1
|
Zhang K, Wu D, Huang C. Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy. Biochem Pharmacol 2024; 230:116621. [PMID: 39542182 DOI: 10.1016/j.bcp.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Collapse
Affiliation(s)
- Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Song J, Cui Q, Gao J. Roles of lncRNAs related to the p53 network in breast cancer progression. Front Oncol 2024; 14:1453807. [PMID: 39479021 PMCID: PMC11521785 DOI: 10.3389/fonc.2024.1453807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
The p53 is a crucial tumor suppressor and transcription factor that participates in apoptosis and senescence. It can be activated upon DNA damage to regulate the expression of a series of genes. Previous studies have demonstrated that some specific lncRNAs are part of the TP53 regulatory network. To enhance our understanding of the relationship between lncRNAs and P53 in cancers, we review the localization, structure, and function of some lncRNAs that are related to the mechanisms of the p53 pathway or serve as p53 transcriptional targets.
Collapse
Affiliation(s)
| | - Qiuxia Cui
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
3
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
4
|
Jornada DH, Boreski D, Chiba DE, Ligeiro D, Luz MAM, Gabriel EA, Scarim CB, de Andrade CR, Chin CM. Synergistic Enhancement of 5-Fluorouracil Chemotherapeutic Efficacy by Taurine in Colon Cancer Rat Model. Nutrients 2024; 16:3047. [PMID: 39339648 PMCID: PMC11434803 DOI: 10.3390/nu16183047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) is one of the top 10 most common cancers worldwide and caused approximately 10 million deaths in 2022. CRC mortality has increased by 10% since 2020 and 52.000 deaths will occur in 2024, highlighting the limitations of current treatments due to ineffectiveness, toxicity, or non-adherence. The widely used chemotherapeutic agent, 5-fluorouracil (5-FU), is associated with several adverse effects, including renal, cardiac, and hepatic toxicity; mucositis; and resistance. Taurine (TAU), an essential β-amino acid with potent antioxidant, antimutagenic, and anti-inflammatory properties, has demonstrated protective effects against tissue toxicity from chemotherapeutic agents like doxorubicin and cisplatin. Taurine deficiency is linked to aging and cancers such as breast and colon cancer. This study hypothesized that TAU may mitigate the adverse effects of 5-fluorouracil (5-FU). Carcinogenesis was chemically induced in rats using 1,2-dimethylhydrazine (DMH). Following five months of cancer progression, taurine (100 mg/kg) was administered orally for 8 days, and colon tissues were analyzed. The results showed 80% of adenocarcinoma (AC) in DMH-induced control animals. Notably, the efficacy of 5-FU showed 70% AC and TAU 50% while, in the 5-FU + TAU group, no adenocarcinoma was observed. No differences were observed in the inflammatory infiltrate or the expression of genes such as K-ras, p53, and Ki-67 among the cancer-induced groups whereas APC/β-catenin expression was increased in the 5FU + TAU-treated group. The mitotic index and dysplasia were increased in the induced 5-FU group and when associated with TAU, the levels returned to normal. These data suggest that 5-FU exhibits a synergic anticancer effect when combined with taurine.
Collapse
Affiliation(s)
- Daniela Hartmann Jornada
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diogo Boreski
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diego Eidy Chiba
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Denise Ligeiro
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Marcus Alexandre Mendes Luz
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Edmo Atique Gabriel
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Cauê Benito Scarim
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Cleverton Roberto de Andrade
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Chung Man Chin
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
5
|
Du W, Xia X, Gou Q, Xie Y, Gao L. Comprehensive review regarding the association of E2Fs with the prognosis and immune infiltrates in human head and neck squamous cell carcinoma. Asian J Surg 2024; 47:2106-2121. [PMID: 38320907 DOI: 10.1016/j.asjsur.2024.01.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
E2F transcription factors (E2Fs) are a group of genes that encode a family of transcription factors. They have been identified as being involved in the tumor progression of various cancer types. However, little is known about the expression level, genetic variation, molecular mechanism, and prognostic value and immune infiltration of different E2Fs in HNSCC.In this study, we utilized multiple databases to investigate the mRNA expression level, genetic alteration, and biological function of E2Fs in HNSCC patients. Then, the relationship between E2Fs expression and its association with the occurrence, progress, prognosis, and immune cell infiltration in patients with HNSCC was evaluated. We found that all eight E2Fs were higher expressed in HNSCC tissues than in normal tissues, and the expression levels of E2F1/2/3/4/5/6/8 were also associated with the stage and grade of HNSCC. The abnormal expression of E2F1/2/4/8 in HNSCC patients is related to the clinical outcome. The expression of E2Fs was statistically correlated with the immune cell infiltration in HNSCC and the infiltration of B cells and CD8+ T cells were positively associated with better OS in HNSCC patients. Furthermore, we verified the E2F2 at the tissue level in the validation experiment. Our study may provide novel insights into the choice of immunotherapy targets and potential prognostic biomarkers in HNSCC patients.
