1
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cebani L, Mvubu NE. Can We Exploit Inflammasomes for Host-Directed Therapy in the Fight against Mycobacterium tuberculosis Infection? Int J Mol Sci 2024; 25:8196. [PMID: 39125766 PMCID: PMC11311975 DOI: 10.3390/ijms25158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a major global health issue, with around 10 million new cases annually. Advances in TB immunology have improved our understanding of host signaling pathways, leading to innovative therapeutic strategies. Inflammasomes, protein complexes organized by cytosolic pattern recognition receptors (PRRs), play a crucial role in the immune response to M. tb by activating caspase 1, which matures proinflammatory cytokines IL1β and IL18. While inflammation is necessary to fight infection, excessive or dysregulated inflammation can cause tissue damage, highlighting the need for precise inflammasome regulation. Drug-resistant TB strains have spurred research into adjunctive host-directed therapies (HDTs) that target inflammasome pathways to control inflammation. Canonical and non-canonical inflammasome pathways can trigger excessive inflammation, leading to immune system exhaustion and M. tb spread. Novel HDT interventions can leverage precision medicine by tailoring treatments to individual inflammasome responses. Studies show that medicinal plant derivatives like silybin, andrographolide, and micheliolide and small molecules such as OLT1177, INF39, CY-09, JJ002, Ac-YVAD-cmk, TAK-242, and MCC950 can modulate inflammasome activation. Molecular tools like gene silencing and knockouts may also be used for severe TB cases. This review explores these strategies as potential adjunctive HDTs in fighting TB.
Collapse
Affiliation(s)
| | - Nontobeko E. Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
3
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
4
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Ranjan S, Gautam A. Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight. Front Neurosci 2023; 17:1159806. [PMID: 37274201 PMCID: PMC10232807 DOI: 10.3389/fnins.2023.1159806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Background Silymarin is a polyphenolic flavonoid complex extricated from dried fruits and seeds of the plant Silybum marianum L. Chemically, it is a mixture of flavonolignan complexes consisting of silybin, isosilybin, silychristin, silydianin, a minor quantity of taxifolin, and other polyphenolic compounds, which possess different bio medicinal values. Purpose This review critically looks into the current status, pharmaceutical prospects and limitations of the clinical application of Silymarin for treating neurological disorders. In particular, Silymarin's medicinal properties and molecular mechanisms are focused on providing a better-compiled understanding helpful in its neuro-pharmacological or therapeutic aspects. Methods This review was compiled by the literature search done using three databases, i.e., PubMed (Medline), EMBASE and Science Direct, up to January 2023, using the keywords-Silymarin, neurological disorders, cognitive disorders, Type 2 Diabetes, pharmaceutical prospects and treatment. Then, potentially relevant publications and studies (matching the eligible criteria) were retrieved and selected to explain in this review using PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) study flow chart. Result Since its discovery, it has been widely studied as a hepatoprotective drug for various liver disorders. However, in the last 10-15 years, several research studies have shown its putative neuroprotective nature against various brain disorders, including psychiatric, neurodegenerative, cognitive, metabolic and other neurological disorders. The main underlying neuroprotective mechanisms in preventing and curing such disorders are the antioxidant, anti-inflammatory, anti-apoptotic, pro-neurotrophic and pro-estrogenic nature of the bioactive molecules. Conclusion This review provides a lucid summary of the well-studied neuroprotective effects of Silymarin, its underlying molecular mechanisms and current limitations for its usage during neurological disorders. Finally, we have suggested a future course of action for developing it as a novel herbal drug for the treatment of brain diseases.
