1
|
Zhou J, Ma H, Guan M, Feng J, Dong X, Wei Y, Zhang T. Anti-inflammatory Fucoidan-ConA oral insulin nanosystems for smart blood glucose regulation. Int J Pharm 2024; 659:124250. [PMID: 38777304 DOI: 10.1016/j.ijpharm.2024.124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The smart oral administration Insulin device has the potential to improve glycemic management. It can reduce the risk of hypoglycemia associated with exogenous Insulin (INS) therapy while also avoiding many of the disadvantages associated with subcutaneous injections. Furthermore, diabetes mellitus (DM) is an endocrine illness characterized by inflammation, and it is critical to minimize the amount of inflammatory markers in diabetic patients while maintaining average blood glucose. In this study, a responsive nanosystem vitamin B12-Fucoidan-Concanavalin A (VB12-FU-ConA NPs) with anti-inflammatory action was developed for smart oral delivery of Insulin. Con A has high sensitivity and strong specificity as a glucose-responsive material. Fucoidan has anti-inflammatory, immunomodulatory, and hypoglycemic functions, and it can bind to Con A to form a reversible complex. Under high glucose conditions, free glucose competitively binds to Con A, which swells the nanocarrier and promotes Insulin release. Furthermore, in the low pH environment of the gastrointestinal tract, positively charged VB12 and anionic fucoidan bind tightly to protect the Insulin wrapped in the carrier, and VB12 can also bind to intestinal epithelial factors to improve transit rate, thereby promoting INS absorption. In vitro tests showed that the release of nanoparticles in hyperglycemic solutions was significantly higher than the drug release in normoglycemic conditions. Oral delivery of the nanosystems dramatically lowered blood glucose levels in type I diabetic mice (T1DM) during in vivo pharmacodynamics, minimizing the risk of hypoglycemia. Blood glucose levels reached a minimum of 8.1 ± 0.4 mmol/L after 8 h. Administering the nanosystem orally notably decreased the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in diabetic mice. The nano delivery system can be degraded and metabolized in the intestinal tract after being taken orally, demonstrating good biodegradability and biosafety. In conclusion, the present study showed that VB12-FU-ConA nanocarriers are expected to be a novel system for rationalizing blood glucose.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junfen Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
3
|
Li JJ, Dai WQ, Mo WH, Xu WQ, Li YY, Guo CY, Xu XF. Fucoidan Ameliorates Ferroptosis in Ischemia-reperfusion-induced Liver Injury through Nrf2/HO-1/GPX4 Activation. J Clin Transl Hepatol 2023; 11:1341-1354. [PMID: 37719959 PMCID: PMC10500289 DOI: 10.14218/jcth.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity. Methods In this study, we established models of IR injury using erastin as an activator of ferroptosis, with the ferroptosis inhibitor ferrostatin-1 (Fer-1) as the control. We clarified the molecular mechanism of fucoidan in IR-induced ferroptosis by determining lipid peroxidation levels, mitochondrial morphology, and key pathways in theta were involved. Results Ferroptosis was closely related to IR-induced hepatocyte injury. The use of fucoidan or Fer-1 inhibited ferroptosis by eliminating reactive oxygen species and inhibiting lipid peroxidation and iron accumulation, while those effects were reversed after treatment with erastin. Iron accumulation, mitochondrial membrane rupture, and active oxygen generation related to ferroptosis also inhibited the entry of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and reduced downstream heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPX4) protein levels. However, fucoidan pretreatment produced adaptive changes that reduced irreversible cell damage induced by IR or erastin. Conclusions Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Hui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Qiang Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Yue-Yue Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Chuan-Yong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
4
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
5
|
Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int J Biol Macromol 2023; 235:123867. [PMID: 36870664 DOI: 10.1016/j.ijbiomac.2023.123867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The anti-obesity activity of encapsulated fucoxanthin in fucoidan-based nanoemulsion was investigated. Then, high-fat diet (HFD) induced-obese rats were fed along with different treatments including administration of encapsulated fucoxanthin (10 mg/kg and 50 mg/kg/day), fucoidan (70 mg/kg), Nigella sativa oil (250 mg/kg), metformin (200 mg/kg), and free form of fucoxanthin (50 mg/kg) by oral gavage daily for 7 weeks. The study discovered that fucoidan-based nanoemulsions with a low and high dose of fucoxanthin had droplet size in the range of 181.70-184.87 nm and encapsulation efficacy of 89.94-91.68 %, respectively. Also exhibited 75.86 % and 83.76 % fucoxanthin in vitro release. The TEM images and FTIR spectera confirmed the particle size and encapsulation of fucoxanthin, respectively. Moreover, in vivo results revealed that encapsulated fucoxanthin reduced body and liver weight compared with a HFD group (p < 0.05). Biochemical parameters (FBS, TG, TC, HDL, LDL) and liver enzymes (ALP, AST, and ALT) were decreased after fucoxanthin and fucoidan administration. According to the histopathological analysis, fucoxanthin and fucoidan attenuated lipid accumulation in the liver.