Collapse
Affiliation(s)
- Wei Du
- Department of Targetting Therapy & Immunology, Cancer Cencer, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China.
| |
Collapse
|
6
|
Hou L, Zou Z, Wang Y, Pi H, Yuan Z, He Q, Kuang Y, Zhao G. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification. Aging (Albany NY) 2024; 16:6745-6756. [PMID: 38546402 PMCID: PMC11087090 DOI: 10.18632/aging.205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 05/08/2024]
Abstract
Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.
Collapse
Affiliation(s)
- Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Zhiming Zou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Hui Pi
- Dali University, Dali 671003, Yunnan, China
| | - Zeyue Yuan
- Dali University, Dali 671003, Yunnan, China
| | - Qin He
- Dali University, Dali 671003, Yunnan, China
| | - Yongfang Kuang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| |
Collapse
|
7
|
Song X, Wang P, Feng R, Chetry M, Li E, Wu X, Liu Z, Liao S, Lin J. Prognostic model of ER-positive, HER2-negative breast cancer predicted by clinically relevant indicators. Clin Transl Oncol 2024; 26:389-397. [PMID: 37713046 DOI: 10.1007/s12094-023-03316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE To study the clinicopathological variables connected with disease-free survival (DFS) as well as overall survival (OS) in patients who are ER-positive or HER2-negative and to propose nomograms for predicting individual risk. METHODS In this investigation, we examined 585 (development cohort) and 291 (external validation) ER-positive, HER2-negative breast cancer patients from January 2010 to January 2014. From January 2010 to December 2014, we retrospectively reviewed and analyzed 291 (external validation) and 585 (development cohort) HER2-negative, ER-positive breast cancer patients. Cox regression analysis, both multivariate and univariate, confirmed the independence indicators for OS and DFS. RESULTS Using cox regression analysis, both multivariate and univariate, the following variables were combined to predict the DFS of development cohort: pathological stage (HR = 1.391; 95% CI = 1.043-1.855; P value = 0.025), luminal parting (HR = 1.836; 95% CI = 1.142-2.952; P value = .012), and clinical stage (HR = 1.879; 95% CI = 1.102-3.203; P value = 0.021). Endocrine therapy (HR = 3.655; 95% CI = 1.084-12.324; P value = 0.037) and clinical stage (HR = 6.792; 95% CI = 1.672-28.345; P value = 0.009) were chosen as predictors of OS. Furthermore, we generated RS-OS and RS-DFS. According to the findings of Kaplan-Meier curves, patients who are classified as having a low risk have considerably longer DFS and OS durations than patients who are classified as having a high risk. CONCLUSION To generate nomograms that predicted DFS and OS, independent predictors of DFS in ER-positive/HER2-negative breast cancer patients were chosen. The nomograms successfully stratified patients into prognostic categories and worked well in both internal validation and external validation.
Collapse
Affiliation(s)
- Xinming Song
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Pintian Wang
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Ruiling Feng
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Mandika Chetry
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - E Li
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, Longhu People's Hospital, Shantou, 515041, China
| | - Xiaohua Wu
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, Longhu People's Hospital, Shantou, 515041, China
| | - Zewa Liu
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Shasha Liao
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, Longhu People's Hospital, Shantou, 515041, China
| | - Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China.
