1
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
2
|
Gu Y, Li J, Guan H, Sun C. Prognostic and immunological values of SKA3 for overall survival in lung adenocarcinoma and its RNA binding protein involved mechanisms. J Chemother 2024; 36:566-579. [PMID: 38146901 DOI: 10.1080/1120009x.2023.2298153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
This article aimed to investigate the correlations among SKA3 expression and prognosis, clinical relevance, tumor immunity, and RNA-binding protein (RBP)-involved mechanisms for overall survival (OS) in lung adenocarcinoma (LUAD). To explore the SKA3 expression level in LUAD by analyzing the genomic data as well as related clinical characteristics from the database of TCGA. Nomogram and gene set enrichment analysis (GSEA) were applied, respectively, to evaluate the performance of SKA3 in LUAD. Correlations between SKA3 and immunity and RBP-involved mechanisms were also performed. SKA3 had a higher expression level in LUAD samples than in adjacent normal lung samples, with shorter survival times in the high-SKA3-expressed LUAD subgroup (P < 0.05). qRT-PCR results remained consistent (P < 0.05). Uni-/multivariate Cox analyses revealed that SKA3 could have independent prognostic ability for LUAD (both P < 0.05). The nomogram model constructed with clinical pathological parameters and SKA3 expression levels predicted OS rates for LUAD and GSEA revealed SKA3-related pathways. In aspects of tumor immunity, SKA3 was significantly involved with tumor neoantigen burden, tumor mutational burden, immune cell pathways, and immune checkpoint inhibitor (ICI) molecules (all P < 0.05). The CellMiner database also found significant correlations between SKA3 and the antitumor drug sensitivity of chemotherapy, fenretinide, and PX-316. Besides, a total of nine LncRNA/RBP/SKA3 networks were revealed in LUAD for their RBP-involved mechanisms. SKA3 could serve as a potential biomarker for OS prognosis and immunotherapy in LUAD. LncRNA/RBP/SKA3 networks were identified in LUAD for their RBP-involved mechanisms, paving the way for further experimental verifications.
Collapse
Affiliation(s)
- Yinfeng Gu
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinjin Li
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Hongjun Guan
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Changpeng Sun
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
Fay M, Clavijo PE, Allen CT. Heterogeneous characterization of neutrophilic cells in head and neck cancers. Head Neck 2024; 46:2591-2599. [PMID: 38622975 PMCID: PMC11473716 DOI: 10.1002/hed.27774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Neutrophilic cells are among the most abundant immune populations within the head and neck tumor microenvironment (TME) and harbor multiple mechanisms of immunosuppression. Despite these important features, neutrophilic cells may be underrepresented in contemporary studies that aim to comprehensively characterize the immune landscape of the TME due to discrepancies in tissue processing and analysis techniques. Here, we review the role of pathologically activated neutrophilic cells within the TME and pitfalls of various approaches used to study their frequency and function in clinical samples. METHODS The literature was identified by searching PubMed for "immune landscape" and "tumor immune microenvironment" in combination with keywords describing solid tumor malignancies. Key publications that assessed the immune composition of solid tumors derived from human specimens were included. The tumor and blood processing methodologies in each study were reviewed in depth and correlated with the reported abundance of neutrophilic cells. RESULTS Neutrophilic cells do not survive cryopreservation, and many studies fail to identify and study neutrophilic cell populations due to cryopreservation of clinical samples for practical reasons. Additional single-cell transcriptomic studies filter out neutrophilic cells due to low transcriptional counts. CONCLUSIONS This report can help readers critically interpret studies aiming to comprehensively study the immune TME that fail to identify and characterize neutrophilic cells.
Collapse
Affiliation(s)
- Magdalena Fay
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul E. Clavijo
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
5
|
Shi M, Dou H, Lou X, Jiang W, Wang H, Su Y. Identification of diagnostic biomarkers and immune cell infiltration in tongue squamous cell carcinoma using bioinformatic approaches. Eur J Med Res 2024; 29:428. [PMID: 39169439 PMCID: PMC11337857 DOI: 10.1186/s40001-024-01998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE In this study, we employed a bioinformatics approach to identify diagnostic biomarkers for tongue squamous cell carcinoma (TSCC) and investigate the infiltration of immune cells in TSCC, as well as the relationship between biomarkers and immune cells. METHODS We obtained the TSCC expression dataset from a database and conducted differential gene expression analysis between TSCC and adjacent normal tissues using R software. Enrichment analysis of the differentially expressed genes (DEGs) was performed using the DAVID website. Protein interaction networks for the DEGs were constructed, and hub genes were identified using tools such as STRING and Cytoscape. Survival analysis was conducted to identify diagnostic biomarkers and the infiltration of immune cells in TSCC was analyzed using the inverse convolution algorithm with Cibersort software. Finally, the expression of the discovered molecules was verified through clinical pathological sections. RESULTS We identified 24 DEGs in TSCC, primarily associated with signal transduction, substance metabolism, innate immune response, and other related signaling pathways. Among the 24 hub genes screened through the construction of a protein-protein interaction (PPI) network, seven (MMP13, POSTN, MMP9, MMP10, MMP3, SPP1, MMP1) exhibited prognostic value. Survival analysis indicated that SPP1 demonstrated diagnostic potential. The expression level of the SPP1 gene showed a correlation with TSCC as well as several immune cell types, including macrophage M0, M1, M2, CD8+ T cell, activated NK cell, and monocyte (p < 0.05). Histological results confirmed higher expression of SPP1 in TSCC tissues compared to adjacent non-cancerous tissues, particularly in CD68-expressing macrophages. CONCLUSION Our findings suggest that SPP1 serves as a diagnostic biomarker for TSCC and is involved in immune cell infiltration within TSCC tissues. The correlation between SPP1 and macrophages may offer new insights for targeted therapeutic research on TSCC.
Collapse
Affiliation(s)
- Meng Shi
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Huixin Dou
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xinzhe Lou
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wenting Jiang
- Department of Periodontology, Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.
| |
Collapse
|
6
|
Li X, Jian J, Zhang A, Xiang JM, Huang J, Chen Y. The role of immune cells and immune related genes in the tumor microenvironment of papillary thyroid cancer and their significance for immunotherapy. Sci Rep 2024; 14:18125. [PMID: 39103463 PMCID: PMC11300445 DOI: 10.1038/s41598-024-69187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid cancer (THCA) and shows a better prognosis than other types. However, further research is needed to determine the risk of PTC. We herein used the CIBERSORT algorithm to analyze the gene-expression profile obtained from TCGA, estimated the infiltration ratio of 22 immune cell types in tumor tissues and normal tissues, analyzed the differential expression of immune-related genes, and identified immune cells and immune-related genes related to clinical progress and prognosis. We uncovered 12 immune cell types and nine immune-related genes that were closely correlated with TNM staging, and two immune cell types (activated NK cells and γδT cells) and one immune-related gene (CD40LG) that were associated with prognosis. After evaluation, four immune cell types could be used to determine low-risk PTC, with six immune cell types and six immune-related genes closely associated with high-risk PTC. The type and quantity of infiltrating immune cells in the microenvironment of PTC, as well as immune-related genes, appear to be closely related to tumor progression and can therefore be used as important indicators for the evaluation of patient prognosis. We posit that the study of immune cells and immune-related genes in the tumor microenvironment will facilitate the determination of low-risk PTC more accurately, and that this will greatly promote the development of high-risk PTC immunotherapy.
Collapse
Affiliation(s)
- Xumei Li
- Department of Pathology, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Jie Jian
- Department of Pathology, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Anzhi Zhang
- Department of Pathology, Jiaxing University Affiliated Women and Children Hospital (Jiaxing Maternity and Child Health Care Hospital), Jiaxing University, Jiaxing, China
| | - Jiang Ming Xiang
- Department of Surgery, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Jingjing Huang
- Department of Surgery, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Yanlin Chen
- Department of Pathology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Sun X, Li J, Gao X, Huang Y, Pang Z, Lv L, Li H, Liu H, Zhu L. Disulfidptosis‑related lncRNA prognosis model to predict survival therapeutic response prediction in lung adenocarcinoma. Oncol Lett 2024; 28:342. [PMID: 38855504 PMCID: PMC11157670 DOI: 10.3892/ol.2024.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, and disulfidptosis is a newly discovered mechanism of programmed cell death. However, the effects of disulfidptosis-related lncRNAs (DR-lncRNAs) in LUAD have yet to be fully elucidated. The aim of the present study was to identify and validate a novel lncRNA-based prognostic marker that was associated with disulfidptosis. RNA-sequencing and associated clinical data were obtained from The Cancer Genome Atlas database. Univariate Cox regression and lasso algorithm analyses were used to identify DR-lncRNAs and to establish a prognostic model. Kaplan-Meier curves, receiver operating characteristic curves, principal component analysis, Cox regression, nomograms and calibration curves were used to assess the reliability of the prognostic model. Functional enrichment analysis, immune infiltration analysis, somatic mutation analysis, tumor microenvironment and drug predictions were applied to the risk model. Reverse transcription-quantitative PCR was subsequently performed to validate the mRNA expression levels of the lncRNAs in normal cells and tumor cells. These analyses enabled a DR-lncRNA prognosis signature to be constructed, consisting of nine lncRNAs; U91328.1, LINC00426, MIR1915HG, TMPO-AS1, TDRKH-AS1, AL157895.1, AL512363.1, AC010615.2 and GCC2-AS1. This risk model could serve as an independent prognostic tool for patients with LUAD. Numerous immune evaluation algorithms indicated that the low-risk group may exhibit a more robust and active immune response against the tumor. Moreover, the tumor immune dysfunction exclusion algorithm suggested that immunotherapy would be more effective in patients in the low-risk group. The drug-sensitivity results showed that patients in the high-risk group were more sensitive to treatment with crizotinib, erlotinib or savolitinib. Finally, the expression levels of AL157895.1 were found to be lower in A549. In summary, a novel DR-lncRNA signature was constructed, which provided a new index to predict the efficacy of therapeutic interventions and the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Jia Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xuedi Gao
- Department of Ophthamology, Jinan Mingshui Eye Hospital, Jinan, Shandong 250200, P.R. China
| | - Yubin Huang
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Zhanyue Pang
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Lin Lv
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Hao Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
8
|
Fu D, Zhang T, Liu J, Chang B, Zhang Q, Tan Y, Chen X, Tan L. Identification of adipocyte infiltration-related gene subtypes for predicting colorectal cancer prognosis and responses of immunotherapy/chemotherapy. Heliyon 2024; 10:e33616. [PMID: 39050460 PMCID: PMC11266998 DOI: 10.1016/j.heliyon.2024.e33616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent and aggressive malignancy characterized by a complex tumor microenvironment (TME). Given the variations in the level of adipocyte infiltration in TME, the prognosis may differ among CRC patients. Thus, there is an urgent need to establish a reliable method for identifying adipocyte subtypes in CRC in order to elucidate the impact of adipocyte infiltration on CRC treatment and prognosis. Herein, 144 adipocyte-infiltration-related genes (AIRGs) were identified as predictive markers for the immune-associated features and prognosis of CRC patients. Based on the 144 genes, the unsupervised clustering algorithm identified two distinct clusters of CRC patients with variations in molecular and signaling pathways, clinicopathological characteristics and responses to CRC chemotherapy and immunotherapy. Furthermore, an AIRG prognostic signature was constructed and validated in independent datasets. Overall, this study developed a prognostic signature based on AIRGs in CRC, which may contribute to the development of personalized treatment strategies and enhance prognostic prediction for CRC patients.
