
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Rabia Batool
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Muhammad Mateen Tahir
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Tian Qin
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Muhammad Ali
- Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Salem MM, Donia T, Abu-Khudir R, Ramadan H, Ali EMM, Mohamed TM. Propolis Potentiates Methotrexate Anticancer Mechanism and Reduces its Toxic Effects. Nutr Cancer 2019; 72:460-480. [DOI: 10.1080/01635581.2019.1640884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maha M. Salem
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Donia
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| | - Rasha Abu-Khudir
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
- Departement of Chemistry, College of Science, King Faisal University, Al-Ahsaa, Saudi Arabia
| | - Haitham Ramadan
- Department of Plant Protection, Economic Entomology Division, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Ehab M. M. Ali
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek M. Mohamed
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Reis JHDO, Barreto GDA, Cerqueira JC, dos Anjos JP, Andrade LN, Padilha FF, Druzian JI, Machado BAS. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS One 2019; 14:e0219063. [PMID: 31276476 PMCID: PMC6611595 DOI: 10.1371/journal.pone.0219063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/16/2019] [Indexed: 12/20/2022] Open
Abstract
Propolis is a complex mixture of resinous and balsamic material collected from the exudates of plants, shoots, and leaves by bees. This study evaluated red propolis extracts obtained by conventional (ethanolic) extraction and ultrasound-assisted extraction of six samples from different regions of northeastern Brazil. The total phenolic compounds and flavonoids, in vitro antioxidant activity, concentration of formononetin and kaempferol and the cytotoxicity against four human tumor cell lines were determined for all twelve obtained extracts. Significant variations in the levels of the investigated compounds were identified in the red propolis extracts, confirming that the chemical composition varied according to the sampling region. The extraction method used also influenced the resulting propolis compounds. The highest concentration of the compounds of interest and the highest in vitro antioxidant activity were exhibited by the extracts obtained from samples from state of Alagoas. Formononetin and kaempferol were identified in all samples. The highest formononetin concentrations were identified in extracts obtained by ultrasound, thus indicating a greater selectivity for the extraction of this compound by this method. Regarding cytotoxic activity, for the HCT-116 line, all of the extracts showed an inhibition of greater than 90%, whereas for the HL-60 and PC3 lines, the minimum identified was 80%. In general, there was no significant difference (p>0.05) in the antiproliferative potential when comparing the extraction methods. The results showed that the composition of Brazilian red propolis varies significantly depending on the geographical origin and that the method used influences the resulting compounds that are present in propolis. However, regardless of the geographical origin and the extraction method used, all the red propolis samples studied presented great biological potential and high antioxidant activity. Furthermore, the ultrasound-assisted method can be efficiently applied to obtain extracts of red propolis more quickly and with high concentration of biomarkers of interest.
Collapse
Affiliation(s)
| | - Gabriele de Abreu Barreto
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jamile Costa Cerqueira
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jeancarlo Pereira dos Anjos
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
26
|
Misir S, Aliyazicioglu Y, Demir S, Turan I, Hepokur C. Effect of Turkish Propolis on miRNA Expression, Cell Cycle, and Apoptosis in Human Breast Cancer (MCF-7) Cells. Nutr Cancer 2019; 72:133-145. [PMID: 31112051 DOI: 10.1080/01635581.2019.1616100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enriched in flavonoid compounds, phenol acids, and terpene derivatives, propolis has been shown to regulate apoptosis signaling pathways and alter the expression of microRNAs (miRNAs). In the present study, it has been aimed to examine the effects of Turkish propolis on miRNA levels of breast cancer (MCF-7) cells, and its relationship with cell proliferation and apoptosis. Cytotoxic activity of ethanolic propolis extract (EEP) was evaluated using MTT assay. Mechanisms involved in the cytotoxic action of Turkish propolis in MCF-7 cells were investigated with regard to apoptosis and cell cycle using flow cytometry and western blot. Mitochondrial membrane potential (MMP) were evaluated by spectrofluorometric method. miRNA levels were detected by qRT-PCR method. EEP exhibited selective toxicity against MCF-7 cells compared to normal fibroblast cells. EEP increased the cell cycle arrest at the G1 phase. EEP elevated the apoptotic cell death through increasing pro-apoptotic protein levels (p21, Bax, p53, p53-Ser46, and p53-Ser15), decreasing MMP and altering the expression levels of specific tumor suppressors (miR-34, miR-15a, and miR-16-5p) and oncogenic (miR-21) miRNAs. These data support that Turkish propolis may be evaluated as a potential natural agent for new anticancer drugs in future.
Collapse
Affiliation(s)
- Sema Misir
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yüksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ibrahim Turan
- Department of Genetic and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
27
|
Miranda SLF, Damasceno JT, Faveri M, Figueiredo L, da Silva HD, Alencar SMDA, Rosalen PL, Feres M, Bueno-Silva B. Brazilian red propolis reduces orange-complex periodontopathogens growing in multispecies biofilms. BIOFOULING 2019; 35:308-319. [PMID: 31014106 DOI: 10.1080/08927014.2019.1598976] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200 μg ml-1) twice a day for 1 min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey's post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett's post hoc. BRP (1,600 μg ml-1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600 μg ml-1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.