| |
Collapse
|
8
|
Wang L, Notomi R, Sasaki S, Taniguchi Y. Inhibition of transcription and antiproliferative effects in a cancer cell line using antigene oligonucleotides containing artificial nucleoside analogues. RSC Med Chem 2023; 14:1482-1491. [PMID: 37593572 PMCID: PMC10429662 DOI: 10.1039/d3md00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 08/19/2023] Open
Abstract
Antigene methods are promising novel therapeutic approaches to suppress abnormal gene expression. One of these methods inhibits transcription by forming triplex DNA against duplex DNA. However, by using natural-type triplex-forming oligonucleotides (TFOs), stable triplex formation is limited to homopurine and homopyrimidine strands in targeted duplex DNA. We recently developed artificial nucleoside analogues with the ability to recognize CG and TA inversion sites. We successfully formed stable unnatural-type triplex DNA for duplex DNA containing a CG base pair and extended the target sequence using TFOs containing 2-amino-3-methylpyridinyl pseudo-dC (3MeAP-ΨdC). Therefore, this present study investigated triplex-forming regions and synthesized antigene TFOs containing 3MeAP-ΨdC. Some of the synthesized antigene TFOs reduced transcription products and inhibited cell proliferation in several types of cultured cancer cells. The antigene effects of antigene TFOs containing artificial nucleic acids were markedly stronger than those of natural-type TFOs, and these results clearly demonstrated the usefulness of incorporating artificial nucleic acids within TFOs.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University Nantong 226001 PR China
| | - Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
- Graduate School of Pharmaceutical Sciences, Nagasaki International University 2825-7 Huis Ten Bosch Machi, Sasebo City Nagasaki 859-3298 Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
9
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
10
|
Yin Q, Ma H, Bamunuarachchi G, Zheng X, Ma Y. Long Non-Coding RNAs, Cell Cycle, and Human Breast Cancer. Hum Gene Ther 2023; 34:481-494. [PMID: 37243445 PMCID: PMC10398747 DOI: 10.1089/hum.2023.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) constitute an important class of the human transcriptome. The discovery of lncRNAs provided one of many unexpected results of the post-genomic era and uncovered a huge number of previously ignored transcriptional events. In recent years, lncRNAs are known to be linked with human diseases, with particular focus on cancer. Growing evidence has indicated that dysregulation of lncRNAs in breast cancer (BC) is strongly associated with the occurrence, development, and progress. Increasing numbers of lncRNAs have been found to interact with cell cycle progression and tumorigenesis in BC. The lncRNAs can exert their effect as a tumor suppressor or oncogene and regulate tumor development through direct or indirect regulation of cancer-related modulators and signaling pathways. What is more, lncRNAs are excellent candidates for promising therapeutic targets in BC due to the features of high tissue and cell-type specific expression. However, the underlying mechanisms of lncRNAs in BC still remain largely undefined. Here, we concisely summarize and sort out the current understanding of research progress in relationships of the roles for lncRNA in regulating the cell cycle. We also summarize the evidence for aberrant lncRNA expression in BC, and the potential for lncRNA to improve BC therapy is also discussed. Together, lncRNAs can be considered as exciting therapeutic candidates whose expression can be altered to impede BC progression.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Xuewei Zheng
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
13
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p. Anticancer Drugs 2023; 34:144-154. [PMID: 36539367 DOI: 10.1097/cad.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNA taurine-upregulated gene1 (TUG1) has been reported to be implicated in the chemo-resistance of bladder cancer. Hence, this study aimed to survey regulatory mechanism by which TUG1 regulates the chemo-resistance of bladder cancer cells to doxorubicin (DOX). Relative expression of TUG1, miR-582-5p, and karyopherin alpha 2 (KPNA2) was detected by qRT-PCR. The viability and proliferation of DOX-resistant bladder cancer cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Protein levels were measured by western blot analysis. The apoptosis, migration, and invasion of DOX-resistant bladder cancer cells were determined by flow cytometry or transwell assays. The relationship between TUG1 or KPNA2 and miR-582-5p was verified by dual-luciferase reporter assay. TUG1 and KPNA2 were upregulated while miR-582-5p was downregulated in resistant bladder cancer tissues and cells. TUG1 inhibition elevated cell chemo-sensitivity, facilitated cell apoptosis, and curbed proliferation, migration, invasion, and autophagy of DOX-resistant bladder cancer cells. Also, TUG1 acted as a sponge for miR-582-5p, and miR-582-5p inhibitor reversed TUG1 knockdown-mediated influence on DOX chemo-sensitivity and malignant behaviors in DOX-resistant bladder cancer cells. Furthermore, miR-582-5p targeted KPNA2, and KPNA2 overexpression counteracted the inhibitory impact of miR-582-5p mimic on DOX chemo-resistance and malignant behaviors in DOX-resistant bladder cancer cells. Additionally, TUG1 silencing inactivated the PI3K/AKT pathway through sponging miR-582-5p. TUG1 sponged miR-582-5p to increase KPNA2 expression and activated the KPNA2/PI3K/AKT pathway, thereby elevating DOX chemo-resistance and malignant behaviors in bladder cancer cells.