Collapse
|
6
|
Xue M, Tian Y, Sui Y, Zhao H, Gao H, Liang H, Qiu X, Sun Z, Zhang Y, Qin Y. Protective effect of fucoidan against iron overload and ferroptosis-induced liver injury in rats exposed to alcohol. Biomed Pharmacother 2022; 153:113402. [DOI: 10.1016/j.biopha.2022.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/09/2023] Open
|
7
|
Liu Z, Gao W, Xu Y. Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats. Bioengineered 2022; 13:11718-11731. [PMID: 35502892 PMCID: PMC9275941 DOI: 10.1080/21655979.2022.2071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is the central disorder underlined by ischemia-reperfusion (I/R) injury. Eleutheroside E (EE) is administered as the shield in some ischemia tissues with anti-inflammatory action. However, whether EE defends I/R-induced damage in the brain remains unknown. Here, we demonstrated that EE significantly alleviated the cerebral I/R injury and reduced the apoptosis of hippocampal neuron cells in rats. During the anti-apoptosis process, EE significantly upregulated the expression of 5-hydroxytryptamine receptor 2C (Htr2c) gene. Silencing Htr2c expression dramatically weakened the protective effect of EE on I/R-induced apoptosis of rat hippocampal neuron. EE-regulated Htr2c also remarkably inhibited the expression of caspase-3, −6 and −7, thereby suggesting a plausible anti-apoptosis mechanism associated with Htr2c/caspase axis. These findings elicit the potentially clinical strategy that targets Htr2c to improve outcome of ischemia brain.
Collapse
Affiliation(s)
- Zheng Liu
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Wenwei Gao
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Yuanqin Xu
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
8
|
Sanjeewa KKA, Herath KHINM, Yang HW, Choi CS, Jeon YJ. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review. Mar Drugs 2021; 19:678. [PMID: 34940677 PMCID: PMC8703547 DOI: 10.3390/md19120678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucoidans are sulfated heteropolysaccharides found in the cell walls of brown seaweeds (Phaeophyceae) and in some marine invertebrates. Generally, fucoidans are composed of significant amounts of L-fucose and sulfate groups, and lesser amounts of arabinose, galactose, glucose, glucuronic acid, mannose, rhamnose, and xylose. In recent years, fucoidans isolated from brown seaweeds have gained considerable attention owing to their promising bioactive properties such as antioxidant, immunomodulatory, anti-inflammatory, antiobesity, antidiabetic, and anticancer properties. Inflammation is a complex immune response that protects the organs from infection and tissue injury. While controlled inflammatory responses are beneficial to the host, leading to the removal of immunostimulants from the host tissues and restoration of structural and physiological functions in the host tissues, chronic inflammatory responses are often associated with the pathogenesis of tumor development, arthritis, cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. In this review, the authors mainly discuss the studies since 2016 that have reported anti-inflammatory properties of fucoidans isolated from various brown seaweeds, and their potential as a novel functional material for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kalu K. Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pittpana, Homagoma 10200, Sri Lanka;
| | - Kalahe H. I. N. M. Herath
- Department of Biosystems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka;
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
9
|
Zhang N, Xue M, Sun T, Yang J, Pei Z, Qin K. Fucoidan as an Autophagy Regulator: Mechanisms and Therapeutic Potentials for Cancer and Other Diseases. Nutr Cancer 2021; 74:1568-1579. [PMID: 34477470 DOI: 10.1080/01635581.2021.1973045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fucoidan, a natural polysaccharide with a variety of classical bioactivities mainly sourced from brown algae, has been extensively studied owing to its favorable pharmacological effects, including anti-inflammatory, anti-tumor, anticoagulant and liver protection. Recently it has been found to play a regulatory role in the processes of autophagy. Autophagy is an important cellular process that effectively protects cells and organisms from stimulating factors such as nutrient deficiency, low cellular ATP levels, metabolic stress, growth factor deprivation and hypoxic conditions. In recent years, many studies have shown that fucoidan can treat human diseases by regulating autophagy process though cell signaling pathways. In this review, we summarize the latest progress in the discovery of natural autophagy regulator of fucoidan for the therapeutic application in cardiac diseases, cancers and liver diseases, aiming to provide the new pharmacological application that fucoidan may treat human diseases by regulating autophagy. Furthermore, we look forward to seeing more diseases that would be treated by autophagy modulator of fucoidan and the discovery of more elaborate autophagy regulation mechanism.