Collapse
Affiliation(s)
- Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Qingqing Zhang
- Haiyan County Hospital of Traditional Chinese Medicine, JiaXing, 314399, China
| | - Yuyan Tan
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Tan
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| |
Collapse
|
9
|
An J, Chen P, Li X, Li X, Peng F. Identification of potential hub genes and biological mechanism in rheumatoid arthritis and non-small cell lung cancer via integrated bioinformatics analysis. Transl Oncol 2024; 45:101964. [PMID: 38657441 PMCID: PMC11059132 DOI: 10.1016/j.tranon.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Although there is evidence of the association between RA and NSCLC, little is known about their interaction mechanisms. The aim of this study is to identify potential hub genes and biological mechanism in RA and NSCLC via integrated bioinformatics analysis. METHODS The gene expression datasets of RA and NSCLC were downloaded to discover and validate hub genes. After identifying DEGs, we performed enrichment analysis, PPI network construction and module analysis, selection and validation of hub genes. Moreover, we selected the hub gene PTPRC for expression and prognosis analysis, immune analysis, mutation and methylation analysis in NSCLC. Finally, we performed real-time PCR, colony formation assay, wound healing assay, transwell invasion assay, sphere formation assay and western blotting to validate the role of PTPRC in A549 cells. RESULTS We obtained 320 DEGs for subsequent analysis. Enrichment results showed that the DEGs were mainly involved in Th1, Th2 and Th17 cell differentiation. In addition, four hub genes, BIRC5, PTPRC, PLEK, and FYN, were identified after selection and validation. These hub genes were subsequently shown to be closely associated with immune cells and related pathways. In NSCLC, PTPRC was downregulated, positively correlated with immune infiltration and immune cells. Experiments showed that PTPRC could promote the proliferation, migration and invasion, and the ability to form spheroids of A549 cells. In addition, PTPRC could regulate the increased expression of CD45, β-catenin, c-Myc and LEF1 proteins. CONCLUSIONS This study explored the hub genes and related mechanisms of RA and NSCLC, demonstrated the central role of the inflammatory response and the adaptive immune system, and identified PTPRC as an immune-related biomarker and potential therapeutic target for RA and NSCLC patients. In addition, PTPRC can significantly promote the proliferation, migration and invasion of A549 cells, and its mechanism may be to promote the EMT process by regulating the Wnt signaling pathway and promote cell stemness, which in turn has a promoting effect on A549 cells.
Collapse
Affiliation(s)
- Junsha An
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Pingting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiuchuan Li
- Department of cardiology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Huang Y, Zhang Y, Duan X, Hou R, Wang Q, Shi J. Exploring the immune landscape and drug prediction of an M2 tumor-associated macrophage-related gene signature in EGFR-negative lung adenocarcinoma. Thorac Cancer 2024; 15:1626-1637. [PMID: 38886907 PMCID: PMC11260554 DOI: 10.1111/1759-7714.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD. METHODS M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature. RESULTS CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy. CONCLUSION The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.
Collapse
Affiliation(s)
- Yajie Huang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yaozhong Zhang
- Department of Infectious DiseasesThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaoyang Duan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ran Hou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qi Wang
- Department of EndoscopyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian Shi
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
11
|
Tian Y, Zhao W, Lin C, Chen Y, Lin Q, Liu Y, Gu D, Tian L. A novel signature of seven aging-related genes for risk stratification, prognosis prediction and benefit evaluation of chemotherapy, and immunotherapy in elderly patients with lung adenocarcinoma. Heliyon 2024; 10:e33268. [PMID: 39022075 PMCID: PMC11252982 DOI: 10.1016/j.heliyon.2024.e33268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aging, a multifaceted biological process, is thought to be associated with lung adenocarcinoma (LUAD) development and progression. However, it is unclear whether aging-related genes (ARGs) can predict tumor risk, chemotherapy and immunotherapy benefits, and prognosis in LUAD patients at different ages. Methods Gene expression datasets and clinical information of LUAD patients were downloaded from TCGA and GEO database. Univariate and multivariate Cox regression, and lasso algorithm were employed to identify the ARG signatures. Patients were stratified into high-risk and low-risk groups to evaluate the predictive accuracy using Kaplan-Meier curves, ROC curves, and time-dependent AUC. A nomogram was established to predict the survival probability. GSEA revealed potential pathways, and CIBERSORT indicated different immunologic status. TIDE score was used to predict the potential tumor response to immune checkpoint inhibitors, and GDSC was employed to evaluate the sensitivity of chemotherapeutic drugs. The correlation of TIDE score and patient age, as well as that of ARGs and patient age was investigated. And cell Culture and RT-qPCR for external validation for key gene. Results A novel gene signature based on seven ARGs was established, including BMP15, CD79A, CDKN3, CDX2, COL1A1, DKK1, and GRIK2. Our model demonstrated exceptional prediction accuracy for elderly LUAD patients of 71-90 years old. A nomogram model was constructed to predict the survival probability, and the C-index value was 0.737, indicating our prognostic nomogram model has high accuracy. Through external RT-qPCR validation, we found that CD79A expression in H1299 was higher than that of BEAS-2B. And novel immunotherapy and chemotherapy regimens were accordingly proposed for the elderly LUAD patients. Conclusion We identified a novel gene signature based on seven ARGs for risk stratification, prognosis prediction and benefit evaluation of immunotherapy and chemotherapy in elderly LUAD patients.
Collapse
Affiliation(s)
- Yi Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wenya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chenjing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiaoxin Lin
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Liu
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dianna Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
12
|
Xin S, Su J, Li R, Cao Q, Wang H, Wei Z, Wang C, Zhang C. Identification of a risk model for prognostic and therapeutic prediction in renal cell carcinoma based on infiltrating M0 cells. Sci Rep 2024; 14:13390. [PMID: 38862642 PMCID: PMC11166996 DOI: 10.1038/s41598-024-64207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The tumor microenvironment (TME) comprises immune-infiltrating cells that are closely linked to tumor development. By screening and analyzing genes associated with tumor-infiltrating M0 cells, we developed a risk model to provide therapeutic and prognostic guidance in clear cell renal cell carcinoma (ccRCC). First, the infiltration abundance of each immune cell type and its correlation with patient prognosis were analyzed. After assessing the potential link between the depth of immune cell infiltration and prognosis, we screened the infiltrating M0 cells to establish a risk model centered on three key genes (TMEN174, LRRC19, and SAA1). The correlation analysis indicated a positive correlation between the risk score and various stages of the tumor immune cycle, including B-cell recruitment. Furthermore, the risk score was positively correlated with CD8 expression and several popular immune checkpoints (ICs) (TIGIT, CTLA4, CD274, LAG3, and PDCD1). Additionally, the high-risk group (HRG) had higher scores for tumor immune dysfunction and exclusion (TIDE) and exclusion than the low-risk group (LRG). Importantly, the risk score was negatively correlated with the immunotherapy-related pathway enrichment scores, and the LRG showed a greater therapeutic benefit than the HRG. Differences in sensitivity to targeted drugs between the HRG and LRG were analyzed. For commonly used targeted drugs in RCC, including axitinib, pazopanib, temsirolimus, and sunitinib, LRG had lower IC50 values, indicating increased sensitivity. Finally, immunohistochemistry results of 66 paraffin-embedded specimens indicated that SAA1 was strongly expressed in the tumor samples and was associated with tumor metastasis, stage, and grade. SAA1 was found to have a significant pro-tumorigenic effect by experimental validation. In summary, these data confirmed that tumor-infiltrating M0 cells play a key role in the prognosis and treatment of patients with ccRCC. This discovery offers new insights and directions for the prognostic prediction and treatment of ccRCC.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China.
