1
|
Teotia V, Jha P, Chopra M. Discovery of Potential Inhibitors of CDK1 by Integrating Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation Studies, and Evaluation of Their Inhibitory Activity. ACS OMEGA 2024; 9:39873-39892. [PMID: 39346877 PMCID: PMC11425824 DOI: 10.1021/acsomega.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The ability of CDK1 to compensate for the absence of other cell cycle CDKs poses a great challenge to treat cancers that overexpress these proteins. Despite several studies focusing on the area, there are no FDA-approved drugs selectively targeting CDK1. Here, the study aimed to develop potential CDK1 selective inhibitors through drug repurposing and leveraging the structural insights provided by the hit molecules generated. Approximately 280,000 compounds from DrugBank, Selleckchem, Otava and an in-house library were screened initially based on fit values using 3D QSAR pharmacophores built for CDK1 and subsequently through Lipinski, ADMET, and TOPKAT filters. 10,310 hits were investigated for docking into the binding site of CDK1 determined using the crystal structure of human CDK1 in complex with NU6102. The best 55 hits with better docking scores were further analyzed, and 12 hits were selected for 100 ns MD simulations followed by binding energy calculations using the MM-PBSA method. Finally, 10 hit molecules were tested in an in vitro CDK1 Kinase inhibition assay. Out of these, 3 hits showed significant CDK1 inhibitory potential with IC50 < 5 μM. These results indicate these compounds can be used to develop subtype-selective CDK1 inhibitors with better efficacy and reduced toxicities in the future.
Collapse
Affiliation(s)
- Vineeta Teotia
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Burmistrova DA, Galustyan A, Pomortseva NP, Pashaeva KD, Arsenyev MV, Demidov OP, Kiskin MA, Poddel’sky AI, Berberova NT, Smolyaninov IV. Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments. Beilstein J Org Chem 2024; 20:2378-2391. [PMID: 39319031 PMCID: PMC11420547 DOI: 10.3762/bjoc.20.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
A series of new RS-, RS-CH2- and R2N-CH2-functionalized сatechols with heterocyclic fragments such as 1,3,4-oxadiazole, 1,2,4-triazole, thiazole, or pyridine were synthesized by the reaction of 3,5-di-tert-butyl-o-benzoquinone or 3,5-di-tert-butyl-6-methoxymethylcatechol with different heterocyclic thiols. The S-functionalized catechols were prepared by the Michael reaction from 3,5-di-tert-butyl-o-benzoquinone and the corresponding thiols. The starting reagents such as substituted 1,3,4-oxadiazole-2-thiols and 4H-triazole-3-thiols are characterized by thiol-thione tautomerism, therefore their reactions with 3,5-di-tert-butyl-6-methoxymethylcatechol can proceed at the sulfur or nitrogen atom. In the case of mercapto-derivatives of thiazole or pyridine, this process leads to the formation of the corresponding thioethers with a methylene linker. At the same time, thiolated 1,3,4-oxadiazole or 1,2,4-triazole undergo alkylation at the nitrogen atom in the reaction with 3,5-di-tert-butyl-6-methoxymethylcatechol to form the corresponding thiones. The yield of reaction products ranges from 42 to 80%. The crystal structures of catechols with 3-nitropyridine or 1,3,4-oxadiazole-2(3H)-thione moieties were established by single-crystal X-ray analysis. The possibility of forming intra- and intermolecular hydrogen bonds has been established for these compounds. The electrochemical behavior of the studied compounds is influenced by several factors: the nature of the heterocycle and its substituents, the presence of a sulfur atom in the catechol ring, or a thione group in the heterocyclic core. The radical scavenging activity and antioxidant properties were determined using the reaction with synthetic radicals, the cupric reducing antioxidant capacity assay, the inhibition process of superoxide radical anion formation by xanthine oxidase, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro.