Collapse
Affiliation(s)
- Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| | - Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
| |
Collapse
|
10
|
Álvarez-Mercado AI, Rojano-Alfonso C, Micó-Carnero M, Caballeria-Casals A, Peralta C, Casillas-Ramírez A. New Insights Into the Role of Autophagy in Liver Surgery in the Setting of Metabolic Syndrome and Related Diseases. Front Cell Dev Biol 2021; 9:670273. [PMID: 34141709 PMCID: PMC8204012 DOI: 10.3389/fcell.2021.670273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023] Open
Abstract
Visceral obesity is an important component of metabolic syndrome, a cluster of diseases that also includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function, which manifests as non-alcoholic fatty liver disease (NAFLD). NAFLD is a common cause of abnormal liver function, and numerous studies have established the enormously deleterious role of hepatic steatosis in ischemia-reperfusion (I/R) injury that inevitably occurs in both liver resection and transplantation. Thus, steatotic livers exhibit a higher frequency of post-surgical complications after hepatectomy, and using liver grafts from donors with NAFLD is associated with an increased risk of post-surgical morbidity and mortality in the recipient. Diabetes, another MetS-related metabolic disorder, also worsens hepatic I/R injury, and similar to NAFLD, diabetes is associated with a poor prognosis after liver surgery. Due to the large increase in the prevalence of MetS, NAFLD, and diabetes, their association is frequent in the population and therefore, in patients requiring liver resection and in potential liver graft donors. This scenario requires advancement in therapies to improve postoperative results in patients suffering from metabolic diseases and undergoing liver surgery; and in this sense, the bases for designing therapeutic strategies are in-depth knowledge about the molecular signaling pathways underlying the effects of MetS-related diseases and I/R injury on liver tissue. A common denominator in all these diseases is autophagy. In fact, in the context of obesity, autophagy is profoundly diminished in hepatocytes and alters mitochondrial functions in the liver. In insulin resistance conditions, there is a suppression of autophagy in the liver, which is associated with the accumulation of lipids, being this is a risk factor for NAFLD. Also, oxidative stress occurring in hepatic I/R injury promotes autophagy. The present review aims to shed some light on the role of autophagy in livers undergoing surgery and also suffering from metabolic diseases, which may lead to the discovery of effective therapeutic targets that could be translated from laboratory to clinical practice, to improve postoperative results of liver surgeries when performed in the presence of one or more metabolic diseases.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain.,Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, Mexico.,Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| |
Collapse
|
11
|
Tsai MY, Yang WC, Lin CF, Wang CM, Liu HY, Lin CS, Lin JW, Lin WL, Lin TC, Fan PS, Hung KH, Lu YW, Chang GR. The Ameliorative Effects of Fucoidan in Thioacetaide-Induced Liver Injury in Mice. Molecules 2021; 26:molecules26071937. [PMID: 33808318 PMCID: PMC8036993 DOI: 10.3390/molecules26071937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.