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Zhengzhou University, Luoyang Central Hospital, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 464000, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| |
Collapse
|
13
|
Chen G, Zhang G, Zhu Y, Wu A, Fang J, Yin Z, Chen H, Cao K. Identifying disulfidptosis subtypes in hepatocellular carcinoma through machine learning and preliminary exploration of its connection with immunotherapy. Cancer Cell Int 2024; 24:194. [PMID: 38831301 PMCID: PMC11149214 DOI: 10.1186/s12935-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly prevalent and deadly cancer, with limited treatment options for advanced-stage patients. Disulfidptosis is a recently identified mechanism of programmed cell death that occurs in SLC7A11 high-expressing cells due to glucose starvation-induced disintegration of the cellular disulfide skeleton. We aimed to explore the potential of disulfidptosis, as a prognostic and therapeutic marker in HCC. METHODS We classified HCC patients into two disulfidptosis subtypes (C1 and C2) based on the transcriptional profiles of 31 disulfrgs using a non-negative matrix factorization (NMF) algorithm. Further, five genes (NEIL3, MMP1, STC2, ADH4 and CFHR3) were screened by Cox regression analysis and machine learning algorithm to construct a disulfidptosis scoring system (disulfS). Cell proliferation assay, F-actin staining and PBMC co-culture model were used to validate that disulfidptosis occurs in HCC and correlates with immunotherapy response. RESULTS Our results suggests that the low disulfidptosis subtype (C2) demonstrated better overall survival (OS) and progression-free survival (PFS) prognosis, along with lower levels of immunosuppressive cell infiltration and activation of the glycine/serine/threonine metabolic pathway. Additionally, the low disulfidptosis group showed better responses to immunotherapy and potential antagonism with sorafenib treatment. As a total survival risk factor, disulfS demonstrated high predictive efficacy in multiple validation cohorts. We demonstrated the presence of disulfidptosis in HCC cells and its possible relevance to immunotherapeutic sensitization. CONCLUSION The present study indicates that novel biomarkers related to disulfidptosis may serve as useful clinical diagnostic indicators for liver cancer, enabling the prediction of prognosis and identification of potential treatment targets.
Collapse
Affiliation(s)
- Guanjun Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Anshan Wu
- Department of Oncology,, Zhuzhou Hospital Xiangya School of Medicine, Zhuzhou, 412000, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Haotian Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
14
|
Lu B, Shi J, Cheng T, Wang C, Xu M, Sun P, Zhang X, Yang L, Li P, Wu H, Kuai X. Chemokine ligand 14 correlates with immune cell infiltration in the gastric cancer microenvironment in predicting unfavorable prognosis. Front Pharmacol 2024; 15:1397656. [PMID: 38887558 PMCID: PMC11180770 DOI: 10.3389/fphar.2024.1397656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Objective Gastric cancer (GC) is the world's third-leading cause of cancer-related mortality; the prognosis for GC patients remains poor in terms of a lack of reliable biomarkers for early diagnosis and immune therapy response prediction. Here, we aim to discover the connection between chemokine ligand 14 (CCL14) expression in the gastric tumor microenvironment (TME) and its clinical significance and investigate its correlation with immune cell infiltration. Methods We assessed CCL14 mRNA expression and its interrelation with tumor-infiltrating immune cells (TILs) using bioinformatics analysis in gastric cancer. CCL14 protein expression, TILs, and immune checkpoints were detected by multiple immunohistochemistry analyses in gastric cancer tissue microarrays. Then, we conducted statistics analysis to determine the association between CCL14-related patient survival and immune cell infiltration (p < 0.05). Results We found that the CCL14 protein was separately expressed in the carcinoma cells and TILs in stomach cancer tissues. The CCL14 protein was related to tumor differentiation and tumor depth and positively correlated with the presentation of LAG3 and PD-L1 in gastric cancer cells. In addition, the CCL14 protein in the TILs of gastric cancer tissues was related to Lauren's type cells, T cells (CD4+ and CD8+), and CD68+ macrophages in the TME. Kaplan-Meier survival and multivariate analyses showed that the CCL14 expression in gastric cancer cells was an independent prognostic factor. Conclusion Our study illustrated that CCL14 is a poor prognosis biomarker in gastric cancer, which may be associated with the potential for immunotherapy.
Collapse
Affiliation(s)
- Bing Lu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Jiawen Shi
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Pathology and Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Oncology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Congshuo Wang
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Manyu Xu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Oncology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Lei Yang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Xiaoling Kuai
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
16
|
Lin H, Wang J, Shi Q, Wu M. Significance of NKX2-1 as a biomarker for clinical prognosis, immune infiltration, and drug therapy in lung squamous cell carcinoma. PeerJ 2024; 12:e17338. [PMID: 38708353 PMCID: PMC11069361 DOI: 10.7717/peerj.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
He S, Xiao X, Ma C, Liu Y, Lin Q, Qian W, Cao C, Ren S, Chen J, Mi Y, Shen D. Identification and immunological characteristics of anoikis-associated molecular clusters in lung adenocarcinoma. Exp Cell Res 2024; 438:114037. [PMID: 38631545 DOI: 10.1016/j.yexcr.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Anoikis plays a crucial role in the progression, prognosis, and immune response of lung adenocarcinoma (LUAD). However, its specific impact on LUAD remains unclear. In this study, we investigated the intricate interplay of nesting apoptotic factors in LUAD. By analyzing nine key nesting apoptotic factors, we categorized LUAD patients into two distinct clusters. Further examination of immune cell profiles revealed that Cluster A exhibited greater infiltration of innate immune cells than did Cluster B. Additionally, we identified two genes closely associated with prognosis and developed a predictive model to differentiate patients based on molecular clusters. Our findings suggest that the loss of specific anoikis-related genes could significantly influence the prognosis, tumor microenvironment, and clinical features of LUAD patients. Furthermore, we validated the expression and functional roles of two pivotal prognostic genes, solute carrier family 2 member 1 (SLC2A1) and sphingosine kinase 1 (SPHK1), in regulating tumor cell viability, migration, apoptosis, and anoikis. These results offer valuable insights for future mechanistic investigations. In conclusion, this study provides new avenues for advancing our understanding of LUAD, improving prognostic assessments, and developing more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Chenglong Ma
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Ye Liu
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Qingfeng Lin
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Wenjun Qian
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Cheng Cao
- Department of Intensive Care Unit, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City, 214400, Jiangsu Province, China; Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City, 214400, Jiangsu Province, China
| | - Shujuan Ren
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Jie Chen
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Yedong Mi
- Department of Thoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China.
| | - Dong Shen
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
18
|
Lê H, Deforges J, Cutolo P, Lamarque A, Hua G, Lindner V, Jain S, Balloul JM, Benkirane-Jessel N, Quéméneur E. Patient-derived tumoroids and proteomic signatures: tools for early drug discovery. Front Immunol 2024; 15:1379613. [PMID: 38698850 PMCID: PMC11063793 DOI: 10.3389/fimmu.2024.1379613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.
Collapse
Affiliation(s)
- Hélène Lê
- Transgene S.A., Illkirch–Graffenstaden, France
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Guoqiang Hua
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
| | - Véronique Lindner
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
- Department of Pathology, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | |
Collapse
|
19
|
Tosi A, Parisatto B, Gaffo E, Bortoluzzi S, Rosato A. A paclitaxel-hyaluronan conjugate (ONCOFID-P-B™) in patients with BCG-unresponsive carcinoma in situ of the bladder: a dynamic assessment of the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:109. [PMID: 38600583 PMCID: PMC11005197 DOI: 10.1186/s13046-024-03028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The intravesical instillation of the paclitaxel-hyaluronan conjugate ONCOFID-P-B™ in patients with bacillus Calmette-Guérin (BCG)-unresponsive bladder carcinoma in situ (CIS; NCT04798703 phase I study), induced 75 and 40% of complete response (CR) after 12 weeks of intensive phase and 12 months of maintenance phase, respectively. The aim of this study was to provide a detailed description of the tumor microenvironment (TME) of ONCOFID-P-B™-treated BCG-unresponsive bladder CIS patients enrolled in the NCT04798703 phase I study, in order to identify predictive biomarkers of response. METHODS The composition and spatial interactions of tumor-infiltrating immune cells and the expression of the most relevant hyaluronic acid (HA) receptors on cancer cells, were analyzed in biopsies from the 20 patients enrolled in the NCT04798703 phase I study collected before starting ONCOFID-P-B™ therapy (baseline), and after the intensive and the maintenance phases. Clinical data were correlated with cell densities, cell distribution and cell interactions. Associations between immune populations or HA receptors expression and outcome were analyzed using univariate Cox regression and log-rank analysis. RESULTS In baseline biopsies, patients achieving CR after the intensive phase had a lower density of intra-tumoral CD8+ cytotoxic T lymphocytes (CTL), but also fewer interactions between CTL and macrophages or T-regulatory cells, as compared to non-responders (NR). NR expressed higher levels of the HA receptors CD44v6, ICAM-1 and RHAMM. The intra-tumoral macrophage density was positively correlated with the expression of the pro-metastatic and aggressive variant CD44v6, and the combined score of intra-tumoral macrophage density and CD44v6 expression had an AUC of 0.85 (95% CI 0.68-1.00) for patient response prediction. CONCLUSIONS The clinical response to ONCOFID-P-B™ in bladder CIS likely relies on several components of the TME, and the combined evaluation of intra-tumoral macrophages density and CD44v6 expression is a potentially new predictive biomarker for patient response. Overall, our data allow to advance a potential rationale for combinatorial treatments targeting the immune infiltrate such as immune checkpoint inhibitors, to make bladder CIS more responsive to ONCOFID-P-B™ treatment.
Collapse
Affiliation(s)
- Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padova, Italy.
| | - Beatrice Parisatto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128, Padova, Italy.
| |
Collapse
|
20
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X, Liu Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer 2024; 23:75. [PMID: 38582847 PMCID: PMC10998345 DOI: 10.1186/s12943-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengjun Xu
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
21
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
22
|
Ba Y, Liu S, Wei Z, Zhao N, Qiao T, Ren Y, Li L, Zhang Y, Weng S, Xu H, Li C, Ge X, Han X. Pyroptosis-Derived Long Noncoding RNA Profiles Reveal a Novel Signature for Evaluating the Prognosis of Patients With Lung Adenocarcinoma. JCO Precis Oncol 2024; 8:e2300405. [PMID: 38547420 PMCID: PMC10994429 DOI: 10.1200/po.23.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) were recently implicated in modifying pyroptosis. Nonetheless, pyroptosis-related lncRNAs and their possible clinical relevance persist largely uninvestigated in lung adenocarcinoma (LUAD). MATERIALS AND METHODS A sum of 921 samples were collected from three independent data sets. We obtained pyroptosis-related genes from both the Molecular Signatures Database and relevant literature sources and used four machine learning techniques, comprising stepwise Cox, ridge regression, least absolute shrinkage and selection operator, and random forest. Multiple bioinformatics approaches were used to further investigate the underlying mechanisms. RESULTS In total, 39 differentially expressed pyroptosis genes were identified by comparing normal and tumor samples. Correlation analysis revealed 933 pyroptosis-related lncRNAs. Furthermore, univariate Cox regression determined 11 lncRNAs that exhibited stable associations with prognosis in the three cohorts, which were used to construct the pyroptosis-derived lncRNA signature. After analyzing the optimal results from four machine learning algorithms, we ultimately selected random forest to develop the pyroptosis-derived lncRNA signature. This signature was proven to be an independent prognostic factor and exhibited robust performance in three cohorts. CONCLUSION We provided novel insight and established a pyroptosis-derived lncRNA signature for patients with LUAD, exhibiting strong predictive capabilities in both the training and validation sets.
