1
|
Bourdas DI, Travlos AK, Souglis A, Stavropoulou G, Zacharakis E, Gofas DC, Bakirtzoglou P. Effects of a Singular Dose of Mangiferin-Quercetin Supplementation on Basketball Performance: A Double-Blind Crossover Study of High-Level Male Players. Nutrients 2024; 16:170. [PMID: 38201999 PMCID: PMC10781150 DOI: 10.3390/nu16010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Pre-exercise mangiferin-quercetin may enhance athletic performance. This study investigated the effect of mangiferin-quercetin supplementation on high-level male basketball players during a basketball exercise simulation test (BEST) comprising 24 circuits of 30 s activities with various movement distances. The participants were divided into two groups (EXP = 19 and CON = 19) and given a placebo one hour before the BEST (PRE-condition). The following week, the EXP group received mangiferin-quercetin (84 mg/140 mg), while the CON group received a placebo (POST-condition) before the BEST in a double-blind, cross-over design. The mean heart rate (HR) and circuit and sprint times (CT and ST) during the BEST were measured, along with the capillary blood lactate levels (La-), the subjective rating of muscle soreness (RPMS), and the perceived exertion (RPE) during a resting state prior to and following the BEST. The results showed significant interactions for the mean CT (p = 0.013) and RPE (p = 0.004); a marginal interaction for La- (p = 0.054); and non-significant interactions for the mean HR, mean ST, and RPMS. Moreover, the EXP group had significantly lower values in the POST condition for the mean CT (18.17 ± 2.08 s) and RPE (12.42 ± 1.02) compared to the PRE condition (20.33 ± 1.96 s and 13.47 ± 1.22, respectively) and the POST condition of the CON group (20.31 ± 2.10 s and 13.32 ± 1.16, respectively) (p < 0.05). These findings highlight the potential of pre-game mangiferin-quercetin supplementation to enhance intermittent high-intensity efforts in sports such as basketball.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Sparta, Greece;
| | - Athanasios Souglis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Georgia Stavropoulou
- School of Philosophy and Education, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Emmanouil Zacharakis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Dimitrios C. Gofas
- Arsakeia-Tositseia Schools, Philekpaideftiki Etaireia, Mitilinis 26, 11256 Athens, Greece;
| | - Panteleimon Bakirtzoglou
- Faculty of Sport Sciences & Physical Education, Metropolitan College, Eleftheriou Venizelou 14, 54624 Thessaloniki, Greece
| |
Collapse
|
2
|
Zhang XL, Zhang XY, Ge XQ, Liu MX. Mangiferin prevents hepatocyte epithelial-mesenchymal transition in liver fibrosis via targeting HSP27-mediated JAK2/STAT3 and TGF-β1/Smad pathway. Phytother Res 2022; 36:4167-4182. [PMID: 35778992 DOI: 10.1002/ptr.7549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Hepatocytes has been confirmed to undergo EMT and can be converted into myofibroblasts during hepatic fibrogenesis. However, the mechanism of hepatocyte EMT regulation in hepatic fibrosis, particularly through HSP27 (human homologue of rodent HSP25), remains unclear. Mangiferin (MAN), a compound extracted from Mangifera indica L, has been reported to attenuate liver injury. This study aimed to investigate the mechanisms underlying HSP27 inhibition and the anti-fibrotic effect of MAN in liver fibrosis. Our results revealed that the expression of HSP27 was remarkably increased in the liver tissues of patients with liver cirrhosis and CCl4 -induced fibrotic rats. However, HSP27 shRNA treatment significantly alleviated fibrosis. Furthermore, MAN was found to inhibit CCl4 - and TGF-β1-induced liver fibrosis and reduced hepatocyte EMT. More importantly, MAN decreased HSP27 expression to suppress the JAK2/STAT3 pathway, and subsequently blocked TGF-β1/Smad signaling, which were consistent with its protection against CCl4 -induced EMT and liver fibrosis. Together, these results suggest that HSP27 may play a crucial role in hepatocyte EMT and liver fibrosis by activating JAK2/STAT3 signaling and TGF-β1/Smad pathway. The suppression of HSP27 expression by MAN may be a novel strategy for attenuating the hepatocyte EMT in liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong, PR China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-Yan Zhang
- Department of Pharmacology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Xiao-Qun Ge
- Department of Pharmacology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong, PR China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
3
|
Abstract
Advanced metastatic melanoma, one of the most aggressive skin malignancies, is currently without reliable therapy. The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone which exerts many pharmacological activities against cancer-inflammation. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we demonstrate that mangiferin interferes with inflammation, lipid and calcium signaling which selectively inhibits multiple NFkB target genes including interleukin-6, tumor necrosis factor, interferon gamma, vascular endothelial growth factor receptor 2, plasminogen activator urokinase, matrix metalloprotease 19, C-C Motif Chemokine Ligand 2 and placental growth factor. This abrogates angiogenic and invasive processes and capillary tube formation of metastatic melanoma cells as well as human placental blood vessel explants in-vitro and blocks angiogenesis characteristic of the chicken egg chorioallantoic membrane assay and in melanoma syngeneic studies in vivo. The results obtained in this research illustrate promising anti-angiogenic effects of the natural glucosylxanthone mangiferin for further (pre)clinical studies in melanoma cancer patients.