Collapse
Affiliation(s)
- Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Chen-Si Lin
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Pei-Shan Fan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Yu-Wen Lu
- Department of Chinese Medicine, Show Chwan Memorial Hospital, 1 Section, 542 Chung-Shan Road, Changhua 50008, Taiwan
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Changhua 50544, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| |
Collapse
|
12
|
Güney T, Kocman AE, Ozatik O, Akyüz F. The effect of fucoidin on kidney and lung injury in a rat infrarenal aortic ischemia-reperfusion model. Perfusion 2021; 37:198-207. [PMID: 33461417 DOI: 10.1177/0267659120982839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of fucoidin on rat kidney and lung in an infraaortic ishemia reperfusion model. METHODS Forty Wistar rats were randomly divided into five groups (n = 8) as sham, control (IR), before ischemia (BI), before reperfusion (BR), and before ischemia and before reperfusion (BI/BR). Rats were subjected to 120 minutes ischemia followed by 120 minutes reperfusion with application of infrarenal aortic clamping. BI received intravenous fucoidin (25 mg/kg) ten minutes before establishing ischemia and BR received ten minutes before reperfusion. BI/BR group received half equal doses of fucoidin both before ischemia (12.5 mg/kg) and reperfusion (12.5 mg/kg) periods, respectively. After sacrification blood and tissue samples were obtained for biochemical (Malondialdehyde (MDA), Nitric oxide (NO), Myeloperoxidase (MPO), Catalase (CAT), Plasma Chitotriosidase (CHIT) and serum ischemia modified albumin (IMA)) and histologic examinations. RESULTS MDA, NO, MPO, CAT, and IMA levels were lower in BR and BI/BR groups compared to control group (p < 0.001). Plasma CHIT levels in BR and BI/BR groups were lower than in control group (p < 0.05). According to histological examination kidney and lung injury scores were lower in BR and BI/BR groups compared to control group (p < 0.01 and p < 0.001, respectively). CONCLUSION The study showed that fucoidin is effective in preventing kidney and lung injury if administered before reperfusion or both before ischemia and reperfusion. However, it has no effect if administered only before ischemia.
Collapse
Affiliation(s)
- Türkan Güney
- Department of Medical Biochemistry, Beykent University Faculty of Medicine, Istanbul, Turkey
| | - Atacan Emre Kocman
- Department of Plastic Reconstructive Aesthetic Surgery, Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology, Kütahya Health Sciences University Faculty of Medicine, Kutahya, Turkey
| | - Fahrettin Akyüz
- Department of Biochemistry, Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
13
|
Guan Z, Shi L, Wang T, Xu Y, Xu T. Low Molecular Weight Fucoidan from Saccharina Japonica Ameliorates the Antioxidant Capacity and Reduces Plaque Areas in Aorta in Apoe-Deficient Mice with Atherosclerosis. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02278-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Li J, Guo C, Wu J. Fucoidan: Biological Activity in Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1617-1632. [PMID: 33148007 DOI: 10.1142/s0192415x20500809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fucoidan is a type of polysaccharide rich in sulfuric acid groups and is mainly found in brown algae. Due to its extensive biological activities, such as anticoagulant, antitumor, antithrombotic, antiviral, anti-oxidant and enhancing immune function, fucoidan has gradually become a research hotspot. Under the scientific guidance of modern medical theory, fucoidan and its mechanism in oxidative stress, carbohydrate and lipid metabolism, inflammatory response, tumor proliferation, and metastasis have become a new research direction and an important basis as an effective liver protection drug. In this paper, we discuss the important role of fucoidan in viral hepatitis, liver fibrosis, liver cancer, nonalcoholic fatty liver and liver injury induced by drugs and ischemia and briefly discuss its underlying mechanism. We supplement the theoretical basis for its clinical application and provide effective targets for the development of follow-up dominant drugs.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai 200072, P. R. China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| |
Collapse
|
15
|
Fucoidan Inhibits NLRP3 Inflammasome Activation by Enhancing p62/SQSTM1-Dependent Selective Autophagy to Alleviate Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3186306. [PMID: 33505579 PMCID: PMC7812546 DOI: 10.1155/2020/3186306] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation contributes to the progression of atherosclerosis, and autophagy inhibits inflammasome activation by targeting macrophages. We investigated whether fucoidan, a marine sulfated polysaccharide derived from brown seaweeds, could reduce NLRP3 inflammasome activation by enhancing sequestosome 1 (p62/SQSTM1)-dependent selective autophagy to alleviate atherosclerosis in high-fat-fed ApoE-/- mice with partial carotid ligation and differentiated THP-1 cells incubated with oxidized low-density lipoprotein (oxLDL). Fucoidan significantly ameliorated lipid accumulation, attenuated progression of carotid atherosclerotic plaques, deregulated the expression of NLRP3 inflammasome, autophagy receptor p62, and upregulated microtubule-associated protein light chain 3 (LC3)-II/I levels. Transmission electron microscopy and GFP-RFP-LC3 lentivirus transfection further demonstrated that fucoidan could activate autophagy. Mechanistically, fucoidan remarkably inhibited NLRP3 inflammasome activation, which was mostly dependent on autophagy. The inhibitory effects of fucoidan on NLRP3 inflammasome were enhanced by autophagy activator rapamycin (Rapa) and alleviated by autophagy inhibitor 3-methyladenine (3-MA). Fucoidan promoted the colocalization of NLRP3 and p62. Knockdown of p62 and ATG5 by small interfering RNA significantly reduced the inhibitory effects of fucoidan treatment on NLRP3 inflammasome. The data suggest that fucoidan can inhibit NLRP3 inflammasome activation by enhancing p62/SQSTM1-dependent selective autophagy to alleviate atherosclerosis.