Collapse
Affiliation(s)
- Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shutong Liu
- The Medical School of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengpan Wei
- The Medical School of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nannan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Qiao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunwei Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
23
|
Liu L, Li J, Fan C, Wen M, Li C, Sun W, Wang W. Construction of a New Immune-Related Competing Endogenous RNA Network with Prognostic Value in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:300-310. [PMID: 37118319 DOI: 10.1007/s12033-023-00754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
Tumor microenvironment has significant influence on the gene expression of tumor tissues and on the clinical outcomes in lung adenocarcinoma. Infiltrating immune and stromal cells not only perturb the tumor signal in molecular studies, but also play crucial roles in cancer biology. The competing endogenous RNAs (ceRNAs) are useful to explain the post-transcriptional layer regulated by gene translation and play an important role in the occurrence and progression of lung adenocarcinoma. Therefore, identifying novel molecular markers by constructing ceRNA associated with immune infiltration is of great significance to guide the treatment of lung adenocarcinoma in the future. According to the immune and stromal scores of lung adenocarcinoma samples in The Cancer Genome Atlas (TCGA) database calculated by the ESTIMATE algorithm, we identified differentially expressed lncRNAs, miRNAs and mRNAs associated with immune infiltration, including 60 dysregulated lncRNAs, 38 dysregulated mRNAs, and 29 dysregulated miRNAs. Based on the PPI network and Cox regression analysis, 5 mRNAs including CNR2, P2RY12, ZNF831, RSPO1, and F2 were identified to be related to immune infiltration and prognosis in lung adenocarcinoma, and their differential expression, prognosis and correlation with immune cells were verified. Next, through target binding prediction, pearson correlation analysis and expression analysis, a novel immune-related ceRNA network containing 6 lncRNAs, 4 miRNAs, and 3 mRNAs was finally constructed. The present study constructed a novel immune-associated lncRNA-miRNA-mRNA ceRNA network, which deepens our understanding on the molecular network mechanism of lung adenocarcinoma and provides potential prognostic markers and novel therapeutic targets for the patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Li Liu
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Jing Li
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Chunhui Fan
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Mingyi Wen
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Cunqi Li
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Wen Sun
- Shandong Academy of Evidence-Based Medicine Co., Ltd, Jinan, Shandong, 250022, People's Republic of China
| | - Wuzhang Wang
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China.
| |
Collapse
|
24
|
Bian J, Xiong W, Yang Z, Li M, Song D, Zhang Y, Liu C. Identification and prognostic biomarkers among ZDHHC4/12/18/24, and APT2 in lung adenocarcinoma. Sci Rep 2024; 14:522. [PMID: 38177255 PMCID: PMC10767092 DOI: 10.1038/s41598-024-51182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
S-palmitoylases and S-depalmitoylases are differentially expressed in various cancers and several malignant tumors and show a strong prognostic ability. Notwithstanding, the potential clinical impact of S-palmitoylases and S-depalmitoylases, particularly in the prognosis and progression of lung adenocarcinoma (LUAD), has not been clarified. Expression levels of S-palmitoylases and S-depalmitoylases in LUAD were investigated using TCGA. GEPIA was used to evaluate the mRNA levels of S-palmitoylases and S-depalmitoylases at different pathological stages. Metascape was used to investigate the biological significance of S-palmitoylases and S-depalmitoylases. The Kaplan-Meier plotter was used to analyze the prognostic value of S-palmitoylases and S-depalmitoylases. CBioportal was used to analyze gene alterations in S-palmitoylases and S-depalmitoylases. UALCAN was used to examine DNA promoter methylation levels of S-palmitoylases and S-depalmitoylases. Finally, we investigated the relationship between S-palmitoylases, S-depalmitoylases, and tumor-infiltrating immune cells using TIMER. Correlations with immune checkpoint-related genes were determined using the R packages reshape2, ggpubr, ggplot2, and corrplot. PCR was also performed to assess the degree of ZDHHC4/12/18/24 and APT2 transcript expression in lung adenocarcinoma and adjacent normal lung tissues. HPA was utilized to investigate protein levels of S-palmitoylases and S-depalmitoylases in LUAD and normal lung tissue. Our study found that ZDHHC2/3/4/5/6/7/9/12/13/16/18/20/21/23/24, APT1/2, PPT1, LYPLAL1, ABHD4/10/11/12/13 and ABHD17C mRNA expression was significantly upregulated in LUAD, whereas ZDHHC1/8/11/11B/14/15/17/19/22, ABHD6/16A and ABHD17A mRNA expression was significantly downregulated. The functions of the differentially expressed S-palmitoylases and S-depalmitoylases were mainly associated with protein-cysteine S-palmitoyltransferase and protein-cysteine S-acyltransferase activities. Patients with high expression of ZDHHC4/12/18/24, APT2, ABHD4, ABHD11 and ABHD12 had a shorter overall survival. Infiltration of six immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) was closely associated with the expression of ZDHHC4/12/18/24 and APT2. ZDHHC4/12/18/24 and APT2 positively correlated with the immune checkpoint-related gene CD276. We assessed the mRNA levels of ZDHHC4/12/18/24 and APT2 using qRT-PCR and found increased expression of ZDHHC4/12/18/24 in LUAD compared with healty control lung tissues. ZDHHC4/12/18/24, and APT2 are potential prognostic biomarkers of LUAD. Their expression levels could be related to the tumor microenvironment in LUAD.
Collapse
Affiliation(s)
- Jing Bian
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenji Xiong
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Minzhe Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Jilin University-The Eastern Division, Changchun, 130000, Jilin, People's Republic of China
| | - Demei Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, People's Republic of China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, 130021, People's Republic of China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chaoying Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
25
|
Aluksanasuwan S, Somsuan K, Ngoenkam J, Chutipongtanate S, Pongcharoen S. Potential association of HSPD1 with dysregulations in ribosome biogenesis and immune cell infiltration in lung adenocarcinoma: An integrated bioinformatic approach. Cancer Biomark 2024; 39:155-170. [PMID: 37694354 PMCID: PMC11091585 DOI: 10.3233/cbm-220442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major histological subtype of lung cancer with a high mortality rate worldwide. Heat shock protein family D member 1 (HSPD1, also known as HSP60) is reported to be increased in tumor tissues of lung cancer patients compared with healthy control tissues. OBJECTIVE We aimed to investigate the roles of HSPD1 in prognosis, carcinogenesis, and immune infiltration in LUAD using an integrative bioinformatic analysis. METHODS HSPD1 expression in LUAD was investigated in several transcriptome-based and protein databases. Survival analysis was performed using the KM plotter and OSluca databases, while prognostic significance was independently confirmed through univariate and multivariate analyses. Integrative gene interaction network and enrichment analyses of HSPD1-correlated genes were performed to investigate the roles of HSPD1 in LUAD carcinogenesis. TIMER and TISIDB were used to analyze correlation between HSPD1 expression and immune cell infiltration. RESULTS The mRNA and protein expressions of HSPD1 were higher in LUAD compared with normal tissues. High HSPD1 expression was associated with male gender and LUAD with advanced stages. High HSPD1 expression was an independent prognostic factor associated with poor survival in LUAD patients. HSPD1-correlated genes with prognostic impact were mainly involved in aberrant ribosome biogenesis, while LUAD patients with high HSPD1 expression had low tumor infiltrations of activated and immature B cells and CD4+ T cells. CONCLUSIONS HSPD1 may play a role in the regulation of ribosome biogenesis and B cell-mediated immunity in LUAD. It could serve as a predictive biomarker for prognosis and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
26
|
Liu R, Zhu G, Sun Y, Li M, Hu Z, Cao P, Li X, Song Z, Chen J. Neutrophil infiltration associated genes on the prognosis and tumor immune microenvironment of lung adenocarcinoma. Front Immunol 2023; 14:1304529. [PMID: 38204755 PMCID: PMC10777728 DOI: 10.3389/fimmu.2023.1304529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The neutrophils exhibit both anti-tumor and pro-tumor effects in cancers. The correlation between neutrophils and tumor development in lung adenocarcinoma (LUAD) is still uncertain, possibly due to a lack of specific neutrophil infiltration evaluation methods. In this study, we identified 30 hub genes that were significantly associated with neutrophil infiltration in LUAD through data mining, survival analysis, and multiple tumor-infiltrating immune cells (TICs) analysis, including TIMER, CIBERSORT, QUANTISEQ, XCELL, and MCPCOUNTER. Consensus clustering analysis showed that these 30 hub genes were correlated with clinical features in LUAD. We further developed a neutrophil scoring system based on these hub genes. The neutrophil score was significantly correlated with prognosis and tumor immune microenvironment (TIME) in LUAD. It was also positively associated with PD-L1 expression and negatively associated with tumor mutational burden (TMB). When combined with the neutrophil score, the predictive capacity of PD-L1 and TMB for prognosis was significantly improved. Thus, the 30 hub genes might play an essential role in the interaction of neutrophils and LUAD, and the neutrophil scoring system might effectually assess the infiltration of neutrophils. Furthermore, we verified the expression of these 30 genes in the LUAD tumor tissues collected from our department. We further found that overexpressed TNFAIP6 and TLR6 and downregulated P2RY13, SCARF1, DPEP2, PRAM1, CYP27A1, CFP, GPX3, and NCF1 in LUAD tissue might be potentially associated with neutrophils pro-tumor effects. The following in vitro experiments demonstrated that TNFAIP6 and TLR6 were significantly overexpressed, and P2RY13 and CYP27A1 were significantly downregulated in LUAD cell lines, compared to BEAS-2B cells. Knocking down TNFAIP6 in A549 and PC9 resulted in the upregulation of FAS, CCL3, and ICAM-1, and the downregulation of CCL2, CXCR4, and VEGF-A in neutrophils when co-culturing with the conditioned medium (CM) from LUAD cells. Knocking down TNFAIP6 in LUAD also led to an elevated early apoptosis rate of neutrophils. Therefore, overexpressed TNFAIP6 in LUAD cancer cells might lead to neutrophils "N2" polarization, which exhibited pro-tumor effects. Further research based on the genes identified in this pilot study might shed light on neutrophils' effects on LUAD in the future.