Collapse
Affiliation(s)
- Shovit Ranjan
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand, India
| | - Akash Gautam
- Center for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Interplay between Gut Microbiota and NLRP3 Inflammasome in Intracerebral Hemorrhage. Nutrients 2022; 14:nu14245251. [PMID: 36558410 PMCID: PMC9788242 DOI: 10.3390/nu14245251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological process of intracerebral hemorrhage (ICH) is very complex, involving various mechanisms such as apoptosis, oxidative stress and inflammation. As one of the key factors, the inflammatory response is responsible for the pathological process of acute brain injury and is associated with the prognosis of patients. Abnormal or dysregulated inflammatory responses after ICH can aggravate cell damage in the injured brain tissue. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex distributed in the cytosol, which can be triggered by multiple signals. The NLRP3 inflammasome is activated after ICH, thus promoting neuroinflammation and aggravating brain edema. In addition, there is evidence that the gut microbiota is crucial in the activation of the NLRP3 inflammasome. The gut microbiota plays a key role in a variety of CNS disorders. Changes in the diversity and species of the gut microbiota affect neuroinflammation through the activation of the NLRP3 inflammasome and the release of inflammatory cytokines. In turn, the gut microbiota composition can be influenced by the activation of the NLRP3 inflammasome. Thereby, the regulation of the microbe-gut-brain axis via the NLRP3 inflammasome may serve as a novel idea for protecting against secondary brain injury (SBI) in ICH patients. Here, we review the recent evidence on the functions of the NLRP3 inflammasome and the gut microbiota in ICH, as well as their interactions, during the pathological process of ICH.
Collapse
|
8
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Yu X, Yu C, He W. Emerging trends and hot spots of NLRP3 inflammasome in neurological diseases: A bibliometric analysis. Front Pharmacol 2022; 13:952211. [PMID: 36160384 PMCID: PMC9490172 DOI: 10.3389/fphar.2022.952211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: NLRP3 inflammasome has been of great interest in the field of neurological diseases. To visualize the research hotspots and evolutionary trends in this area, we collected the relevant articles in the Web of Science Core Collection database from 2010 to 2022 and analyzed them using CiteSpace software. Methods: We performed a systematic search of the literature within the Web of Science Core Collection database using the strategy described below: TS = NLRP3 inflammasome AND TS = neurological diseases OR TS = neurological disorder OR TS = brain disorder OR TS = brain injury OR TS = central nervous system disease OR TS = CNS disease OR TS = central nervous system disorder OR TS = CNS disorder AND Language = English from 2010 to 2022. The type of literature was limited to articles and reviews. The data were processed using CiteSpace software (version 5.8. R3). Results: A total of 1,217 literature from 67 countries/regions and 337 research institutions was retrieved. Publications in this area have increased rapidly since 2013. China presents the highest number of published articles, but the United States has a higher centrality and h-index. The top five most published institutions and authors are from China, Zhejiang University and Li Y ranking first, respectively. Of the ten most cited articles, Prof. Heneka MT and colleagues accounted for three of them. In terms of the co-occurrence keyword diagram, the five most frequent keywords are “nlrp3 inflammasome”, “activation”, “oxidative stress”, “expression”, and “alzheimers disease”. Conclusion: The research of NLRP3 inflammasome in neurological disorders is overall developing well. Chinese scholars contributed the most significant number of articles, while researchers from developed countries presented more influential papers. The importance of NLRP3 inflammasome in neurological diseases is widely appreciated, and the mechanism is under study. Moreover, NLRP3 inflammasome is emerging as a promising therapeutic target in treating neurological disorders. However, despite decades of research, our understanding of NLRP3 inflammasome in central nervous system diseases is still lacking. More and more profound research is needed in the future.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wenfang He,
| |
Collapse
|
10
|
Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13:989503. [PMID: 36131917 PMCID: PMC9484305 DOI: 10.3389/fimmu.2022.989503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly harmful neurological disorder with high rates of mortality, disability, and recurrence. However, effective therapies are not currently available. Secondary immune injury and cell death are the leading causes of brain injury and a poor prognosis. Pyroptosis is a recently discovered form of programmed cell death that differs from apoptosis and necrosis and is mediated by gasdermin proteins. Pyroptosis is caused by multiple pathways that eventually form pores in the cell membrane, facilitating the release of inflammatory substances and causing the cell to rupture and die. Pyroptosis occurs in neurons, glial cells, and endothelial cells after ICH. Furthermore, pyroptosis causes cell death and releases inflammatory factors such as interleukin (IL)-1β and IL-18, leading to a secondary immune-inflammatory response and further brain damage. The NOD-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway plays the most critical role in pyroptosis after ICH. Pyroptosis can be inhibited by directly targeting NLRP3 or its upstream molecules, or directly interfering with caspase-1 expression and GSDMD formation, thus significantly improving the prognosis of ICH. The present review discusses key pathological pathways and regulatory mechanisms of pyroptosis after ICH and suggests possible intervention strategies to mitigate pyroptosis and brain dysfunction after ICH.