Collapse
|
15
|
Zhang Y, Ye F, Gao X. MCA-Net: Multi-Feature Coding and Attention Convolutional Neural Network for Predicting lncRNA-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2907-2919. [PMID: 34283719 DOI: 10.1109/tcbb.2021.3098126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the advent of the era of big data, it is troublesome to accurately predict the associations between lncRNAs and diseases based on traditional biological experiments due to its time-consuming and subjective. In this paper, we propose a novel deep learning method for predicting lncRNA-disease associations using multi-feature coding and attention convolutional neural network (MCA-Net). We first calculate six similarity features to extract different types of lncRNA and disease feature information. Second, a multi-feature coding method is proposed to construct the feature vectors of lncRNA-disease association samples by integrating the six similarity features. Furthermore, an attention convolutional neural network is developed to identify lncRNA-disease associations under 10-fold cross-validation. Finally, we evaluate the performance of MCA-Net from different perspectives including the effects of the model parameters, distinct deep learning models, and the necessity of attention mechanism. We also compare MCA-Net with several state-of-the-art methods on three publicly available datasets, i.e., LncRNADisease, Lnc2Cancer, and LncRNADisease2.0. The results show that our MCA-Net outperforms the state-of-the-art methods on all three dataset. Besides, case studies on breast cancer and lung cancer further verify that MCA-Net is effective and accurate for the lncRNA-disease association prediction.
Collapse
|
16
|
Chen Q, Schatz C, Cen Y, Chen X, Haybaeck J, Li B. LncRNA TUG1 promotes the migration and invasion in type I endometrial carcinoma cells by regulating E-N cadherin switch. Taiwan J Obstet Gynecol 2022; 61:780-787. [PMID: 36088044 DOI: 10.1016/j.tjog.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that lncRNA Taurine-upregulated gene 1 (TUG1) plays an important role in regulation of cell morphology, migration, proliferation and apoptosis. Our aim was to evaluate the oncogenic role of TUG1 in type I Endometrial Carcinoma (EC) and explore the precise mechanism of TUG1 involved in tumor progression. MATERIALS AND METHODS The GSE17025 data set was used to analyze the correlation of TUG1 expression with type I EC patients' prognosis. Furthermore, TUG1 expression profiles were measured by qRT-PCR from carcinoma tissues and adjacent nonneoplastic tissues (NNT) of 105 type I EC patients. The regulation of epithelial-mesenchymal transition (EMT) related molecules, p-AKT and AKT by TUG1 knockdown was investigated using Western blot analysis; meanwhile, the oncogenic roles of TUG1 were evaluated using cell viability and transwell migration/invasion assay in Hec-1-A and Ishikawa cell lines. RESULTS Firstly, we observed a significant association between higher TUG1 expression and lower survival rate in type I EC patients using the GSE17025 data set. A significant elevation of TUG1 levels was confirmed in type I EC tissues compared with NNT in the 105 type I EC patients, and high expression of TUG1 was associated with lymph vascular space invasion (LVSI) and lymph node metastasis (LNM). Subsequently, TUG1 knockdown could remarkably inhibit the Hec-1-A and Ishikawa cell invasion and migration in the functional experiment. Furthermore, our results showed that the protein levels of E-cadherin increased and N-cadherin decreased significantly, while β-catenin and Vimentin were not significantly altered upon TUG1 silencing in both Hec-1-A and Ishikawa cells. Finally, we found the p-AKT and AKT protein levels, and the rate of p-AKT/t-AKT has a tendency to be down-regulate in Hec-1-A cells, while the AKT pathway was not change significantly in Ishikawa cells after TUG1 knockdown. CONCLUSION Collectively, our data reveal that TUG1 might be regarded as an oncogenic molecule that promotes type I EC cells metastasis leading to tumor progression, at least partially, by regulating E-N cadherin switch and the AKT pathway.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Yixuan Cen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xiaojing Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Center of Uterine Cancer Diagnosis & Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
17
|
Tang W, Lu G, Ji Y, Xu Y. Long non‑coding RNA PCAT1 sponges miR‑134‑3p to regulate PITX2 expression in breast cancer. Mol Med Rep 2022; 25:75. [PMID: 35014684 DOI: 10.3892/mmr.2022.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/03/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women. Long non‑coding (lnc)RNAs and microRNAs (miRs) both regulate the expression of key genes in tumorigenesis. The present study aimed to explore the molecular mechanism of the prostate cancer‑associated transcript 1 (PCAT1)/miR‑134‑3p/pituitary homeobox 2 (PITX2) in BC. Reverse transcription‑quantitative PCR was performed to examine the expression of miR‑134‑3p. Cell proliferation, viability, cell cycle, apoptosis and migration were analyzed using Cell Counting Kit‑8, colony formation, flow cytometry, wound healing and Transwell assays. Protein expression levels were determined by western blotting. The present study demonstrated that PCAT1 was significantly highly expressed in BC cells. Knockdown of PCAT1 significantly inhibited cell proliferation, migration and invasion, but promoted apoptosis in human BC cell lines. The results of the dual‑luciferase assay showed that PCAT1 targeted miR‑134‑3p, and PITX2 was a potential target of miR‑134‑3p. Western blotting results demonstrated that PCAT1 knockdown significantly reduced the protein expression levels of anti‑apoptotic protein Bcl‑2, and significantly upregulated the protein expression levels of proapoptotic proteins, Bax, cleaved caspase‑3 and cleaved caspase‑9. Furthermore, the effect of a miR‑134‑3p inhibitor on BC progression was rescued by the knockdown of PITX2 in cells transfected with short hairpin RNA‑lncRNA PCAT1. To conclude, the results of the present study indicated that the PCAT1/miR‑134‑3p/PITX2 axis could be a promising therapeutic target in BC treatment.