Collapse
Affiliation(s)
- Renwang Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonglin Sun
- Gynecology and Obstetrics Department, Tianjin Third Central Hospital, Tianjin, China
| | - Mingbiao Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zixuan Hu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Huang Y, He J, Duan X, Hou R, Shi J. Prognostic gene HLA-DMA associated with cell cycle and immune infiltrates in LUAD. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1286-1300. [PMID: 37972401 PMCID: PMC10730455 DOI: 10.1111/crj.13716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The dominant subclass of non-small-cell lung cancer (NSCLC) is lung adenocarcinoma (LUAD). The tumor microenvironment (TME) is a crucial feature of carcinogenesis and progression in LUAD. Furthermore, immune and stromal components of TME are crucial factors to investigating and curing LUAD. Thus, the study assessed the value of TME-related genes for LUAD prognosis and immune infiltration. METHODS All data were downloaded from TCGA and GEO databases. The immune and stromal scores were downloaded from ESTIMATE, and the association between the scores and prognosis was explored by Kaplan-Meier survival analysis. Protein-protein interaction (PPI) network and univariate Cox regression were used to find TME-related differentially expressed genes (DEGs), and HLA-DMA was regarded as a prognostic hub gene. Western blot analyses, qRT-PCR, and immunofluorescence were applied to verify HLA-DMA expression in clinical samples. NSCLC cell lines were used to verify the effect of HLA-DMA on cell proliferation and cell cycle distribution. At last, the alteration of immunotherapy response and TME transition caused by HLA-DMA different expression were further studied. RESULTS The immune score was positively correlated with survival. The functional analyses suggested that TME-related DEGs may be involved in the immune response. The expression level of HLA-DMA was decreased in LUAD. In addition, HLA-DMA expression was associated with several clinical features and was positively associated with survival. Furthermore, HLA-DMA may suspend cell proliferation by regulating cell cycle. HLA-DMA expression was closely associated with immune infiltration and positively correlated with TMB, indicating that patients with high HLA-DMA level were more suitable for immunotherapy. CONCLUSION These results reveal that HLA-DMA might act as a biomarker for immune infiltration and immunotherapy response.
Collapse
Affiliation(s)
- Ya‐jie Huang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jian‐kun He
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaoyang Duan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ran Hou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jian Shi
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
28
|
Gao Z, Kang SW, Erstad D, Azar J, Van Buren G, Fisher W, Sun Z, Rubinstein MP, Lee HS, Camp ER. Pre-treatment inflamed tumor immune microenvironment is associated with FOLFIRINOX response in pancreatic cancer. Front Oncol 2023; 13:1274783. [PMID: 38074633 PMCID: PMC10701674 DOI: 10.3389/fonc.2023.1274783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with limited response to both chemotherapy and immunotherapy. Pre-treatment tumor features within the tumor immune microenvironment (TiME) may influence treatment response. We hypothesized that the pre-treatment TiME composition differs between metastatic and primary lesions and would be associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-based (Gem-based) therapy. Methods Using RNAseq data from a cohort of treatment-naïve, advanced PDAC patients in the COMPASS trial, differential gene expression analysis of key immunomodulatory genes in were analyzed based on multiple parameters including tumor site, response to mFFX, and response to Gem-based treatment. The relative proportions of immune cell infiltration were defined using CIBERSORTx and Dirichlet regression. Results 145 samples were included in the analysis; 83 received mFFX, 62 received Gem-based therapy. Metastatic liver samples had both increased macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration (1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis of the specific macrophage phenotypes revealed an increased M2 macrophage fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and neutrophil infiltration of metastatic samples were associated with therapy response to mFFX (p < 0.05), while mast cell infiltration was associated with response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT were significantly associated with worse survival in patients who received mFFX (p = 0.01). There were no immunomodulatory genes associated with survival in the Gem-based cohort. Discussion Our evidence implies that essential differences in the PDAC TiME exist between primary and metastatic tumors and an inflamed pretreatment TiME is associated with mFFX response. Defining components of the PDAC TiME that influence therapy response will provide opportunities for targeted therapeutic strategies that may need to be accounted for in designing personalized therapy to improve outcomes.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, IL, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
29
|
Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, Talukder MEK, Alam R, Karpiński TM, Ahammad F, Zamzami MA, Tan SC. Biological and clinical significance of the glypican-3 gene in human lung adenocarcinoma: An in silico analysis. Medicine (Baltimore) 2023; 102:e35347. [PMID: 37960765 PMCID: PMC10637541 DOI: 10.1097/md.0000000000035347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023] Open
Abstract
Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sharmin Aktar
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Niaz Morshed
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Pharmacy, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Suza Mohammad Nur
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rumana Mahtarin
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farazi Abinash Rahman
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego, Poland
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Mi K, Zeng L, Chen Y, Yang S. Integrative Analysis of Single-Cell and Bulk RNA Sequencing Reveals Prognostic Characteristics of Macrophage Polarization-Related Genes in Lung Adenocarcinoma. Int J Gen Med 2023; 16:5031-5050. [PMID: 37942473 PMCID: PMC10629586 DOI: 10.2147/ijgm.s430408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a group of cancers with poor prognosis. The combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) can identify important genes involved in cancer development and progression from a broader perspective. Methods The scRNA-seq data and bulk RNA-seq data of LUAD were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Analyzing scRNA-seq for core cells in the GSE131907 dataset, and the uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Macrophage polarization-associated subtypes were acquired from the TCGA-LUAD dataset after analysis, followed by further identification of differentially expressed genes (DEGs) in the TCGA-LUAD dataset (normal/LUAD tissue samples, two subtypes). Venn diagrams were utilized to visualize differentially expressed and highly variable macrophage polarization-related genes. Subsequently, a prognostic risk model for LUAD patients was constructed by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO), and the model was investigated for stability in the external data GSE72094. After analyzing the correlation between the trait genes and significantly mutated genes, the immune infiltration between the high/low-risk groups was then examined. The Monocle package was applied to analyze the pseudo-temporal trajectory analysis of different cell clusters in macrophage clusters. Subsequently, cell clusters of data macrophages were selected as key cell clusters to explore the role of characteristic genes in different cell populations and to identify transcription factors (TFs) that affect signature genes. Finally, qPCR were employed to validate the expression levels of prognosis signature genes in LUAD. Results 424 macrophage highly variable genes, 3920 DEGs, and 9561 DEGs were obtained from macrophage clusters, the macrophage polarization-related subtypes, and normal/LUAD tissue samples, respectively. Twenty-eight differentially expressed and highly mutated MPRGs were obtained. A prognostic risk model with 7 DE-MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) was constructed. This prognostic model still has a good prediction effect in the GSE72094 dataset. ZNF536 and DNAH9 were mutated in the low-risk group, while COL11A1 was mutated in the high-risk group, and they were highly correlated with the characteristic genes. A total of 11 immune cells were significantly different in the high/low-risk groups. Five cell types were again identified in the macrophage cluster, and then NK cells: CD56hiCD62L+ differentiated earlier and were present mainly on 2 branches. While macrophages were present on 2 branches and differentiated later. It was found that the expression levels of BCLAF1 and MAX were higher in cluster 1, which might be the TFs affecting the expression of the characteristic genes. Moreover, qPCR confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Conclusion Seven MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) were identified as prognostic genes for LUAD and revealed the mechanisms of MPRGs at the single-cell level.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
31
|
Sang J, Ye X. Potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation. Front Immunol 2023; 14:1268331. [PMID: 38022658 PMCID: PMC10646301 DOI: 10.3389/fimmu.2023.1268331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation is a promising alternative treatment for lung cancer. It disintegrates cancer cells and releases antigens, followed by the remodeling of local tumor immune microenvironment and the activation of anti-tumor immune responses, enhancing the overall effectiveness of the treatment. Biomarkers can offer insights into the patient's immune response and outcomes, such as local tumor control, recurrence, overall survival, and progression-free survival. Identifying and validating such biomarkers can significantly impact clinical decision-making, leading to personalized treatment strategies and improved patient outcomes. This review provides a comprehensive overview of the current state of research on potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation, including their potential role in lung cancer management, and the challenges and future directions.
Collapse
Affiliation(s)
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
32
|
Xi G, Huang C, Lin J, Luo T, Kang B, Xu M, Xu H, Li X, Chen J, Qiu L, Zhuo S. Rapid label-free detection of early-stage lung adenocarcinoma and tumor boundary via multiphoton microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202300172. [PMID: 37596245 DOI: 10.1002/jbio.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related deaths in China. Rapid and precise evaluation of tumor tissue during lung cancer surgery can reduce operative time and improve negative-margin assessment, thus increasing disease-free and overall survival rates. This study aimed to explore the potential of label-free multiphoton microscopy (MPM) for imaging adenocarcinoma tissues, detecting histopathological features, and distinguishing between normal and cancerous lung tissues. We showed that second harmonic generation (SHG) signals exhibit significant specificity for collagen fibers, enabling the quantification of collagen features in lung adenocarcinomas. In addition, we developed a collagen score that could be used to distinguish between normal and tumor areas at the tumor boundary, showing good classification performance. Our findings demonstrate that MPM imaging technology combined with an image-based collagen feature extraction method can rapidly and accurately detect early-stage lung adenocarcinoma tissues.