Collapse
Affiliation(s)
- Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| |
Collapse
|
11
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Bakar NS, Abd Latiff A, Ismail NM. Neuroprotection by Trans-Resveratrol in Rats With Intracerebral Hemorrhage: Insights into the Role of Adenosine A1 Receptors. J Neuropathol Exp Neurol 2022; 81:596-613. [PMID: 35799401 DOI: 10.1093/jnen/nlac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the neuroprotective effects of trans-resveratrol (RV), this study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in RV-mediated neuroprotection in a rat intracerebral hemorrhage (ICH) model induced by intrastriatal injection of collagenase. Rats were divided into 5 groups: (1) control, (2) sham-operated, (3) ICH pretreated with vehicle, (4) ICH pretreated with RV, and (5) ICH pretreated with RV and the A1R antagonist DPCPX. At 48 hours after ICH, the rats were subjected to neurological testing. Brain tissues were assessed for neuronal density and morphological features using routine and immunohistochemical staining. Expression of tumor necrosis factor-α (TNF-α), caspase-3, and RIPK3 proteins was examined using ELISA. A1R, MAPK P38, Hsp90, TrkB, and BDNF genes were examined using RT-qPCR. RV protected against neurological deficits and neuronal depletion, restored the expression of TNF-α, CASP3, RIPK3, A1R, and Hsp90, and increased BDNF/TrkB. DPCPX abolished the effects of RV on neurological outcomes, neuronal density, CASP3, RIPK3, A1R, Hsp90, and BDNF. These data indicate that the neuroprotection by RV involves A1R and inhibits CASP3-dependent apoptosis and RIPK3-dependent necroptosis in the perihematoma region; this is likely to be mediated by crosstalk between A1R and the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Igor Iezhitsa
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Renu Agarwal
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nor Salmah Bakar
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Azian Abd Latiff
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nafeeza Mohd Ismail
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| |
Collapse
|
12
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
13
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
14
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
15
|
SRC-3 Deficiency Exacerbates Neurological Deficits in a Mouse Model of Intracerebral Hemorrhage: Role of Oxidative Stress. Neurochem Res 2021; 46:2969-2978. [PMID: 34268655 DOI: 10.1007/s11064-021-03399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) causes long term neurological abnormality or death. Oxidative stress is closely involved in ICH mediated brain damage. Steroid receptor cofactor 3 (SRC-3), a p160 family member, is widely expressed in the brain and regulates transactivation of Nrf2, a key component of antioxidant response. Our study aims to test if SRC-3 is implicated in ICH mediated brain injury. We first examined levels of SRC-3 and oxidative stress in the brain of mice following ICH and analyzed their correlation. Then ICH was induced in wild type (WT) and SRC-3 knock out mice and how SRC-3 deletion affected ICH induced brain damage, oxidative stress and behavioral outcome was assessed. We found that SRC-3 mRNA and protein expression levels were reduced gradually after ICH induction in WT mice along with an increase in oxidative stress levels. Correlation analysis revealed that SRC-3 mRNA levels negatively correlated with oxidative stress. Deletion of SRC-3 further increased ICH induced brain edema, neurological deficit score and oxidative stress and exacerbated ICH induced behavioral abnormality including motor dysfunction and cognitive impairment. Our findings suggest that SRC-3 is involved in ICH induced brain injury, probably through modulation of oxidative stress.