Collapse
Affiliation(s)
- Daria A Burmistrova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Andrey Galustyan
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Nadezhda P Pomortseva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Kristina D Pashaeva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Maxim V Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str. 49, 603137, Nizhny Novgorod, Russia
| | - Oleg P Demidov
- North-Caucasus Federal University, Pushkin str. 1, 355017, Stavropol, Russia
| | - Mikhail A Kiskin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp., 31, 119991, Moscow, Russia
| | - Andrey I Poddel’sky
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Nadezhda T Berberova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Ivan V Smolyaninov
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| |
Collapse
|
3
|
Gour VK, Yahya S, Shahar Yar M. Unveiling the chemistry of 1,3,4-oxadiazoles and thiadiazols: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2300328. [PMID: 37840397 DOI: 10.1002/ardp.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Oxadiazoles and thiadiazoles are malleable heterocycles that have recently generated major interest in the field of medicinal chemistry. Compounds based on these moieties have versatile biological applications such as anticonvulsant, anticancer, antidiabetic, and antioxidant agents. Due to the versatile nature and stability of the oxadiazole and thiadiazole nucleus, medicinal chemists have changed the structural elements of the ring in numerous ways. These compounds have shown significant anticonvulsant effects, demonstrating their potential in the management of epileptic disorders. In this review, we have covered numerous biological pathways and in silico targeted proteins of oxadiazole and thiadiazole derivatives for treating various biological disorders. The data compiled in this article will be helpful for researchers, research scientists, and research chemists who work in the field of drug discovery and drug development.
Collapse
Affiliation(s)
- Vivek K Gour
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Matore BW, Banjare P, Sarthi AS, Roy PP, Singh J. Phthalimides Represent a Promising Scaffold for Multi‐Targeted Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Balaji Wamanrao Matore
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Purusottam Banjare
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Ajay Singh Sarthi
- Rungta College of Pharmaceutical Sciences and Research Raipur Chhattisgarh 492009 India
| | - Partha Pratim Roy
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Jagadish Singh
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| |
Collapse
|
5
|
Cele N, Awolade P, Dhawan S, Khubone L, Raza A, Sharma AK, Singh P. Quinoline–1,3,4-Oxadiazole Conjugates: Synthesis, Anticancer Evaluation, and Molecular Modelling Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Lungisani Khubone
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, PA, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, PA, USA
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Fray M, ELBini-Dhouib I, Hamzi I, Doghri R, Srairi-Abid N, Lesur D, Benazza M, Abidi R, Barhoumi-Slimi T. Synthesis, characterization and in vivo antitumor effect of new α,β-unsaturated-2,5-disubstituted-1,3,4-oxadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2053993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Fray
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - I. ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - I. Hamzi
- Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
| | - R. Doghri
- Laboratory of Anatomo-Pathology, Institut Salah Azaiez, Tunis, Tunisia
| | - N. Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - D. Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - M. Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - R. Abidi
- Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) LR05ES09, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - T. Barhoumi-Slimi
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- University of Carthage, High Institute of Environmental Sciences and Technologies, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
7
|
Osmaniye D, Görgülü Ş, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and biological evaluation of novel 1,3,
4‐oxadiazole
derivatives as anticancer agents and potential
EGFR
inhibitors. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM) Eskişehir Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| |
Collapse
|
8
|
Long B, Tian B, Tang Q, Hu X, Han L, Wang Z, Wang C, Wu Y, Yu Y, Gan Z. A KHSO4 mediated facile synthesis of 2-amino-1,3,4-oxadiazole derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Al-Wahaibi LH, Mohamed AAB, Tawfik SS, Hassan HM, El-Emam AA. 1,3,4-Oxadiazole N-Mannich Bases: Synthesis, Antimicrobial, and Anti-Proliferative Activities. Molecules 2021; 26:2110. [PMID: 33916955 PMCID: PMC8067589 DOI: 10.3390/molecules26082110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a-l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a-d, respectively. The in vitro inhibitory activity of compounds 4a-l and 5a-d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5-8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Hanan M. Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa City, Mansoura 11152, Egypt;