Collapse
Affiliation(s)
- Gangqin Xi
- School of Science, Jimei University, Xiamen, China
| | - Chen Huang
- Shengli Clinical College of Fujian Medical University, Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jie Lin
- Shengli Clinical College of Fujian Medical University, Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Tianyi Luo
- School of Science, Jimei University, Xiamen, China
| | - Bingzi Kang
- School of Science, Jimei University, Xiamen, China
| | - Mingyu Xu
- School of Science, Jimei University, Xiamen, China
| | - Huizhen Xu
- School of Science, Jimei University, Xiamen, China
| | - Xiaolu Li
- School of Science, Jimei University, Xiamen, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Lida Qiu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | | |
Collapse
|
33
|
Zhan X, Liu X, Zhang S, Chen H. Expression and prognosis of inducible T-cell co-stimulator and its ligand in Chinese stage I-III lung adenocarcinoma patients. Animal Model Exp Med 2023; 6:464-473. [PMID: 37850501 PMCID: PMC10614122 DOI: 10.1002/ame2.12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Immunotherapy has become the fastest-adopting treatment paradigm for lung cancer with improved survival. By binding with its ligand (inducible T-cell co-stimulator and its ligand [ICOSL]), an inducible T-cell co-stimulator (ICOS) could contribute to reversing immunosuppression and improving immune response and thus be a potential target for cancer immunotherapy. METHODS We selected 54 formalin-fixed, paraffin-embedded tumor tissues from cases with stage I-III lung adenocarcinoma cancer. Immunohistochemical expression of ICOS and ICOSL was evaluated. The correlation with clinical parameters in Chinese patients was also compared with TCGA results. RESULTS The positive rates of ICOS and ICOSL were 68% and 81.5%, respectively, in lung tumor tissues. Of these, 9 cases had a low expression of ICOS, and 22 cases had a high expression of ICOS; ICOSL expression was low in 20 cases and high in 24 cases. According to the International Association for the Study of Lung Cancer (8th edition), phase I lesions were detected in 21 cases, phase II lesions in 15 cases, and phase III lesions in 18 cases. The median survival time of all patients was 44.5 months, and the median disease-free survival was 32 months. Univariate analysis showed that the factors significantly associated with overall survival were tumor size, regional lymph node involvement, stage, and expression level of ICOS/ICOSL. Survival analysis using log-rank test indicated that the lower ICOS+ cell infiltration may predict poor prognosis, whereas lower ICOSL protein expression may be associated with better prognosis, but ICOSL data need further validation in larger samples due to inconsistency in TCGA mRNA prediction. CONCLUSION ICOS/ICOSL might be associated with prognosis of lung cancer, and ICOS and its ligand may be potential therapeutic targets in non-small cell lung cancer.
Collapse
Affiliation(s)
- Xiao‐Kai Zhan
- Division of Oncology and HematologyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingP.R. China
| | - Xi‐Kun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP.R. China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP.R. China
| | - Hong Chen
- Pathology DepartmentBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingP.R. China
| |
Collapse
|
34
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
35
|
Ying J, Hong H, Yu C, Jiang M, Ding D. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e34954. [PMID: 37746997 PMCID: PMC10519552 DOI: 10.1097/md.0000000000034954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common tumors with the highest cancer-related death rate worldwide. Early diagnosis of LUAD can improve survival. Abnormal expression of the Toll-like receptors (TLRs) is related to tumorigenesis and development, inflammation and immune infiltration. However, the role of TLRs as an immunotherapy target and prognostic marker in lung adenocarcinoma is not well understood and needs to be analyzed. Relevant data obtained from databases such as ONCOMINE, UALCAN, GEPIA, and the Kaplan-Meier plotter, GSCALite, GeneMANIA, DAVID 6.8, Metascape, LinkedOmics and TIMER, to compare transcriptional TLRs and survival data of patients with LUAD. The expression levels of TLR1/2/3/4/5/7/8 in LUAD tissues were significantly reduced while the expression levels of TLR6/9/10 were significantly elevated. LUAD patients having low expression of TLR1/2/3/5/8 and high expression of TLR9 had a poor overall survival while patients with low expression of TLR2/3/7 presented with worse first progress. TLR4, TLR7 and TLR8 are the 3 most frequently mutated genes in the TLR family. Correlation suggested a low to moderate correlation among TLR family. TLR family was also involved in the activation or inhibition of the famous cancer related pathways. Analysis of immune infiltrates analysis suggested that TLR1/2/7/8 levels significantly correlated with immune infiltration level. Enrichment analysis revealed that TLRs were involved in TLR signaling pathway, immune response, inflammatory response, primary immunodeficiency, regulation of IL-8 production and PI3K-Akt signaling pathway. Our results provided information on TLRs expression and potential regulatory networks in LUAD. Moreover, our results suggested TLR2/7/8 as a potential prognostic biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Junjie Ying
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| | - Haihua Hong
- Department of Respiratory Medicine, The People’s Hospital of Beilun District, Ningbo, China
| | - Chaoqun Yu
- Department of General Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Maofen Jiang
- Department of Pathology, The People’s Hospital of Beilun District, Ningbo, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| |
Collapse
|
36
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
37
|
Okcu O, Öztürk Ç, Şen B, Ayazoğlu MS, Güvendi GF, Öztürk SD, Aşkan G, Bedir R. The prognostic significance of non-lymphoid immune cells of the tumor microenvironment, including neutrophils, eosinophils, and mast cells in breast carcinomas. Ann Diagn Pathol 2023; 65:152151. [PMID: 37121083 DOI: 10.1016/j.anndiagpath.2023.152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVE The prognostic importance of lymphoid cells in the tumor microenvironment and their effect on treatment response have been demonstrated in many cancer types. However, there are limited studies on non-lymphoid immune cells. Conflicting results have been obtained regarding the effects of these cells on prognosis. MATERIALS AND METHODS A total of 331 patients who underwent surgery for breast cancer were included. Patients that received neoadjuvant chemotherapy and those with distant metastasis were excluded. CD 15 immunohistochemistry was performed to detect tumor-infiltrating neutrophils (TINs) and eosinophils (TIEs), while Toluidine Blue histochemistry was performed to detect tumor-infiltrating mast cells (TIMs). RESULTS High TINs were statistically associated with low ER expression (p < 0.001), low PR expression (p = 0.001), high Ki-67 proliferation index (p = 0.008), and HER2/TN molecular subtypes (p = 0.001). High TIEs were associated with low ER expression (p = 0.001), high Ki67 proliferation index (p = 0.005), and HER2/TN molecular subtype (p = 0.002). High TIMs were associated with high PR expression (p = 0.024), low Ki-67 proliferation index (p = 0.003), and high survival rate (p = 0.006). TIMs and TIEs were good prognostic factors for overall survival in Luminal A and Luminal B subtypes, while TINs and TIEs were found to be independent risk factors for disease-free survival. CONCLUSION The evaluation of components of the tumor microenvironment including TINs, TIEs, and TIMs is easy and practical. High TIMs and TIEs are independent prognostic factors, especially in luminal molecular subtype of invasive breast carcinoma. However, to use this parameter in routine pathology practice, more studies from different centers and standard evaluation are needed.
Collapse
Affiliation(s)
- Oğuzhan Okcu
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye.
| | - Çiğdem Öztürk
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Pathology, Rize, Turkiye
| | - Bayram Şen
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Biochemistry, Rize, Turkiye
| | - Muhammet Safa Ayazoğlu
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Pathology, Rize, Turkiye
| | - Gülname Fındık Güvendi
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye
| | - Seda Duman Öztürk
- Kocaeli University, Faculty of Medicine, Department of Pathology, Kocaeli, Turkiye
| | - Gökçe Aşkan
- İstanbul University Cerrahpasa-Cerrahpasa Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| | - Recep Bedir
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye
| |
Collapse
|
38
|
Shu J, Jiang J, Zhao G. Identification of novel gene signature for lung adenocarcinoma by machine learning to predict immunotherapy and prognosis. Front Immunol 2023; 14:1177847. [PMID: 37583701 PMCID: PMC10424935 DOI: 10.3389/fimmu.2023.1177847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) as a frequent type of lung cancer has a 5-year overall survival rate of lower than 20% among patients with advanced lung cancer. This study aims to construct a risk model to guide immunotherapy in LUAD patients effectively. Materials and methods LUAD Bulk RNA-seq data for the construction of a model, single-cell RNA sequencing (scRNA-seq) data (GSE203360) for cell cluster analysis, and microarray data (GSE31210) for validation were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We used the Seurat R package to filter and process scRNA-seq data. Sample clustering was performed in the ConsensusClusterPlus R package. Differentially expressed genes (DEGs) between two groups were mined by the Limma R package. MCP-counter, CIBERSORT, ssGSEA, and ESTIMATE were employed to evaluate immune characteristics. Stepwise multivariate analysis, Univariate Cox analysis, and Lasso regression analysis were conducted to identify key prognostic genes and were used to construct the risk model. Key prognostic gene expressions were explored by RT-qPCR and Western blot assay. Results A total of 27 immune cell marker genes associated with prognosis were identified for subtyping LUAD samples into clusters C3, C2, and C1. C1 had the longest overall survival and highest immune infiltration among them, followed by C2 and C3. Oncogenic pathways such as VEGF, EFGR, and MAPK were more activated in C3 compared to the other two clusters. Based on the DEGs among clusters, we confirmed seven key prognostic genes including CPA3, S100P, PTTG1, LOXL2, MELTF, PKP2, and TMPRSS11E. Two risk groups defined by the seven-gene risk model presented distinct responses to immunotherapy and chemotherapy, immune infiltration, and prognosis. The mRNA and protein level of CPA3 was decreased, while the remaining six gene levels were increased in clinical tumor tissues. Conclusion Immune cell markers are effective in clustering LUAD samples into different subtypes, and they play important roles in regulating the immune microenvironment and cancer development. In addition, the seven-gene risk model may serve as a guide for assisting in personalized treatment in LUAD patients.