Collapse
|
16
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Zhou H, Zhang C, Huang C. Verbascoside Attenuates Acute Inflammatory Injury Caused by an Intracerebral Hemorrhage Through the Suppression of NLRP3. Neurochem Res 2021; 46:770-777. [PMID: 33400023 DOI: 10.1007/s11064-020-03206-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease with a high mortality rate affecting individuals worldwide. After ICH, persistent inflammation results in the death of brain cells, as well as the promotion of secondary brain injury. Verbascoside (VB), an active component in herbal medicine, possesses antioxidant, anti-inflammatory and neuroprotective properties. Furthermore, previous studies have shown that VB improves recovery of neuronal function after spinal cord injury in rats. In this study, we investigated whether VB limited inflammation induced by ICH through the targeting of NLRP3, which is associated with acute inflammation and apoptosis. Administration of VB reduced neurological impairment and pathological abnormalities associated with ICH, while increasing cell viability of neurons. This was achieved through NLRP3 inhibition and microglial activation. VB treatment decreased neuronal damage when co-cultured with microglia. Furthermore, knockout of NLRP3 eliminated the ability of VB to inhibit inflammation, cell death or protect neurons. Taken together, VB suppressed the inflammatory response following ICH by inhibiting NLRP3.
Collapse
Affiliation(s)
- Hongwei Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Cheng Zhang
- Department of Neurosurgery, Zigong Third People's Hospital, Zigong, 643020, China
| | - Changren Huang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
19
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
20
|
Crilly S, Withers SE, Allan SM, Parry-Jones AR, Kasher PR. Revisiting promising preclinical intracerebral hemorrhage studies to highlight repurposable drugs for translation. Int J Stroke 2021; 16:123-136. [PMID: 33183165 PMCID: PMC7859586 DOI: 10.1177/1747493020972240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022]
Abstract
Intracerebral hemorrhage is a devastating global health burden with limited treatment options and is responsible for 49% of 6.5 million annual stroke-related deaths comparable to ischemic stroke. Despite the impact of intracerebral hemorrhage, there are currently no effective treatments and so weaknesses in the translational pipeline must be addressed. There have been many preclinical studies in intracerebral hemorrhage models with positive outcomes for potential therapies in vivo, but beyond advancing the understanding of intracerebral hemorrhage pathology, there has been no translation toward successful clinical application. Multidisciplinary preclinical research, use of multiple models, and validation in human tissue are essential for effective translation. Repurposing of therapeutics for intracerebral hemorrhage may be the most promising strategy to help relieve the global health burden of intracerebral hemorrhage. Here, we have reviewed the existing literature to highlight repurposable drugs with successful outcomes in preclinical models of intracerebral hemorrhage that have realistic potential for development into the clinic for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sarah E Withers
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences,
Lydia Becker Institute of Immunology and Inflammation, School of Medical Sciences,
Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre,
The University of Manchester, Manchester, UK
- Manchester Centre for Clinical
Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health
Science Centre, Salford, UK
| | - Paul R Kasher
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem 2021; 20:1169-1194. [PMID: 32297582 DOI: 10.2174/1568026620666200416085330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Flavonoids, a group of natural dietary polyphenols, are known for their beneficial effects on human health. By virtue of their various pharmacological effects, like anti-oxidative, antiinflammatory, anti-carcinogenic and neuroprotective effects, flavonoids have now become an important component of herbal supplements, pharmaceuticals, medicinals and cosmetics. There has been enormous literature supporting neuroprotective effect of flavonoids. Recently their efficacy in various neurodegenerative diseases, like Alzheimer's disease and Parkinson diseases, has received particular attention. OBJECTIVE The mechanism of flavanoids neuroprotection might include antioxidant, antiapoptotic, antineuroinflammatory and modulation of various cellular and intracellular targets. In in-vivo systems, before reaching to brain, they have to cross barriers like extensive first pass metabolism, intestinal barrier and ultimately blood brain barrier. Different flavonoids have varied pharmacokinetic characteristics, which affect their pharmacodynamic profile. Therefore, brain accessibility of flavonoids is still debatable. METHODS This review emphasized on current trends of research and development on flavonoids, especially in neurodegenerative diseases, possible challenges and strategies to encounter using novel drug delivery system. RESULTS Various flavonoids have elicited their therapeutic potential against neurodegenerative diseases, however by using nanotechnology and novel drug delivery systems, the bioavailability of favonoids could be enhanced. CONCLUSION This study bridges a significant opinion on medicinal chemistry, ethanopharmacology and new drug delivery research regarding use of flavonoids in management of neurodegeneration.