Collapse
Affiliation(s)
- Weiming Tang
- Department of Clinical Laboratory, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Guang Lu
- Department of General Surgery, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yin Ji
- Department of Pathology, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yan Xu
- Department of Clinical Laboratory, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| |
Collapse
|
18
|
Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. Brief Bioinform 2021; 23:6377515. [PMID: 34585231 DOI: 10.1093/bib/bbab407] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases. RESULTS In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
Collapse
Affiliation(s)
- Xiaosa Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Xiaowei Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Minghao Yin
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
19
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
20
|
Li Y, Wang X, Zhao Z, Shang J, Li G, Zhang R. LncRNA NEAT1 promotes glioma cancer progression via regulation of miR-98-5p/BZW1. Biosci Rep 2021; 41:BSR20200767. [PMID: 33393590 PMCID: PMC8314435 DOI: 10.1042/bsr20200767] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor in the human central nervous system. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes oncogenesis in various tumors. In the present study, we aimed to examine the role of NEAT1 in altering the properties of gliomas. METHODS Quantitative real-time PCR technology was used to determine the expression levels of relevant genes in tumor tissues and cell lines. The protein expression levels were validated by Western blotting. Cell counting kit-8 (CCK-8) and colony formation assays were used to test the cell proliferation ability. A luciferase reporter assay was used to determine the interactions of the genes. Tumor xenografts were used to detect the role of NEAT1 in gliomas in vivo. RESULTS We demonstrated that NEAT1 up-regulated glioma cells and negatively correlated with miR-98-5p in glioma tissues. A potential binding region between NEAT1 and miR-98-5p was confirmed by dual-luciferase assays. NEAT1 knockdown inhibited glioma cell proliferation. The inhibition of miR-98-5p rescued the knockdown of NEAT1 in glioma cells. Basic leucine zipper and W2 domain containing protein 1 (BZW1) was identified as a direct target of miR-98-5p. We also identified that BZW1 was positively correlated with NEAT1 in glioma tissues. NEAT1 knockdown inhibited glioma cell proliferation in vivo via miR-98-5p/BZW1. CONCLUSION Our results suggest that NEAT1 plays an oncogenic function in glioma progression. Targeting NEAT1/miR-98-5p/BZW1 may be a novel therapeutic treatment approach for glioma patients.