Collapse
Affiliation(s)
- Jianfeng Shu
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jinni Jiang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
39
|
Chen K, Zheng T, Chen C, Liu L, Guo Z, Peng Y, Zhang X, Yang Z. Pregnancy Zone Protein Serves as a Prognostic Marker and Favors Immune Infiltration in Lung Adenocarcinoma. Biomedicines 2023; 11:1978. [PMID: 37509617 PMCID: PMC10377424 DOI: 10.3390/biomedicines11071978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a public enemy with a very high incidence and mortality rate, for which there is no specific detectable biomarker. Pregnancy zone protein (PZP) is an immune-related protein; however, the functions of PZP in LUAD are unclear. In this study, a series of bioinformatics methods, combined with immunohistochemistry (IHC), four-color multiplex fluorescence immunohistochemistry (mIHC), quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), were utilized to explore the prognostic value and potential role of PZP in LUAD. Our data revealed that PZP expression was markedly reduced in LUAD tissues, tightly correlated with clinical stage and could be an independent unfavorable prognostic factor. In addition, pathway analysis revealed that high expression of PZP in LUAD was mainly involved in immune-related molecules. Tumor immune infiltration analysis by CIBERSORT showed a significant correlation between PZP expression and several immune cell infiltrations, and IHC further confirmed a positive correlation with CD4+ T-cell infiltration and a negative correlation with CD68+ M0 macrophage infiltration. Furthermore, mIHC demonstrated that PZP expression gave rise to an increase in CD86+ M1 macrophages and a decrease in CD206+ M2 macrophages. Therefore, PZP can be used as a new biomarker for the prediction of prognosis and may be a promising immune-related molecular target for LUAD.
Collapse
Affiliation(s)
- Kehong Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Taihao Zheng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Cai Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhengjun Guo
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Peng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
40
|
Wang T, Guo K, Zhang D, Wang H, Yin J, Cui H, Wu W. Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int Immunopharmacol 2023; 120:110368. [PMID: 37247499 DOI: 10.1016/j.intimp.2023.110368] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
A new mode of cell death, disulfidptosis, has been discovered. Clinical prognostic significance of disulfidptosis related pattern in hepatocellular carcinoma(HCC). In this study, a risk score model was established based on disulfidptosis model to analyze the role of risk score in clinical prognosis, immune cell infiltration, drug sensitivity and immunotherapy response. Disulfidptosis subtype were constructed based on the transcriptional profiles of 15 disulfidptosis-related genes(DRGs). All 601 samples were defined as high risk group(HRG) and low risk group(LRG) based on the disulfidptosis risk score. Drug sensitivity and response to immunotherapy were calculated by immunophenotypic score(IPS), tumor prediction, tumor immune dysfunction and rejection(TIDE). RT-qPCR was used to determine the mRNA level of disulfidptosis prognostic gene. Risk groups was identified as potential predictors of immune cell infiltration, drug sensitivity, and immunotherapy responsiveness. HRG may benefit from immunotherapy. Classification is very effective in predicting the prognosis and therapeutic effect of patients, and provides a reference for accurate individualized treatment. This study suggests that new biomarkers related to Disulfidptosis can be used in clinical diagnosis of liver cancer to predict prognosis and treatment targets.
Collapse
Affiliation(s)
- Tianbing Wang
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui Medical University, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Kai Guo
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui Medical University, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Di Zhang
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
| | - Haibo Wang
- Anhui Medical University, Hefei 230000, China
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jimin Yin
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Haodong Cui
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Wenyong Wu
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
41
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Patel AJ, Khan N, Richter A, Naidu B, Drayson MT, Middleton GW. Deep immune B and plasma cell repertoire in non-small cell lung cancer. Front Immunol 2023; 14:1198665. [PMID: 37398676 PMCID: PMC10311499 DOI: 10.3389/fimmu.2023.1198665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction B cells, which have long been thought to be minor players in the development of anti-tumor responses, have been implicated as key players in lung cancer pathogenesis and response to checkpoint blockade in patients with lung cancer. Enrichment of late-stage plasma and memory cells in the tumor microenvironment has been shown in lung cancer, with the plasma cell repertoire existing on a functional spectrum with suppressive phenotypes correlating with outcome. B cell dynamics may be influenced by the inflammatory microenvironment observed in smokers and between LUAD and LUSC. Methods Here, we show through high-dimensional deep phenotyping using mass cytometry (CyTOF), next generation RNA sequencing and multispectral immunofluorescence imaging (VECTRA Polaris) that key differences exist in the B cell repertoire between tumor and circulation in paired specimens from lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Results In addition to the current literature, this study provides insight into the in-depth description of the B cell contexture in Non-Small Cell Lung Cancer (NSCLC) with reference to broad clinico-pathological parameters based on our analysis of 56 patients. Our findings reinforce the phenomenon of B-cell trafficking from distant circulatory compartments into the tumour microenvironment (TME). The circulatory repertoire shows a predilection toward plasma and memory phenotypes in LUAD however no major differences exist between LUAD and LUSC at the level of the TME. B cell repertoire, amongst other factors, may be influenced by the inflammatory burden in the TME and circulation, that is, smokers and non-smokers. We have further clearly demonstrated that the plasma cell repertoire exists on a functional spectrum in lung cancer, and that the suppressive regulatory arm of this axis may play a significant role in determining postoperative outcomes as well as following checkpoint blockade. This will require further long-term functional correlation. Conclusion B and Plasma cell repertoire is very diverse and heterogeneous across different tissue compartments in lung cancer. Smoking status associates with key differences in the immune milieu and the consequent inflammatory microenvironment is likely responsible for the functional and phenotypic spectrum we have seen in the plasma cell and B cell repertoire in this condition.
Collapse
Affiliation(s)
- Akshay J. Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gary W. Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, Maniscalco G, Rajeeve V, Cutillas P, Trevisan C, Pozzobon M, Lockley M, Rastrick J, Läubli H, White A, Pearce OMT. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun 2023; 14:2514. [PMID: 37188691 DOI: 10.1038/s41467-023-38093-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.
Collapse
Affiliation(s)
- E H Puttock
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E J Tyler
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Manni
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - E Maniati
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Butterworth
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Burger Ramos
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E Peerani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Hirani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Gauthier
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Y Liu
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - G Maniscalco
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Rajeeve
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Cutillas
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Trevisan
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Pozzobon
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Lockley
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - J Rastrick
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - H Läubli
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - A White
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - O M T Pearce
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK.
| |
Collapse
|
44
|
Li D, Chen T, Li QG. Identification of a m 6A-related ferroptosis signature as a potential predictive biomarker for lung adenocarcinoma. BMC Pulm Med 2023; 23:128. [PMID: 37072786 PMCID: PMC10111681 DOI: 10.1186/s12890-023-02410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Both N6-methyladenosine (m6A) and ferroptosis-related genes are associated with the prognosis of lung adenocarcinoma. However, the predictive value of m6A-related ferroptosis genes remains unclear. Here, we aimed to identify the prognostic value of m6A-related ferroptosis genes in lung adenocarcinoma. METHODS Lung adenocarcinoma sample data were downloaded from the University of California Santa Cruz Xena and Gene Expression Omnibus databases. Spearman's correlation analysis was used to screen for m6A-related ferroptosis genes. Univariate Cox regression, Kaplan-Meier, and Lasso analyses were conducted to identify prognostic m6A-related ferroptosis genes, and stepwise regression was used to construct a prognostic gene signature. The predictive value of the gene signature was assessed using a multivariate Cox analysis. In the validation cohort, survival analysis was performed to verify gene signature stability. The training cohort was divided into high- and low-risk groups according to the median risk score to assess differences between the two groups in terms of gene set variation analysis, somatic mutations, and tumor immune infiltration cells. RESULTS Six m6A-related ferroptosis genes were used to construct a gene signature in the training cohort and a multivariate Cox analysis was conducted to determine the independent prognostic value of these genes in lung adenocarcinoma. In the validation cohort, Kaplan-Meier and receiver operating characteristic analyses confirmed the strong predictive power of this signature for the prognosis of lung adenocarcinoma. Gene set variation analysis showed that the low-risk group was mainly related to immunity, and the high-risk group was mainly related to DNA replication. Somatic mutation analysis revealed that the TP53 gene had the highest mutation rate in the high-risk group. Tumor immune infiltration cell analysis showed that the low-risk group had higher levels of resting CD4 memory T cells and lower levels of M0 macrophages. CONCLUSION Our study identified a novel m6A-related ferroptosis-associated six-gene signature (comprising SLC2A1, HERPUD1, EIF2S1, ACSL3, NCOA4, and CISD1) for predicting lung adenocarcinoma prognosis, yielding a useful prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Dongdong Li
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, P. R. China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, P. R. China
| | - Ting Chen
- Department of Pulmonary and Critical Care Medicine, Wuhan Wuchang Hospital, Wuhan, 430063, Hubei, P. R. China
| | - Qiu-Gen Li
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, P. R. China.
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, P. R. China.
| |
Collapse
|
45
|
Guo W, Huai Q, Zhou B, Guo L, Sun L, Xue X, Tan F, Xue Q, Gao S, He J. Comprehensive analysis of the immunological implication and prognostic value of CXCR4 in non-small cell lung cancer. Cancer Immunol Immunother 2023; 72:1029-1045. [PMID: 36308553 PMCID: PMC10025233 DOI: 10.1007/s00262-022-03298-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 03/20/2023]
Abstract
CXCR4 (C-X-C chemokine receptor type 4) is the most commonly expressed of all chemokine receptors in malignant tumors. However, studies on CXCR4 in non-small cell lung cancer (NSCLC) tumor immune microenvironment, including those determining its immune efficacy and prognostic potential, are still scarce. Therefore, in this study, we determined the ability of CXCR4 to predict immunotherapy response and prognosis in NSCLC using immunohistochemical staining and RT-PCR, respectively, in two independent cohorts from the National Cancer Center of China. We analyzed transcriptome sequencing data and clinical information from multiple public databases to assess immune cell infiltration in NSCLC and constructed immune risk prognostic signatures based on CXCR4-related immunomodulators. We found that immune cell infiltration is significant differences in NSCLC tissues and is moderately correlated with CXCR4 expression. High CXCR4 expression was significantly associated with poor prognosis in NSCLC patients and a higher response rate to immunotherapy. The ROC curve showed that CXCR4 expression exhibited excellent performance in predicting the efficacy of immunotherapy in NSCLC. We identified 30 CXCR4-related immunomodulators in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and constructed immune prognostic signatures based on CXCR4-related immunomodulators and CXCR4-related mutant genes. The signature-based prognostic risk score showed good performance in predicting patient prognosis in both LUAD and LUSC; high risk scores were significantly associated with poor prognosis (P < 0.0001) and was established as an independent prognostic factor by multivariate Cox regression. We postulate that CXCR4 is a potential predictive marker of immunotherapy efficacy in NSCLC and should be used in clinical settings. Moreover, the constructed signatures may be valuable in predicting patient prognosis in NSCLC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China.