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
10
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
11
|
Kapoor G, Bhutani R, Pathak DP, Chauhan G, Kant R, Grover P, Nagarajan K, Siddiqui SA. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Garima Kapoor
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Garima Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Ravi Kant
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | | |
Collapse
|
12
|
Singh RB, Das N, Singh GK, Singh SK, Zaman K. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Popov SA, Semenova MD, Baev DS, Frolova TS, Shults EE, Wang C, Turks M. Synthesis of cytotoxic urs-12-ene- and 28-norurs-12-ene- type conjugates with amino- and mercapto-1,3,4-oxadiazoles and mercapto-1,2,4-triazoles. Steroids 2020; 153:108524. [PMID: 31622615 DOI: 10.1016/j.steroids.2019.108524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
A small library of 2-mercapto-1,3,4-oxadiazoles, 2-amino-1,3,4-oxadiazoles, and 3-mercapto-1,2,4-triazoles attached to the urs-12-ene- and 28-nor-urs-12-ene skeleton has been obtained. Ursolic acid derived hydrazides have been identified as useful starting materials for the developed synthesis. Ursolic acid hydrazide provided access to oxadiazoles attached directly to C-17 of the ursane core, but synthesis of structurally related 3-mercapto-1,2,4-triazoles was not possible in this way due to steric hindrance of the triterpenoid. Ester- and amide-linked hydrazides arising from ethoxycarbonylmethyl ursolate and ursolic acid amide with methyl β-alaninate served as key starting materials for the remotely connected mercapto-and amino-azoles. Antioxidant activities (DPPH method) of the newly obtained compounds are mediocre. However, excellent cytotoxicity and selectivity against MCF7 cell line were found for 28-nor-urs-12-ene 2-amino-1,3,4-oxadiazole conjugate. Also some other library members exceeded the cytotoxicity values of natural ursolic acid. The novel hybrid heterocycles with amino and mercapto substituents possess a great potential for further derivatization and are prospective scaffolds for the synthesis of triterpenoid analogs with chemopreventive and cytotoxic properties.
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev Ave. 9, Novosibirsk 630090, Russia.
| | - Marya D Semenova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev Ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev Ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | - Tatiana S Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev Ave. 9, Novosibirsk 630090, Russia
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| |
Collapse
|
14
|
Anti-Cancer Activity of Derivatives of 1,3,4-Oxadiazole. Molecules 2018; 23:molecules23123361. [PMID: 30567416 PMCID: PMC6320996 DOI: 10.3390/molecules23123361] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Compounds containing 1,3,4-oxadiazole ring in their structure are characterised by multidirectional biological activity. Their anti-proliferative effects associated with various mechanisms, such as inhibition of growth factors, enzymes, kinases and others, deserve attention. The activity of these compounds was tested on cell lines of various cancers. In most publications, the most active derivatives of 1,3,4-oxadiazole exceeded the effect of reference drugs, so they may become the main new anti-cancer drugs in the future.
Collapse
|
15
|
Wu J, Xiao S, Yuan M, Li Q, Xiao G, Wu W, Ouyang Y, Huang L, Yao C. PARP inhibitor re‑sensitizes Adriamycin resistant leukemia cells through DNA damage and apoptosis. Mol Med Rep 2018; 19:75-84. [PMID: 30431088 PMCID: PMC6297734 DOI: 10.3892/mmr.2018.9628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Resistance to Adriamycin (ADR) is an increasing problem in the treatment of leukemia and the development of novel therapeutic strategies is becoming increasingly important. Olaparib is a poly (adenosine diphosphate-ribose) polymerase (PARP) 1 inhibitor, which has promising antitumor activity in patients with metastatic breast cancer and germline BRCA mutations. Previously published studies have indicated that Olaparib is able to overcome drug resistance in cancer; however, its underlying mechanism of action is yet to be elucidated. The aim of the present study was to explore the mechanism underlying re-sensitization. Annexin V-propidium iodide staining indicated that the percentage of apoptotic ADR resistant cells was markedly increased and the cell cycle was blocked at the G2/M-phase following treatment with ADR combined with Olaparib, when compared with the control group. The alkaline comet assay demonstrated that ADR combined with Olaparib significantly upregulated the induction of the DNA damage response in ADR-resistant cells. Western blot analysis revealed that the protein expression of γ-H2A histone family member X, cleaved PARP, caspase 3 and cleaved caspase 3 was markedly enhanced, while the cell cycle-associated protein cyclin B1 was downregulated in K562/ADR cells following treatment with a combination of ADR and Olaparib. Similar synergistic cytotoxicity was observed in blood mononuclear cells, which were isolated from patients with chemotherapy-resistant leukemia. As Olaparib is available for clinical use, the results of the present study provide a rationale for the development of Olaparib combinational therapies for cases of ADR resistant leukemia.