Collapse
|
16
|
Abdel-Daim MM, Abushouk AI, Bahbah EI, Bungău SG, Alyousif MS, Aleya L, Alkahtani S. Fucoidan protects against subacute diazinon-induced oxidative damage in cardiac, hepatic, and renal tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11554-11564. [PMID: 31965500 DOI: 10.1007/s11356-020-07711-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 05/07/2023]
Abstract
Fucoidans (FUC) are organic sulfated polysaccharides from natural seaweeds with multiple biological actions. The current study was performed to assess the chemoprotective, antioxidant, and anti-inflammatory effects of FUC from Laminaria japonicum against diazinon (DZN)-induced injuries to rat cardiac, hepatic, and renal tissues. Forty male Wistar rats were assigned into five groups, receiving saline, oral FUC 200 mg/kg/day, subcutaneous DZN 20 mg/kg/day, DZN plus FUC 100 mg/kg/day, or DZN plus FUC 200 mg/kg/day (each treatment was given daily for 4 weeks). Data analysis showed that DZN-intoxicated rats exhibited significantly higher (p < 0.05) serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatine, creatine kinase, creatine kinase-MB, lactate dehydrogenase, cholesterol, interleukin-6, and tumor necrosis factor-α, as well as lower levels of acetylcholinesterase, compared to control rats. In addition, DZN intoxication was associated with significantly higher (p < 0.05) cardiac, hepatic, and renal tissue concentrations of malondialdehyde and nitric oxide, as well as lower glutathione concentrations, and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison to control rats. Treatment with FUC (at 100 or 200 mg/kg/day) ameliorated all the aforementioned alterations in a dose-dependent manner. In conclusion, FUC from Laminaria japonicum ameliorated DZN-induced oxidative stress, pro-inflammatory effects, and injuries to the cardiac, hepatic, and renal tissues. These effects may be related to the antioxidant and anti-inflammatory effects of FUC.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Simona G Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, Bourgogne Franche-Comté University, UMR CNRS 6249, 25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Slim C, Zaouali MA, Nassrallah H, Ammar HH, Majdoub H, Bouraoui A, Abdennebi HB. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int J Biol Macromol 2020; 155:498-507. [PMID: 32243932 DOI: 10.1016/j.ijbiomac.2020.03.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
The necessity to increase the efficiency of organ preservation has pushed physicians to consider the use of pharmacological additives in preservation solutions to minimize ischemia reperfusion injury. Here, we evaluated the effect of fucoidan, sulfated polysaccharide from brown seaweed, as an additive to IGL-1 (Institut Georges Lopez) preservation solution. Livers from Wistar rats were preserved for 24 h at 4 °C in IGL-1 solution, enriched or not with fucoidan (100 mg/L). Thereafter, they were subjected to reperfusion (2 h, at 37 °C) using an isolated perfused rat liver model. The addition of fucoidan to IGL-1 solution reduced hepatic injury (AST, ALT) and improved liver function compared to IGL-1 solution without fucoidan. In addition, we noted a significant increase in the phosphorylation of AMPK, AKT protein kinase and GSK3-β, leading to a reduction in VDAC phosphorylation, as well as a reduction in apoptosis (caspase 3), mitochondrial damage, oxidative stress and endoplasmic reticulum (ER) stress markers. Furthermore, ERK1/2 and P38 MAPKs phosphorylation significantly decreased after supplementation of IGL-1 solution with fucoidan. In conclusion, the supplementation of IGL-1 solution with fucoidan maintained liver graft integrity and function through the prevention of the ER stress, oxidative stress and mitochondrial dysfunction. Fucoidan could be considered as potential natural therapeutic agent to alleviate graft injury.