Collapse
Affiliation(s)
- Gagandeep Maan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Biplab Sikdar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Ashish Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| |
Collapse
|
22
|
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153320. [PMID: 32920285 DOI: 10.1016/j.phymed.2020.153320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are primarily characterized by selective neuronal loss in the brain. Alzheimer's disease as the most common NDDs and the most prevalent cause of dementia is characterized by Amyloid-beta deposition, which leads to cognitive and memory impairment. Parkinson's disease is a progressive neurodegenerative disease characterized by the dramatic death of dopaminergic neuronal cells, especially in the SNc and caused alpha-synuclein accumulation in the neurons. Silymarin, an extract from seeds of Silybum marianum, administered mostly for liver disorders and also had anti-oxidant and anti-carcinogenic activities. PURPOSE The present comprehensive review summarizes the beneficial effects of Silymarin in-vivo and in-vitro and even in animal models for these NDDs. METHODS A diagram model for systematic review is utilized for this search. The research is conducted in the following databases: PubMed, Web of Science, Scopus, and Science Direct. RESULTS Based on the inclusion criteria, 83 studies were selected and discussed in this review. CONCLUSION Lastly, we review the latest experimental evidences supporting the potential effects of Silymarin, as a neuroprotective agent in NDDs.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
| | - Zahra Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Silymarin Inhibits Glutamate Release and Prevents against Kainic Acid-Induced Excitotoxic Injury in Rats. Biomedicines 2020; 8:biomedicines8110486. [PMID: 33182349 PMCID: PMC7695262 DOI: 10.3390/biomedicines8110486] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (Silybum marianum), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated. In rat cortical synaptosomes, silymarin reduced glutamate release and calcium elevation evoked by the K+ channel blocker 4-aminopyridine but did not affect glutamate release caused by the Na+ channel activator veratridine or the synaptosomal membrane potential. Decreased glutamate release by silymarin was prevented by removal of extracellular calcium and blocking of N- and P/Q-type Ca2+ channel or extracellular signal-regulated kinase 1/2 (ERK1/2) but not by blocking of intracellular Ca2+ release. Immunoblotting assay results revealed that silymarin reduced 4-aminopyridine-induced phosphorylation of ERK1/2. Moreover, systemic treatment of rats with silymarin (50 or 100 mg/kg) 30 min before systemic KA (15 mg/kg) administration attenuated KA-induced seizures, glutamate concentration elevation, neuronal damage, glial activation, and heat shock protein 70 expression as well as upregulated KA-induced decrease in Akt phosphorylation in the rat hippocampus. Taken together, the present study demonstrated that silymarin depressed synaptosomal glutamate release by suppressing voltage-dependent Ca2+ entry and ERK1/2 activity and effectively prevented KA-induced in vivo excitotoxicity.
Collapse
|
24
|
Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Res Int 2020; 136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
25
|
Neuroinflammation Mediated by NLRP3 Inflammasome After Intracerebral Hemorrhage and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:5130-5149. [PMID: 32856203 DOI: 10.1007/s12035-020-02082-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke; there is still a lack of effective treatment. Microglia are a major component of the innate immune system, and they respond to acute brain injury by activating and forming classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotype. The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is considered to be the main participant in neuroinflammation. Recent evidence has shown that NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. Furthermore, previous studies have reported that NLRP3 inflammasome is mainly present in microglia, so we speculate that its activation may be strongly associated with microglial polarization. Many scholars have investigated the role of brain injury caused by NLRP3 inflammasome after ICH, but the precise operating mechanisms remain uncertain. This review summarized the activation mechanism of NLRP3 inflammasome after ICH and the possible mechanism of NLRP3 inflammasome promoting neuroinflammation and aggravating nerve injury and discussed the relevant potential therapeutic targets.