Collapse
Affiliation(s)
- Jie Wu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng Xiao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Miaomiao Yuan
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qianyuan Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangfen Xiao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Wu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuexian Ouyang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Huang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenjiao Yao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Hou X, Luo H, Zhang M, Yan G, Pu C, Lan S, Li R. Synthesis and biological evaluation of 3-(1,3,4-oxadiazol-2-yl)-1,8-naphthyridin-4(1 H)-ones as cisplatin sensitizers. MEDCHEMCOMM 2018; 9:1949-1960. [PMID: 30568762 PMCID: PMC6256366 DOI: 10.1039/c8md00464a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 02/05/2023]
Abstract
A series of novel 3-(1,3,4-oxadiazol-2-yl)-1,8-naphthyridin-4(1H)-one derivatives were synthesized and their anti-cancer as well as cisplatin sensitization activities were evaluated. Among them, compounds 6e and 6h exhibited significant cisplatin sensitization activity against HCT116. Hoechst staining and annexin V-FITC/PI dual-labeling studies demonstrated that the combination of 6e/6h and cisplatin can induce tumour cell apoptosis. Western blot showed that the expression of ATR downstream protein, CHK1, decreased in 6e + cisplatin and 6h + cisplatin groups compared with that in the test compound and cisplatin group. Furthermore, docking of 6e/6h into the ATR structure active site revealed that the N1 and N8 atoms in the naphthyridine ring and the hybrid atom in the oxadiazole ring are involved in hydrogen bonding with Val170, Glu168 and Tyr155. Additionally, the naphthyridine ring is also involved in π-π stacking with Trp169. Accordingly, compounds 6e and 6h can be expected to be potential cisplatin sensitizers that can participate in HCT116 cancer therapy.
Collapse
Affiliation(s)
- Xueyan Hou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
- College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , P.R. China
| | - Hao Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| | - Mengqi Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| | - Guoyi Yan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| | - Chunlan Pu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| | - Suke Lan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| | - Rui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy , West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , P. R. China .
| |
Collapse
|
17
|
Hong JM, Suh SS, Kim TK, Kim JE, Han SJ, Youn UJ, Yim JH, Kim IC. Anti-Cancer Activity of Lobaric Acid and Lobarstin Extracted from the Antarctic Lichen Stereocaulon alpnum. Molecules 2018. [PMID: 29538328 PMCID: PMC6017138 DOI: 10.3390/molecules23030658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lobaric acid and lobarstin, secondary metabolites derived from the antarctic lichen Stereocaulon alpnum, exert various biological activities, including antitumor, anti-proliferation, anti-inflammation, and antioxidant activities. However, the underlying mechanisms of these effects have not yet been elucidated in human cervix adenocarcinoma and human colon carcinoma. In the present study, we evaluated the anticancer effects of lobaric acid and lobarstin on human cervix adenocarcinoma HeLa cells and colon carcinoma HCT116 cells. We show that the proliferation of Hela and HCT116 cells treated with lobaric acid and lobarstin significantly decreased in a dose- and time-dependent manner. Using flow cytometry analysis, we observed that the treatment with these compounds resulted in significant apoptosis in both cell lines, following cell cycle perturbation and arrest in G2/M phase. Furthermore, using immunoblot analysis, we investigated the expression of cell cycle and apoptosis-related marker genes and found a significant downregulation of the apoptosis regulator B-cell lymphoma 2 (Bcl-2) and upregulation of the cleaved form of the poly (ADP-ribose) polymerase (PARP), a DNA repair and apoptosis regulator. These results suggest that lobaric acid and lobarstin could significantly inhibit cell proliferation through cell cycle arrest and induction of apoptosis via the mitochondrial apoptotic pathway in cervix adenocarcinoma and colon carcinoma cells. Taken together, our data suggests that lobaric acid and lobarstin might be novel agents for clinical treatment of cervix adenocarcinoma and colon carcinoma.
Collapse
Affiliation(s)
- Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan 58554, Korea.
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Jung Eun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Pharmacy, Graduate School, Sungkyunkwan University, Suwon 16419, Korea.
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| |
Collapse
|