Collapse
Affiliation(s)
- Chérifa Slim
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Tunisia
| | - Hana Nassrallah
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hiba Hadj Ammar
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratoire du Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| |
Collapse
|
18
|
Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:129-143. [PMID: 32021098 PMCID: PMC6970010 DOI: 10.2147/dddt.s229063] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
Objective Hepatic ischemia reperfusion (IR) limits the development of liver transplantation technology. The aim of this study was to explore the protective effects of Bergenin on hepatic IR, particularly the elimination of reactive oxygen species (ROS) and activation of the peroxisome proliferators activated receptor γ (PPAR-γ) pathway. Methods Initial experiments were performed to confirm the non-toxicity of Bergenin. Mice were randomly divided into sham, IR, and IR + Bergenin (10, 20 and 40 mg/kg) groups, and serum and tissue samples were obtained at 2, 8 and 24 h for detection of liver enzymes (ALT and AST), inflammatory factors (TNF-α, IL-6 and IL-1β), ROS, cell death markers (Bcl-2, Bax, Beclin-1 and LC3) and related important pathways (PPAR-γ, P38 MAPK, NF-κB p65 and JAK2/STAT1). Results Bergenin reduced the release of ROS, down-regulated inflammatory factors, and inhibited apoptosis and autophagy. Additionally, expression of PPAR-γ-related genes was increased and phosphorylation of P38 MAPK, NF-κB p65 and JAK2/STAT1-related proteins was decreased in Bergenin pre-treatment groups in a dose-dependent manner. Conclusion Bergenin exerts hepatic protection by eliminating ROS, affecting the release of inflammatory factors, and influencing apoptosis- and autophagy-related genes via the PPAR-γ pathway in this model of hepatic IR injury.
Collapse
Affiliation(s)
- Shihao Xiang
- Medical College of Soochow University, Suzhou, 215006, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, People's Republic of China
| | - Ting Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, People's Republic of China
| | - Chuanyong Guo
- Medical College of Soochow University, Suzhou, 215006, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
19
|
Li M, Sun X, Li Q, Li Y, Luo C, Huang H, Chen J, Gong C, Li Y, Zheng Y, Zhang S, Huang X, Chen H. Fucoidan exerts antidepressant-like effects in mice via regulating the stability of surface AMPARs. Biochem Biophys Res Commun 2019; 521:318-325. [PMID: 31668812 DOI: 10.1016/j.bbrc.2019.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022]
Abstract
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuejiao Sun
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Can Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hailong Huang
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenzi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yajie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yifeng Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Song Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Pan TJ, Li LX, Zhang JW, Yang ZS, Shi DM, Yang YK, Wu WZ. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin αVβ3 and Mediating αVβ3/Src/E2F1 Signaling. J Cancer 2019; 10:4777-4792. [PMID: 31598149 PMCID: PMC6775528 DOI: 10.7150/jca.26740] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells. Methods: We used 98% purified fucoidan from Sargassum species to treat the hepatocellular carcinoma (HCC) cells SMMC-7721, Huh7 and HCCLM3 in vitro and the HCCLM3 cell line in vivo. The HCC cells were cultured with various concentrations of Fucoidan-Sargassum (0-30 mg/mL). Migration, invasion and wound healing assays were performed to determine the antimetastatic effect of fucoidan on the HCC cells. Western blot analysis and immunofluorescence staining were conducted to determine the expression levels of invadopodia formation-regulating proteins and the targeting membrane receptor proteins. Results: Fucoidan-Sargassum inhibited the migration and invasion of HCC SMMC-7721, Huh7 and HCCLM3 cells in a dose-dependent manner. In the HCCLM3 cells, Fucoidan-Sargassum also decreased the expression levels of invadopodia-related proteins including Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP, and the targeting receptors integrin αV and β3 in a dose-dependent manner. Fucoidan-Sargassum also increased the levels of endoplasmic reticulum-related proteins, including GRP78, IRE1, SPARC, and the type IV collagen receptor proteins integrin α1 and β1. In vivo, Fucoidan-Sargassum reduced the size of liver tumors and decreased the number of lung metastatic foci in nude mice with hepatocellular carcinoma xenografts. Conclusion: These findings indicate that Fucoidan-Sargassum has an antimetastatic effect on SMMC-7721, Huh7 and HCCLM3 liver cancer cells, and the underlying mechanism involves targeting ITGαVβ3 and mediating the ITGαVβ3/SRC/E2F1 signaling pathway. These results suggest that Fucoidan-Sargassum may be a promising therapeutic antimetastatic compound in the development of a metastasis-preventive drug for treating liver cancer.