Collapse
Affiliation(s)
- Yabin Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Xirui Wang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Zhihuang Zhao
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Jinxing Shang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Gang Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Ruijian Zhang
- Department of Neurosurgery, People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
21
|
Sun M, Tang C, Liu J, Jiang W, Yu H, Dong F, Huang C, Rixiati Y. Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer 2021; 21:696. [PMID: 34120621 PMCID: PMC8201682 DOI: 10.1186/s12885-021-08434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Abnormal expression of suppressor of cytokine signaling (SOCS) proteins regulates tumor angiogenesis and development in cancers. In this study, we aimed to perform a comprehensive bioinformatic analysis of SOCS proteins in breast invasive carcinoma (BRCA). Methods The gene expression, methylation level, copy number, protein expression and patient survival data related to SOCS family members in BRCA patients were obtained from the following databases: Oncomine, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), PCViz, cBioPortal and Kaplan-Meier plotter. Correlation analyses, identification of interacting genes and construction of regulatory networks were performed by functional and pathway enrichment analyses, weighted gene coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA). Results Data related to 1109 BRCA tissues and 113 normal breast tissue samples were extracted from the TCGA database. SOCS2 and SOCS3 exhibited significantly lower mRNA expression levels in BRCA tissues than in normal tissues. BRCA patients with high mRNA levels of SOCS3 (p < 0.01) and SOCS4 (p < 0.05) were predicted to have significantly longer overall survival (OS) times. Multivariate analysis showed that SOCS3 was an independent prognostic factor for OS. High mRNA expression levels of SOCS2 (p < 0.001), SOCS3 (p < 0.001), and SOCS4 (p < 0.01), and a low expression level of SOCS5 (p < 0.001) were predicted to be significantly associated with better recurrence-free survival (RFS). Multivariate analysis showed that SOCS2 was an independent prognostic factor for RFS. Lower expression levels of SOCS2 and SOCS3 were observed in patients with tumors of more advanced clinical stage (p < 0.05). Functional and pathway enrichment analyses, together with WGCNA and GSEA, showed that SOCS3 and its interacting genes were significantly involved in the JAK-STAT signaling pathway, suggesting that JAK-STAT signaling might play a critical role in BRCA angiogenesis and development. Western blot results showed that overexpression of SOCS3 inhibited the activity of the JAK-STAT signaling pathway in vitro. Conclusions SOCS family proteins play a very important role in BRCA. SOCS3 may be a prognostic factor and SOCS2 may be a potential therapeutic target in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08434-y.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Jun Liu
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Haifeng Yu
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Fang Dong
- Department of Vascular Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Youlutuziayi Rixiati
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, China.
| |
Collapse
|
22
|
Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med 2021; 27:51. [PMID: 34039257 PMCID: PMC8157665 DOI: 10.1186/s10020-021-00312-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, 2088 East Tiaoxi Rd, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Yani Zhou
- Graduate School of Medicine Faculty, Zhejiang University, No. 866 Yuhangtang Road, Xihu, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Quan Qi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, 313000, Zhejiang, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
LncRNA Taurine Upregulated Gene 1 as a Potential Biomarker in the Clinicopathology and Prognosis of Multiple Malignant Tumors: A Meta-Analysis. DISEASE MARKERS 2021; 2021:8818363. [PMID: 33747256 PMCID: PMC7943310 DOI: 10.1155/2021/8818363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Background The lncRNA taurine upregulated gene 1 (TUG1) is a recently identified potential biomarker in cancer. However, its prognostic role in various cancers is inconsistent among published data. We conducted this meta-analysis to comprehensively confirm the prognostic effect of TUG1 in malignant tumors. Methods We systemically analyzed the prognostic-predictive capacity of TUG1 through amplifying sample sizes and cancer types. STATA 12.0 was applied for this meta-analysis. Results A total of 57 eligible studies were included in our meta-analysis. The pooled results suggested that overexpression of TUG1 was significantly correlated with unfavorable overall survival (OS) (HR = 1.70, p < 0.001), shorter recurrence-free survival (RFS) (HR = 2.40, p ≤ 0.001), and shorter event-free survival (EFS) (HR = 1.88, p < 0.001) in patients with cancer. In the subgroup analysis by cancer type, elevated TUG1 expression was associated with poorer survival in patients with gastrointestinal cancer, urinary tumors, gynecological tumors, hematological tumors, and osteosarcoma. However, high expression of TUG1 in respiratory tumors indicated a better prognosis. There was no correlation between high TUG1 expression and OS in patients with head and neck neoplasms or melanoma. Additionally, overexpression of TUG1 was found to be correlated with low-grade tumor differentiation, advanced tumor stage, positive lymphatic metastasis, and positive distant metastasis. Conclusions High TUG1 expression correlates with poor prognosis and advanced clinicopathological features, verifying the prognostic-predictive capacity of TUG1 in tumors, especially in gastrointestinal cancer, urinary tumors, gynecological tumors, hematological tumors, and osteosarcoma. Meanwhile, the prognostic role of TUG1 in respiratory tumor may be opposite to other tumors.
Collapse
|
24
|
Heidari R, Akbariqomi M, Asgari Y, Ebrahimi D, Alinejad-Rokny H. A systematic review of long non-coding RNAs with a potential role in breast cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108375. [PMID: 34083033 DOI: 10.1016/j.mrrev.2021.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.