Collapse
|
4
|
Gelabert-Rebato M, Martin-Rincon M, Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Vega-Morales T, Wiebe JC, Fernandez-Del Castillo C, Castilla-Hernandez E, Diaz-Tiberio O, Calbet JAL. A Single Dose of The Mango Leaf Extract Zynamite ® in Combination with Quercetin Enhances Peak Power Output During Repeated Sprint Exercise in Men and Women. Nutrients 2019; 11:E2592. [PMID: 31661850 PMCID: PMC6893764 DOI: 10.3390/nu11112592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The mango leaf extract rich in mangiferin Zynamite® improves exercise performance when combined with luteolin or quercetin ingested at least 48 h prior to exercise. To determine whether a single dose of Zynamite® administered 1 h before exercise increases repeated-sprint performance, 20 men and 20 women who were physically active were randomly assigned to three treatments following a double-blind cross-over counterbalanced design. Treatment A, 140 mg of Zynamite®, 140 mg of quercetin, 147.7 mg of maltodextrin, and 420 mg of sunflower lecithin; Treatment B, 140 mg of Zynamite®, 140 mg of quercetin, and 2126 mg of maltodextrin and Treatment C, 2548 mg of maltodextrin (placebo). Subjects performed three Wingate tests interspaced by 4 min and a final 15 s sprint after ischemia. Treatments A and B improved peak power output during the first three Wingates by 2.8% and 3.8%, respectively (treatment x sprint interaction, p = 0.01). Vastus Lateralis oxygenation (NIRS) was reduced, indicating higher O2 extraction (treatment × sprint interaction, p = 0.01). Improved O2 extraction was observed in the sprints after ischemia (p = 0.008; placebo vs. mean of treatments A and B). Blood lactate concentration was 5.9% lower after the ingestion of Zynamite® with quercetin in men (treatment by sex interaction, p = 0.049). There was a higher Vastus Lateralis O2 extraction during 60 s ischemia with polyphenols (treatment effect, p = 0.03), due to the greater muscle VO2 in men (p = 0.001). In conclusion, a single dose of Zynamite® combined with quercetin one hour before exercise improves repeated-sprint performance and muscle O2 extraction and mitochondrial O2. consumption during ischemia. No advantage was obtained from the addition of phospholipids.
Collapse
Affiliation(s)
- Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
- Nektium Pharma, Agüimes, 35118 Las Palmas de Gran Canaria, Spain.
| | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Angel Gallego-Selles
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Miriam Martinez-Canton
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | | | - Julia C Wiebe
- Nektium Pharma, Agüimes, 35118 Las Palmas de Gran Canaria, Spain.