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
46
|
Xiao H, Feng X, Liu M, Gong H, Zhou X. SnoRNA and lncSNHG: Advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol 2023; 14:1143980. [PMID: 37006268 PMCID: PMC10050728 DOI: 10.3389/fimmu.2023.1143980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of genes that can be transcript into long non-coding RNA SNHG (lncSNHG) and further processed into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs regulate the immune cell behavior and function to mediate anti-tumor immunity remains further illustrated. Certain immune cell types carry out distinct roles to participate in each step of tumorigenesis. It is particularly important to understand how lncSNHGs and snoRNAs regulate the immune cell function to manipulate anti-tumor immunity. Here, we discuss the expression, mechanism of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating different types of immune cells that are closely related to anti-tumor immunity. By uncovering the changes and roles of lncSNHGs and snoRNAs in different immune cells, we aim to provide a better understanding of how the transcripts of SNHGs participate in tumorigenesis from an immune perspective.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Feng
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengjun Liu
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanwen Gong
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao Zhou
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Xiao Zhou,
| |
Collapse
|
47
|
Comprehensively Analyze the Prognosis Significance and Immune Implication of PTPRO in Lung Adenocarcinoma. Mediators Inflamm 2023; 2023:5248897. [PMID: 36816740 PMCID: PMC9934981 DOI: 10.1155/2023/5248897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 02/11/2023] Open
Abstract
Immunotherapy for lung adenocarcinoma (LUAD) is considered to be a promising treatment option, but only a minority of patients benefit from it. Therefore, it is essential to clarify the regulation mechanism of the tumor immune microenvironment (TIM) of the LUAD. Receptor-type protein tyrosine phosphatase (PTPRO) has been shown to be a tumor suppressor in a variety of tumor; however, its role in LUAD has never been reported. In this study, we first found that PTPRO was lowly expressed in LUAD and positively correlated with patient prognosis. Next, we investigated the relationship between PTPRO and clinical characteristics, and the results showed that gender, age, T, and stage were closely related to the expression level of PTPRO. Moreover, we performed univariate and multivariate analyses, and the results revealed that PTPRO was a protective factor for LUAD. By constructing a nomogram based on the expression level of PTPRO and various clinical characteristics, it was proved that the nomogram has a good predictive capacity. Furthermore, we analyzed the coexpression network of PTPRO through multiple databases and performed GO and KEGG enrichment analyses. The results demonstrated that PTPRO was involved in the regulation of multiple immune pathways. In addition, we analyzed whether PTPRO expression of LUAD regulate immune cell infiltration and the results demonstrated that PTPRO was closely related to the infiltration of various immune cells. Finally, we predicted LUAD sensitivity to chemotherapeutics and response to immunotherapy by PTPRO expression levels. The results showed that PTPRO expression level affect the sensitivity of various chemotherapeutic drugs and may be involved in the efficacy of immunotherapy. These results we obtained suggested that PTPRO is closely related to the prognosis and TIM of LUAD, which may be a potential immunotherapeutic target for LUAD.
Collapse
|
48
|
Yu JW, Pang R, Liu B, Zhang L, Zhang JW. Bioinformatics identify the role of chordin-like 1 in thyroid cancer. Medicine (Baltimore) 2023; 102:e32778. [PMID: 36749222 PMCID: PMC9901988 DOI: 10.1097/md.0000000000032778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The abnormal expression of chordin-like 1 (CHRDL1) is identified in many cancers, while the effect of CHRDL1 in thyroid cancer (THCA) remains unclear. The University of California Santa Cruz, Gene Expression Profiling Interactive Analysis, University of Alabama at Birmingham Cancer, and Gene Expression Omnibus database (GSE33570, GSE33630, and GSE60542) were used for determining the mRNA and methylation expression of CHRDL1 in tumor and normal tissues. Human Protein Atlas was used for exploring the protein expression level of CHRDL1. The genes correlated to CHRDL1 were assessed by cBioPortal database. The prognostic value of CHRDL1 was evaluated through Kaplan-Meier method, cox regression, and nomogram analysis. Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and gene set enrichment analysis were used for predicting potential function of CHRDL1. The relationship between CHRDL1 and immune cell infiltration was determined by Pearson method. The downregulated mRNA and protein expressions of CHRDL1 were identified in THCA through the analysis of data from The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas database. The survival analysis showed that the CHRDL1 expression significantly affected disease-free interval (DFI) and progression-free interval, and CHRDL1 was an independent predictor of DFI. Besides, we found that C-C motif chemokine ligand 21 could significantly affect DFI time when it was co-expressed with CHRDL1. Additionally, the function of CHRDL1 was enriched in cell migration, apoptosis, and immune cell receptor. The downregulated expression of CHRDL1 was observed in THCA and caused poor prognosis. CHRDL1 may be involved in signal pathway related to cancer development and immune response, which suggested it could be a potential biomarker.
Collapse
Affiliation(s)
- Jia-Wei Yu
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Rui Pang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bo Liu
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liang Zhang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie-Wu Zhang
- Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- * Correspondence: Jie-Wu Zhang, Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, No.150, Baojian Road, Nangang District, Harbin 150041, Heilongjiang, China (e-mail: )
| |
Collapse
|
49
|
Li D, Shi Z, Liu X, Jin S, Chen P, Zhang Y, Chen G, Fan X, Yang J, Lin H. Identification and development of a novel risk model based on cuproptosis-associated RNA methylation regulators for predicting prognosis and characterizing immune status in hepatocellular carcinoma. Hepatol Int 2023; 17:112-130. [PMID: 36598701 DOI: 10.1007/s12072-022-10460-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cuproptosis, a novel cell death caused by excess copper, is quite obscure in hepatocellular carcinoma (HCC) and needs more investigation. METHODS RNA-seq and clinical data of HCC patients TCGA database were analyzed to establish a predictive model through LASSO Cox regression analysis. External dataset ICGC was used for the verification. GSEA and CIBERSORT were applied to investigate the molecular mechanisms and immune microenvironment of HCC. Cuproptosis induced by elesclomol was confirmed via various in vitro experiments. The expression of prognostic genes was verified in HCC tissues using qRT-PCR analysis. RESULTS Initially, 18 cuproptosis-associated RNA methylation regulators (CARMRs) were selected for prognostic analysis. A nine-gene signature was created by applying the LASSO Cox regression method. Survival and ROC assays were carried out to validate the model using TCGA and ICGC database. Moreover, there exhibited obvious differences in drug sensitivity in terms of common drugs. A higher tumor mutation burden was shown in the high-risk group. Additionally, significant discrepancies were found between the two groups in metabolic pathways and RNA processing via GSEA analysis. Meanwhile, CIBERSORT analysis indicated different infiltrating levels of various immune cells between the two groups. Elesclomol treatment caused a unique form of programmed cell death accompanied by loss of lipoylated mitochondrial proteins and Fe-S cluster protein. The results of qRT-PCR indicated that most prognostic genes were differentially expressed in the HCC tissues. CONCLUSION Overall, our predictive signature displayed potential value in the prediction of overall survival of HCC patients and might provide valuable clues for personalized therapies.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Zhaoqi Shi
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Xiaolong Liu
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Shengxi Jin
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Peng Chen
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Yiyin Zhang
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Guoqiao Chen
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China
| | - Xiaoxiao Fan
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China.
| | - Jing Yang
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China.
| | - Hui Lin
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Rd, Hangzhou, 310016, People's Republic of China. .,Zhejiang Engineering Research Center of Cognitive Healthcare, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
50
|
Zhou J, Chen D, Zhang S, Wang C, Zhang L. Identification of two molecular subtypes and a novel prognostic model of lung adenocarcinoma based on a cuproptosis-associated gene signature. Front Genet 2023; 13:1039983. [PMID: 36712848 PMCID: PMC9877306 DOI: 10.3389/fgene.2022.1039983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of lung cancer clinically, with high mortality and poor prognosis. Cuproptosis present a newly discovered mode of cell death characterized by aggregation of fatty acylated proteins, depletion of iron-sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative stress. However, the impact of cuproptosis on lung adenocarcinoma development, prognosis, and treatment has not been elucidated. By systematically analyzing the genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially expressed between lung cancer tissues and adjacent tissues. Based on the expression levels of 10 cuproptosis-related genes, we classified lung adenocarcinoma patients into two molecular subtypes using the Consensus clustering method, of which subtype 2 had a worse prognosis. Differential expression genes associated with prognosis between the two subtypes were obtained by differential analysis and survival analysis, and cox lasso regression was applied to construct a cuproptosis-related prognostic model. Its survival predicting ability was validated in three extrinsic validation cohorts. The results of multivariate cox analysis indicated that cuproptosis risk score was an independent prognostic predictor, and the mixed model formed by cupproptosis prognostic model combined with stage had more robust prognostic prediction accuracy. We found the differences in cell cycle, mitosis, and p53 signaling pathways between high- and low-risk groups according to GO and KEGG enrichment analysis. The results of immune microenvironment analysis showed that the enrichment score of activated dendritic cells, mast cells, and type 2 interferon response were down-regulated in the high-risk group, while the fraction of neutrophils and M0 macrophages were upregulated in the high-risk group. Compared with the high-risk group, subjects in the low-risk group had higher Immunophenoscore and may be more sensitive to immunotherapy. We identified seven chemotherapy agents may improve the curative effect in LUAD samples with higher risk score. Overall, we discovered that cuproptosis is closely related to the occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis prognostic model is a potential prognostic predictor and may provide new strategies for precision therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jinlin Zhou
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Dehe Chen
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Shiguo Zhang
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China,*Correspondence: Li Zhang,
| |
Collapse
|