Collapse
Affiliation(s)
- Ting-Jia Pan
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Li-Xin Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia-Wei Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Zhao-Shuo Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yun-Ke Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
21
|
Yu Q, Wu L, Liu T, Li S, Feng J, Mao Y, Fan X, Guo C, Wu J. Protective effects of levo-tetrahydropalmatine on hepatic ischemia/reperfusion injury are mediated by inhibition of the ERK/NF-κB pathway. Int Immunopharmacol 2019; 70:435-445. [PMID: 30856394 DOI: 10.1016/j.intimp.2019.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (IR) injury is a common medical phenomenon that occurs during a number of clinical conditions, such as liver transplantation, severe injuries, and shock. In our study, we determined the protective functions of levo-tetrahydropalmatine (L-THP) on hepatic IR injury in mice by inhibiting the ERK/NF-κB signaling pathway. METHOD BALB/c mice were randomly divided into six groups as follows: normal control (NC); sham; L-THP (40 mg/kg); IR; L-THP (20 mg/kg) + IR; and L-THP (40 mg/kg) + IR. Liver tissues and sera were collected at three time points after reperfusion (2, 8, and 24 h). The liver enzyme, inflammatory factor, and other protein levels in the serum and liver tissues were detected. RESULTS L-THP pretreatment alleviated hepatocyte injury caused by IR and reduced the production of proinflammatory cytokines, such as IL-6 and TNF-α. Furthermore, L-THP could inhibit the ERK/NF-κB signaling pathway to attenuate hepatocyte apoptosis and autophagy. And the protective effect of L-THP is positively correlated with its dose. CONCLUSION L-THP protects the liver from IR injury by inhibiting the release of inflammatory factors and alleviating liver cell apoptosis and autophagy. The protective functions of L-THP may be partly based on the downregulation of the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| |
Collapse
|
22
|
Wang YQ, Wei JG, Tu MJ, Gu JG, Zhang W. Fucoidan Alleviates Acetaminophen-Induced Hepatotoxicity via Oxidative Stress Inhibition and Nrf2 Translocation. Int J Mol Sci 2018; 19:ijms19124050. [PMID: 30558169 PMCID: PMC6321350 DOI: 10.3390/ijms19124050] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that leads to severe hepatotoxicity at excessive doses. Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. However, the impacts of fucoidan on APAP-induced liver injury have not been sufficiently addressed. In the present study, male Institute of Cancer Research (ICR) mice aged 6 weeks were subjected to a single APAP (500 mg/kg) intraperitoneal injection after 7 days of fucoidan (100 or 200 mg/kg/day) or bicyclol intragastric administration. The mice continued to be administered fucoidan or bicyclol once per day, and were sacrificed at an indicated time. The indexes evaluated included liver pathological changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in the liver, and related proteins levels (CYP2E1, pJNK and Bax). Furthermore, human hepatocyte HL-7702 cell line was used to elucidate the potential molecular mechanism of fucoidan. The mitochondrial membrane potential (MMP) and nuclear factor-erythroid 2-related factor (Nrf2) translocation in HL-7702 cells were determined. The results showed that fucoidan pretreatment reduced the levels of ALT, AST, ROS, and MDA, while it enhanced the levels of GSH, SOD, and CAT activities. Additionally, oxidative stress-induced phosphorylated c-Jun N-terminal protein kinase (JNK) and decreased MMP were attenuated by fucoidan. Although the nuclear Nrf2 was induced after APAP incubation, fucoidan further enhanced Nrf2 in cell nuclei and total expression of Nrf2. These results indicated that fucoidan ameliorated APAP hepatotoxicity, and the mechanism might be related to Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jin-Ge Wei
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Meng-Jue Tu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jian-Guo Gu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| |
Collapse
|
23
|
The Protective Effects of Levo-Tetrahydropalmatine on ConA-Induced Liver Injury Are via TRAF6/JNK Signaling. Mediators Inflamm 2018; 2018:4032484. [PMID: 30622431 PMCID: PMC6304924 DOI: 10.1155/2018/4032484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aims Levo-tetrahydropalmatine (L-THP) is an active ingredient of Corydalis yanhusuo W. T. Wang, which has many bioactive properties. Herein, we investigated the protective effects of L-THP on concanavalin A- (ConA-) induced hepatitis in mice and explored its possible mechanisms of these effects. Main Methods Balb/c mice were intravenously injected with 25 mg/kg ConA to generate a model of acute autoimmune hepatitis, and L-THP (20 or 40 mg/kg) was administered orally once daily for 5 d before the ConA injection. The liver enzyme levels, proinflammatory cytokine levels, and other marker protein levels were determined 2, 8, and 24 h after ConA injection. Results L-THP could decrease serum liver enzymes and pathological damage by reducing the release of inflammatory factors like IL-6 and TNF-α. The results of Western Blot and PCR indicated that L-THP could ameliorate liver cell apoptosis and autophagy. L-THP could suppress T lymphocyte proliferation and the production of TNF-α and IL-6 induced by ConA in a dose-dependent manner in vitro. Additionally, the protective functions of L-THP depended on downregulating TRAF6/JNK signaling. Conclusion. The present study indicated that L-THP attenuated acute liver injury in ConA-induced autoimmune hepatitis by inhibiting apoptosis and autophagy via the TRAF6/JNK pathway.