| | - Constanza Fernandez-Del Castillo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Elizabeth Castilla-Hernandez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Oriana Diaz-Tiberio
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Jose A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
5
|
Li M, Wu C, Guo H, Chu C, Hu M, Zhou C. Mangiferin improves hepatic damage-associated molecular patterns, lipid metabolic disorder and mitochondrial dysfunction in alcohol hepatitis rats. Food Funct 2019; 10:3514-3534. [PMID: 31144698 DOI: 10.1039/c9fo00153k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was conducted to investigate the beneficial effects and possible mechanism of action of mangiferin (MF) in alcohol hepatitis (AH) rats. Building on our previous study, the damage-associated molecular patterns (DAMPs), lipid metabolic disorder and mitochondrial dysfunction were investigated. MF effectively regulated the abnormal liver function, the levels of alcohol, FFAs and metal elements in serum. More importantly, MF improved the expression levels of mRNA and protein of PPAR-γ, OPA-1, Cav-1, EB1, NF-κB p65, NLRP3, Cas-1 and IL-1β, and decreased the positive protein expression rates of HSP90, HMGB1, SYK, CCL20, C-CAS-3, C-PARP and STARD1. Additionally, MF decreased the levels of fumarate, cAMP, xanthurenic acid and d-glucurone-6,3-lactone, and increased the levels of hippuric acid and phenylacetylglycine, and then adjusted the changes of phenylalanine metabolism, TCA cycle and ascorbate and aldarate metabolic pathways. The above results suggested that MF can effectively prevent AH by modulating specific AH-associated genes, potential biomarkers and metabolic pathways in AH rats, etc.
Collapse
Affiliation(s)
- Mengran Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding 071002, China.
| | | | | | | | | | | |
Collapse
|
6
|
Cytoprotective Effects of Mangiferin and Z-Ligustilide in PAH-Exposed Human Airway Epithelium in Vitro. Nutrients 2019; 11:nu11020218. [PMID: 30678167 PMCID: PMC6412222 DOI: 10.3390/nu11020218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
According to World Health Organisation (WHO) air pollution increases the risk of cardiovascular disorders, respiratory diseases, including COPD, lung cancer and acute respiratory infections, neuro-degenerative and other diseases. It is also known that various phytochemicals may mitigate such risks. This study tested if phytochemicals mangiferin (MNG) and Z-ligustilide (Z-LG) may protect PAH-exposed human lung bronchial epithelial cells (BEAS-2B). Organic PAH extract was obtained from the urban fine PM with high benzo(a)pyrene content collected in Eastern European mid-sized city during winter heating season. Cell proliferation traits and levels of intracellular oxidative stress were examined. Effect of MNG (0.5 µg/mL) alone or in combination with PAH on bronchial epithelium wound healing was evaluated. Both phytochemicals were also evaluated for their antioxidant properties in acellular system. Treatment with MNG produced strong cytoprotective effect on PAH-exposed cells (p < 0.01) while Z-LG (0.5 µg/mL) exhibited strong negative effect on cell proliferation in untreated and PAH-exposed cells (p < 0.001). MNG, being many times stronger antioxidant than Z-LG in chemical in vitro assays (p < 0.0001), was also able to decrease PAH-induced oxidative stress in the cell cultures (p < 0.05). Consequently MNG ameliorates oxidative stress, speeds up wound healing process and restores proliferation rate in PAH-exposed bronchial epithelium. Such protective effects of MNG in air pollution affected airway epithelium stimulate further research on this promising phytochemical.
Collapse
|
7
|
Gentile C, Di Gregorio E, Di Stefano V, Mannino G, Perrone A, Avellone G, Sortino G, Inglese P, Farina V. Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chem 2018; 277:471-479. [PMID: 30502173 DOI: 10.1016/j.foodchem.2018.10.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
Mango (Mangifera indica L.) quality is strongly influenced by genotype but individuating the most appropriate harvesting time is essential to obtain high quality fruits. In this trial we studied the influences of the ripening stage at harvest (mature-ripe or green-ripe) on quality of ready to eat mango fruits from nine cultivars (Carrie, Keitt, Glenn, Manzanillo, Maya, Rosa, Osteen, Tommy Atkins and Kensington Pride) grown in the Mediterranean subtropical climate through physicochemical, nutraceutical, and sensory analysis. Our results show a large variability among the different observed genotypes and in dependence of the ripening stage at harvest. With the exception of Rosa, mature-ripe fruits are well-colored, sweet and aromatic, and better suited for short supply chains. On the other hand, post-harvest ripened fruits are firmer, frequently (Carrie, Glenn, Keitt, Manzanillo, Maya) possess interesting nutraceutical value and, in the case of Glenn, Maya, Osteen, and Kensington Pride, they can reach market standard quality.