Collapse
Affiliation(s)
- Reza Heidari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Diako Ebrahimi
- Biomedical Informatics Lab, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia.
| |
Collapse
|
25
|
Li K, Niu H, Wang Y, Li R, Zhao Y, Liu C, Cao H, Chen H, Xie R, Zhuang L. LncRNA TUG1 contributes to the tumorigenesis of lung adenocarcinoma by regulating miR-138-5p-HIF1A axis. Int J Immunopathol Pharmacol 2021; 35:20587384211048265. [PMID: 34608813 PMCID: PMC8495526 DOI: 10.1177/20587384211048265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Increasing evidence indicates that lncRNA TUG1 represents an oncogenic factor in cancer. But, the mechanisms by which lncRNA TUG1 contributes to lung adenocarcinoma (LAC) remain undocumented. METHODS The relationship between lncRNA TUG1/miR-138-5p expression and clinical outcomes in patients with LAC was indicated by qPCR, FISH, and TCGA cohort. Gain- or loss-of-function experiments and in vivo tumorigenesis were used to assess the role of lncRNA TUG1 in LAC. The interplay between TUG1 and miR-138-5p was validated by luciferase gene report and RIP assays. qPCR and Western blot analyses were used to investigate the effects of TUG1 on miR-138-5p/HIF1A axis in LAC cells. RESULTS We found that upregulation of TUG1 or downregulation of miR-138-5p was associated with lymph node or distant metastasis and indicated a poor survival in LAC. Reduced expression of TUG1 restrained the growth of LAC cells, while restored expression of TUG1 had the opposite effects. TUG1 was identified to negatively regulate miR-138-5p expression, and miR-138-5p reversed TUG1-induced cell proliferation by targeting HIF1A. Elevated expression of HIF1A predicted a poor survival in LAC. CONCLUSION Our findings demonstrate that lncRNA TUG1 promotes the growth of LAC by regulating miR-138-5p-HIF1A axis.
Collapse
Affiliation(s)
- Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Ying Wang
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yuan Zhao
- The Department of Vasculocardiology, The People’s Hospital of Lijiang City, Lijiang, Yunnan, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Honghua Cao
- Department of Hematology, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Haitao Chen
- Department of Ultrasonography, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China
| | - Ran Xie
- Department of PET/CT, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Zhuang
- Department of Palliative Medicine, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
26
|
Qin Y, Hou Y, Liu S, Zhu P, Wan X, Zhao M, Peng M, Zeng H, Li Q, Jin T, Cui X, Liu M. A Novel Long Non-Coding RNA lnc030 Maintains Breast Cancer Stem Cell Stemness by Stabilizing SQLE mRNA and Increasing Cholesterol Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002232. [PMID: 33511005 PMCID: PMC7816696 DOI: 10.1002/advs.202002232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Indexed: 05/29/2023]
Abstract
Cancer stem cells (CSCs) are considered the roots of cancer metastasis and recurrence (CSCs), due in part to their self-renewal and therapy resistance properties. However, the underlying mechanisms for the regulation of CSC stemness are poorly understood. Recently, increasing evidence shows that long non-coding RNAs (lncRNAs) are critical regulators for cancer cell function in various malignancies including breast cancer, but how lncRNAs regulate the function of breast cancer stem cells (BCSCs) remains to be determined. Herein, using lncRNA/mRNA microarray assays, a novel lncRNA (named lnc030) is identified, which is highly expressed in BCSCs in vitro and in vivo, as a pivotal regulator in maintaining BCSC stemness and promoting tumorigenesis. Mechanistically, lnc030 cooperates with poly(rC) binding protein 2(PCBP2) to stabilize squalene epoxidase (SQLE) mRNA, resulting in an increase of cholesterol synthesis. The increased cholesterol in turn actives PI3K/Akt signaling, which governs BCSC stemness. In summary, these findings demonstrate that a new, lnc030-based mechanism for regulating cholesterol synthesis and stemness properties of BCSCs. The lnc030-SQLE-cholesterol synthesis pathway may serve as an effective therapeutic target for BCSC elimination and breast cancer treatment.