Collapse
Affiliation(s)
| | | | - Marcelo Faveri
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | - Luciene Figueiredo
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | | | | | - Pedro Luiz Rosalen
- c Department of Physiological Sciences , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , SP , Brazil
| | - Magda Feres
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | - Bruno Bueno-Silva
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
- c Department of Physiological Sciences , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , SP , Brazil
| |
Collapse
|
28
|
Santos DAD, Munari FM, Frozza CODS, Moura S, Barcellos T, Henriques JAP, Roesch-Ely M. Brazilian red propolis extracts: study of chemical composition by ESI-MS/MS (ESI+) and cytotoxic profiles against colon cancer cell lines. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Andrade JKS, Denadai M, Andrade GRS, da Cunha Nascimento C, Barbosa PF, Jesus MS, Narain N. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Res Int 2018; 109:278-287. [DOI: 10.1016/j.foodres.2018.04.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
|
30
|
Regueira-Neto MDS, Tintino SR, Rolón M, Coronal C, Vega MC, de Queiroz Balbino V, de Melo Coutinho HD. Antitrypanosomal, antileishmanial and cytotoxic activities of Brazilian red propolis and plant resin of Dalbergia ecastaphyllum (L) Taub. Food Chem Toxicol 2018; 119:215-221. [PMID: 29665415 DOI: 10.1016/j.fct.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Abstract
The treatment for leishmaniasis and Chagas disease can be hard and painful, such that many patients give up on the treatment. In order to find an alternative path for the treatment of these diseases, researchers are using natural products to fight these parasites. The aim of this study was to evaluate the antiprotozoan and cytotoxic activities of red propolis samples collected from different Brazilian states and seasons whilst searching for possible activity differences. We also compared the red propolis results with the ones obtained for the plant resin extract collected from Dalbergia ecastaphyllum trees. The hydroethanolic red propolis extracts from Pernambuco and Alagoas, and the D. ecastaphyllum resin were evaluated regarding their antileishmanial, antitrypanosomal and cytotoxic activity. All extracts showed antiprotozoan and cytotoxic activity. RP-PER showed to be more cytotoxic against protozoan parasites and fibroblast cells. All propolis extracts showed a higher cytotoxic activity when compared to resin extracts. The propolis sample collected in Pernambuco during the rainy season killed the parasites with lower concentrations than the sample collected in the dry season. The IC50 observed against the parasites could be used without high fibroblast cell damage.
Collapse
Affiliation(s)
| | - Saulo Relison Tintino
- Laboratório de Microbiologia e Biologia Molecular, Centro de Ciências Biológicas e Saúde, Universidade Regional do Cariri, Brazil
| | - Miriam Rolón
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Cathia Coronal
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Maria C Vega
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Valdir de Queiroz Balbino
- Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Centro de Biociências, UFPE, Brazil
| | | |
Collapse
|
31
|
Sena-Lopes Â, Bezerra FSB, das Neves RN, de Pinho RB, Silva MTDO, Savegnago L, Collares T, Seixas F, Begnini K, Henriques JAP, Ely MR, Rufatto LC, Moura S, Barcellos T, Padilha F, Dellagostin O, Borsuk S. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis. PLoS One 2018; 13:e0191797. [PMID: 29390009 PMCID: PMC5794096 DOI: 10.1371/journal.pone.0191797] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.
Collapse
Affiliation(s)
- Ângela Sena-Lopes
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Francisco Silvestre Brilhante Bezerra
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Raquel Nascimento das Neves
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Rodrigo Barros de Pinho
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Mara Thais de Oliveira Silva
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Lucielli Savegnago
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Fabiana Seixas
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Karine Begnini
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Mariana Roesch Ely
- Departamento de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Luciane C. Rufatto
- Departamento de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Sidnei Moura
- Departamento de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Thiago Barcellos
- Departamento de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Francine Padilha
- Instituto de Tecnologia e Pesquisa (ITP), Universidade de Tiradente, Aracaju, Sergipe, Brazil
| | - Odir Dellagostin
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
| | - Sibele Borsuk
- Centro de Desenvolvimento Tecnológico (CDTEc), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Capão do Leão, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
32
|
Andrade JKS, Denadai M, de Oliveira CS, Nunes ML, Narain N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int 2017; 101:129-138. [PMID: 28941675 DOI: 10.1016/j.foodres.2017.08.066] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to determine the contents of bioactive compounds present in brown, green and red species of propolis cultivated in the Brazilian northeast states of Alagoas and Sergipe. The contents of phenolic compounds, flavonoids and antioxidant activity (DPPH, ABTS+, FRAP, ORAC) were determined. Identification and quantification of phenolic and flavonoid compounds were performed by using UHPLC-QqQ-MS/MS system. The results revealed high contents of total phenolics and flavonoids. Among the three species, the antioxidant potential had higher capacity in the red propolis. The presence of some of bioactive compounds viz. acacetin, artepellin C, eriodictyol, gallic acid, isorhamnetin, protocatechuic acid, vanillin and vanillic acid in Brazilian red propolis is reported for the first time in this work. Positive correlation between total phenolics versus the FRAP and ORAC methods was established which led to conclusion that antioxidant activity of propolis is mainly due to its phenolic compounds.
Collapse
Affiliation(s)
- Julianna Karla Santana Andrade
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Marina Denadai
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil.
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Maria Lucia Nunes
- Department of Food Technology, Federal University of Ceara, CEP 60020-180 Fortaleza, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|