Collapse
Affiliation(s)
- Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Emanuela Di Gregorio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Sortino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Paolo Inglese
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
8
|
Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, Gericke N, Perez-Valera M, Curtelin D, Galvan-Alvarez V, Lopez-Rios L, Morales-Alamo D, Calbet JAL. Mangifera indica L. Leaf Extract in Combination With Luteolin or Quercetin Enhances VO 2peak and Peak Power Output, and Preserves Skeletal Muscle Function During Ischemia-Reperfusion in Humans. Front Physiol 2018; 9:740. [PMID: 29937737 PMCID: PMC6002676 DOI: 10.3389/fphys.2018.00740] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
It remains unknown whether polyphenols such as luteolin (Lut), mangiferin and quercetin (Q) have ergogenic effects during repeated all-out prolonged sprints. Here we tested the effect of Mangifera indica L. leaf extract (MLE) rich in mangiferin (Zynamite®) administered with either quercetin (Q) and tiger nut extract (TNE), or with luteolin (Lut) on sprint performance and recovery from ischemia-reperfusion. Thirty young volunteers were randomly assigned to three treatments 48 h before exercise. Treatment A: placebo (500 mg of maltodextrin/day); B: 140 mg of MLE (60% mangiferin) and 50 mg of Lut/day; and C: 140 mg of MLE, 600 mg of Q and 350 mg of TNE/day. After warm-up, subjects performed two 30 s Wingate tests and a 60 s all-out sprint interspaced by 4 min recovery periods. At the end of the 60 s sprint the circulation of both legs was instantaneously occluded for 20 s. Then, the circulation was re-opened and a 15 s sprint performed, followed by 10 s recovery with open circulation, and another 15 s final sprint. MLE supplements enhanced peak (Wpeak) and mean (Wmean) power output by 5.0-7.0% (P < 0.01). After ischemia, MLE+Q+TNE increased Wpeak by 19.4 and 10.2% compared with the placebo (P < 0.001) and MLE+Lut (P < 0.05), respectively. MLE+Q+TNE increased Wmean post-ischemia by 11.2 and 6.7% compared with the placebo (P < 0.001) and MLE+Lut (P = 0.012). Mean VO2 during the sprints was unchanged, suggesting increased efficiency or recruitment of the anaerobic capacity after MLE ingestion. In women, peak VO2 during the repeated sprints was 5.8% greater after the administration of MLE, coinciding with better brain oxygenation. MLE attenuated the metaboreflex hyperpneic response post-ischemia, may have improved O2 extraction by the Vastus Lateralis (MLE+Q+TNE vs. placebo, P = 0.056), and reduced pain during ischemia (P = 0.068). Blood lactate, acid-base balance, and plasma electrolytes responses were not altered by the supplements. In conclusion, a MLE extract rich in mangiferin combined with either quercetin and tiger nut extract or luteolin exerts a remarkable ergogenic effect, increasing muscle power in fatigued subjects and enhancing peak VO2 and brain oxygenation in women during prolonged sprinting. Importantly, the combination of MLE+Q+TNE improves skeletal muscle contractile function during ischemia/reperfusion.
Collapse
Affiliation(s)
- Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Nektium Pharma, Las Palmas de Gran Canaria, Spain
| | | | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Mario Perez-Valera
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Curtelin
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Laura Lopez-Rios
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jose A. L. Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
9
|
Bading Taika B, Bouckandou M, Souza A, Bourobou Bourobou HP, MacKenzie LS, Lione L. An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:203-228. [PMID: 29305175 DOI: 10.1016/j.jep.2017.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. MATERIALS AND METHODS Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including 'Diabetes', 'Gabon', 'Toxicity', 'Constituents', 'hyperglycaemia' were used. RESULTS A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. CONCLUSION An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.
Collapse
Affiliation(s)
- B Bading Taika
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK; IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon.
| | - M Bouckandou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - A Souza
- Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), Franceville, Gabon
| | - H P Bourobou Bourobou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - L S MacKenzie
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - L Lione
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| |
Collapse
|