Collapse
|
24
|
Adu‐Frimpong M, Firempong CK, Omari‐Siaw E, Wang Q, Mukhtar YM, Deng W, Yu Q, Xu X, Yu J. Preparation, optimization, and pharmacokinetic study of nanoliposomes loaded with triacylglycerol‐bound punicic acid for increased antihepatotoxic activity. Drug Dev Res 2018; 80:230-245. [DOI: 10.1002/ddr.21485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Adu‐Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
- Department of Biomedical and Basic SciencesCollege of Health and Well‐Being Kintampo Ghana
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Emmanuel Omari‐Siaw
- Department of Pharmaceutical SciencesKumasi Technical University Kumasi Ghana
| | - Qilong Wang
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Wenwen Deng
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| |
Collapse
|
25
|
Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol 2018; 118:365-374. [PMID: 29906534 DOI: 10.1016/j.ijbiomac.2018.06.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
Atherosclerosis (AS) is the key cause of many cardiovascular and cerebrovascular diseases. The inflammatory response and lipid metabolism disorders contribute to the development and progression of AS. This work aims to study the anti-inflammatory effect and mechanism of low molecular weight fucoidan (LMWF) obtained from Saccharina japonica on atherosclerosis in apoE-knockout mice. The experimental results showed that LMWF statistically decreased the levels of triglyceride (TRIG) and oxidative low-density lipoproteins (ox-LDL) and stabilized established atherosclerotic lesions. LMWF ameliorated the inflammatory response by down regulating IL-6 and by up regulating IL-10 transcriptional levels, and LMWF returned p-JNK and cyclin D1 to normal levels. Moreover, LMWF increased the mRNA level of CD11b in the aorta and suppressed the expression of CD11b in the intimal layer of the aorta. Therefore, LMWF prevented macrophages from developing into foam cells and prevented SMCs from migrating into the intimal layer of the aorta, which inhibited the formation of atherosclerotic plaques; and ameliorated the occurrence and development of AS.
Collapse
Affiliation(s)
- Yingjie Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jie Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Keli Ge
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qingwu Tian
- Clinical laboratory, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- Clinical laboratory, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
26
|
Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother 2018; 103:800-811. [PMID: 29684859 DOI: 10.1016/j.biopha.2018.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin, a flavonoid compound extracted from plants' fruit or leaves, like sea buckthorn (Hippophae rhamnoides L.), has many biological functions, including anti-tumor, anti-oxidant and anti-inflammatory effect. The present study is in order to explore the hepatoprotective effect of isorhamnetin on concanavalin A (ConA)-induced acute fulminant hepatitis and the underlying mechanism. Mice were injected with ConA (25 mg/kg) to induce acute fulminant hepatitis, three doses of isorhamnetin (10/30/90 mg/kg) was intraperitoneally administrated about 1 h previously. The serum and liver tissues were harvested at 2, 8, and 24 h after ConA injection. The levels of serum liver enzymes and proinflammatory cytokines were significantly reduced in isorhamnetin administration groups. Besides, isorhamnetin improved pathological damage. Furthermore, isorhamnetin affected P38/PPAR-α pathway, and subsequently regulated the expression of apoptosis and autophagy related proteins. The present study investigated that isorhamnetin inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice.
Collapse
|