Collapse
|
26
|
Wang L, Zheng S, Zhang L, Xiao H, Gan H, Chen H, Zhai X, Liang P, Zhao J, Li Y. Histone Deacetylation 10 Alleviates Inflammation After Intracerebral Hemorrhage via the PTPN22/NLRP3 Pathway in Rats. Neuroscience 2020; 432:247-259. [PMID: 32112918 DOI: 10.1016/j.neuroscience.2020.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/30/2023]
Abstract
The NOD-like receptor family Pyrin domain-containing 3 (NLRP3) inflammasome has a crucial role in the inflammatory process that occurs during intracerebral hemorrhage (ICH)-induced injury. Histone deacetylase 10 (HDAC10) is a newly identified class II histone deacetylase involved in immune responses. However, how HDAC10 affects the inflammatory response after ICH remains unknown. In this study, we investigated whether HDAC10 relieves ICH injury by suppressing NLRP3 inflammasome activation through the protein tyrosine phosphatase, nonreceptor type 22 (PTPN22) pathway. We induced ICH in Sprague-Dawley rats (healthy, male adult) with a single infusion of autologous blood. To knockdown HDAC10, we injected siRNA into the rats. To further explore the mechanisms underlying the role of HDAC10 in ICH injury, PTPN22 was silenced. HDAC10 levels were upregulated after ICH in humans and rats, and reached peak levels 24 h after ICH induction in rats. HDAC10 silencing aggravated ICH injury, as demonstrated by increased modified neurological severity scores, brain water content, Evans blue extravasation, and number of myeloperoxidase (MPO) cells, and the results of Nissl and H&E staining. Furthermore, HDAC10 knockdown increased the expression of PTPN22 and accentuated inflammatory responses mediated by the NLRP3 inflammasome. HDAC10 silencing increased NLRP3 inflammasome activation, and this was effectively reversed by PTPN22 knockdown using siRNA. Furthermore, HDAC10 silencing also promoted the interaction of PTPN22 and NLRP3. Our study demonstrated that HDAC10 silencing aggravated NLRP3-mediated inflammatory responses after ICH in rats via the PTPN22 pathway. These results suggest that regulating the NLRP3 inflammasome may be a novel method to ameliorate ICH injury.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Shuyue Zheng
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Li Zhang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Han Xiao
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hui Gan
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hui Chen
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Xuan Zhai
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Ping Liang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, PR China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, PR China.
| | - Yingliang Li
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
27
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM. Neuroprotection by trans-resveratrol against collagenase-induced neurological and neurobehavioural deficits in rats involves adenosine A1 receptors. Neurol Res 2020; 42:189-208. [PMID: 32013788 DOI: 10.1080/01616412.2020.1716470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Trans-resveratrol has been shown to have neuroprotective effects and could be a promising therapeutic agent in the treatment of intracerebral haemorrhage (ICH). This study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in trans-resveratrol-induced neuroprotection in rats with collagenase-induced ICH.Methods: Sixty male Sprague-Dawley rats weighing 330-380 g were randomly divided into five groups (n = 12): (i) control, (ii) sham-operated rats, (iii) ICH rats pretreated with vehicle (0.1% DMSO saline, i.c.v.), (iv) ICH rats pretreated with trans-resveratrol (0.9 µg, i.c.v.) and (v) ICH rats pretreated with trans-resveratrol (0.9 µg) and the A1R antagonist, DPCPX (2.5 µg, i.c.v.). Thirty minutes after pretreatment, ICH was induced by intrastriatal injection of collagenase (0.04 U). Forty-eight hours after ICH, the rats were assessed using a variety of neurobehavioural tests. Subsequently, rats were sacrificed and brains were subjected to gross morphological examination of the haematoma area and histological examination of the damaged area.Results: Severe neurobehavioural deficits and haematoma with diffuse oedema were observed after intrastriatal collagenase injection. Pretreatment with trans-resveratrol partially restored general locomotor activity, muscle strength and coordination, which was accompanied with reduction of haematoma volume by 73.22% (P < 0.05) and damaged area by 60.77% (P < 0.05) in comparison to the vehicle-pretreated ICH group. The trans-resveratrol-induced improvement in neurobehavioural outcomes and morphological features of brain tissues was inhibited by DPCPX pretreatment.Conclusion: This study demonstrates that the A1R activation is possibly the mechanism underlying the trans-resveratrol-induced neurological and neurobehavioural protection in rats with ICH.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Igor Iezhitsa
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Research Centre for Innovative Medicines, Volgograd State Medical University, Volgograd, Russia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | | | - Azian Abd Latiff
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Luo Y, Reis C, Chen S. NLRP3 Inflammasome in the Pathophysiology of Hemorrhagic Stroke: A Review. Curr Neuropharmacol 2020; 17:582-589. [PMID: 30592254 PMCID: PMC6712291 DOI: 10.2174/1570159x17666181227170053] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic stroke is a devastating disease with high morbidity and mortality. There is still a lack of effective ther-apeutic approach. The recent studies have shown that the innate immune system plays a significant role in hemorrhagic stroke. Microglia, as major components in innate immune system, are activated and then can release cytokines and chemo-kines in response to hemorrhagic stroke, and ultimately led to neuroinflammation and brain injury. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is predominantly released by microglia and is believed as the main contributor of neuroinflammation. Several studies have focused on the role of NLRP3 inflammasome in hemorrhagic stroke-induced brain injury, however, the specific mechanism of NLRP3 activation and regulation remains unclear. This re-view summarized the mechanism of NLRP3 activation and its role in hemorrhagic stroke and discussed the translational sig-nificance.
Collapse
Affiliation(s)
- Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
29
|
Hung W, Ho C, Pan M. Targeting the NLRP3 Inflammasome in Neuroinflammation: Health Promoting Effects of Dietary Phytochemicals in Neurological Disorders. Mol Nutr Food Res 2019; 64:e1900550. [DOI: 10.1002/mnfr.201900550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wei‐Lun Hung
- School of Food SafetyTaipei Medical University Taipei 11031 Taiwan
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Min‐Hsiung Pan
- Institute of Food Science and TechnologyNational Taiwan University Taipei 10617 Taiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical University Taichung 40402 Taiwan
- Department of Health and Nutrition BiotechnologyAsia University Taichung 41354 Taiwan
| |
Collapse
|
30
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Sun J, Chi L, He Z, Gao Y, Gao Y, Huang Y, Nan G. NLRP3 inflammasome contributes to neurovascular unit damage in stroke. J Drug Target 2019; 27:866-875. [PMID: 30601069 DOI: 10.1080/1061186x.2018.1564925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, a wealth of information has emerged connecting the activation of the NLRP3 (NOD-like receptor family pyrin domain-containing 3) inflammasome to stroke pathogenesis, although the exact influence of the NLRP3 inflammasome on stroke is still in the stage of preliminary study and is awaiting further confirmation. In this paper, we will review the structure, assembly and activation of the NLRP3 inflammasome and its expression in the neurovascular units and will speculate on its possible roles in neurovascular injury post-stroke. Evidence on this topic suggests that targeting NLRP3-mediated inflammation at multiple levels may provide a new therapeutic strategy to prevent the deterioration of neurovascular units after stroke. However, many aspects of the biological link between the NLRP3 inflammasome and stroke remain ill-defined or even completely unknown. As fresh insights come to light regarding the NLRP3 inflammasome, the opportunities to develop new therapeutic strategies for stroke patients are expected to improve accordingly.
Collapse
Affiliation(s)
- Jing Sun
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Lumei Chi
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Zhidong He
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yu Gao
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yufen Gao
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yujing Huang
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangxian Nan
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
32
|
Gao Y, Bai D, Zhao Y, Zhu Q, Zhou Y, Li Z, Lu N. LL202 ameliorates colitis against oxidative stress of macrophage by activation of the Nrf2/HO‐1 pathway. J Cell Physiol 2018; 234:10625-10639. [DOI: 10.1002/jcp.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Qin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yihui Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Zhiyu Li
- Department of Medicinal Chemistry China Pharmaceutical University Nanjing China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
33
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Fu G, Wang H, Cai Y, Zhao H, Fu W. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats. Drug Des Devel Ther 2018; 12:1609-1619. [PMID: 29928110 PMCID: PMC6003286 DOI: 10.2147/dddt.s164324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism. MATERIALS AND METHODS ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg-100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats' behavioral performance, the blood-brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2',7'-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot. RESULTS It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway. CONCLUSION TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH.
Collapse
Affiliation(s)
- Guanglei Fu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Hua Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Youli Cai
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hui Zhao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
35
|
Improvement of hyperglycemia in a murine model of insulin resistance and high glucose- and inflammasome-mediated IL-1β expressions in macrophages by silymarin. Chem Biol Interact 2018; 290:12-18. [DOI: 10.1016/j.cbi.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/09/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
|