Collapse
Affiliation(s)
- Yilu Qin
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine ScienceChongqing Medical UniversityChongqing400016China
| | - Shuiqing Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Pengpeng Zhu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Maojia Zhao
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Qiao Li
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Ting Jin
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Xiaojiang Cui
- Department of SurgerySamuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| |
Collapse
|
27
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
28
|
LncRNA-OBFC2A targeted to Smad3 regulated Cyclin D1 influences cell cycle arrest induced by 1,4-benzoquinone. Toxicol Lett 2020; 332:74-81. [DOI: 10.1016/j.toxlet.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 02/03/2023]
|
29
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
30
|
lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions. Int Immunopharmacol 2020; 86:106703. [DOI: 10.1016/j.intimp.2020.106703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
|
31
|
Peng L, Jiang J, Tang B, Nice EC, Zhang YY, Xie N. Managing therapeutic resistance in breast cancer: from the lncRNAs perspective. Theranostics 2020; 10:10360-10377. [PMID: 32929354 PMCID: PMC7482807 DOI: 10.7150/thno.49922] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is the most common female malignancy and the second leading cause of cancer-related death worldwide. In spite of significant advances in clinical management, the mortality of BC continues to increase due to the frequent occurrence of treatment resistance. Intensive studies have been conducted to elucidate the molecular mechanisms underlying BC therapeutic resistance, including increased drug efflux, altered drug targets, activated bypass signaling pathways, maintenance of cancer stemness, and deregulated immune response. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are intimately involved in BC therapy resistance through multiple modes of action. Therefore, an in-depth understanding of the implication of lncRNAs in resistance to clinical therapies may improve the clinical outcome of BC patients. Here, we highlight the role and underlying mechanisms of lncRNAs in regulating BC treatment resistance with an emphasis on lncRNAs-mediated resistance in different clinical scenarios, and discuss the potential of lncRNAs as novel biomarkers or therapeutic targets to improve BC therapy response.
Collapse
Affiliation(s)
- Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
32
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
33
|
Xu K, Zhang L. Inhibition of TUG1/miRNA-299-3p Axis Represses Pancreatic Cancer Malignant Progression via Suppression of the Notch1 Pathway. Dig Dis Sci 2020; 65:1748-1760. [PMID: 31655908 DOI: 10.1007/s10620-019-05911-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Taurine-upregulated gene 1 (TUG1) is reported to be upregulated and contributes to the progression of Pancreatic cancer (PC) by serving as an oncogene. Our aims were to explore the precise mechanism of TUG1 involved in PC pathogenesis. METHODS TUG1 and miR-299-3p expression profiles were measured by qRT-PCR. The direct interaction between TUG1 and miR-299-3p was explored by luciferase reporter assay. MTT assay, flow cytometry analysis, caspase-3 activity assay, Transwell invasion assay and wound healing assay were performed to evaluate cell proliferative ability, apoptosis, caspase-3 activity, invasion and migration, respectively. Western blot was conducted to examine the expressions of Ki67, Bax, Bcl-2, matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, Snail, Notch1, Survivin, and CyclinD1. In addition, animal experiments were also implemented. RESULTS TUG1 was highly expressed, while miR-299-3p was underexpressed in PC tissues and PC cells. Furthermore, the significant increase of TUG1 in PC tissues of advanced patients (stage 3/4) was observed compared to patients (stage 1/2). TUG1 was negatively correlated with miR-299-3p expression in PC tissues. Moreover, TUG1 functioned as a molecular sponge of miR-299-3p to repress its expression. TUG1 knockdown suppressed cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT), and induced apoptosis in PC cells, and repressed tumor growth and EMT in PC xenograft models, which were reversed following reintroduction with anti-miR-299-3p. Furthermore, we found that TUG1 silencing inactivated the Notch1 pathway in PC by upregulating miR-299-3p. CONCLUSIONS The results reported that inhibition of TUG1/miR-299-3p axis suppressed PC malignant progression via suppression of the Notch1 pathway.
Collapse
Affiliation(s)
- Ke Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
34
|
Du S, Shao J, Qi Y, Liu X, Liu J, Zhang F. Long non-coding RNA ANRIL alleviates H 2O 2-induced injury by up-regulating microRNA-21 in human lens epithelial cells. Aging (Albany NY) 2020; 12:6543-6557. [PMID: 32310822 PMCID: PMC7202488 DOI: 10.18632/aging.102800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 12/22/2022]
Abstract
The accurate role of ANRIL in cataract is poorly understood. We aimed to reveal the effects of ANRIL on H2O2-treated HLECs, SRA01/04, as well as the regulatory mechanisms. Oxidative stress model of HLECs was induced by H2O2. Cell injury was evaluated according to cell proliferation, apoptosis and DNA damage using CCK-8 assay/flow cytometry and TUNEL assays/γH2AX staining. Expressions of ANRIL and miR-21 in HLECs were determined by RT-qPCR. The effects of miR-21, miR-34a and miR-122-5p inhibition as well as AMPK and β-catenin on HLECs with ANRIL overexpression and H2O2 stimulation were analyzed. In vivo experiment was performed via RT-qPCR. H2O2 repressed proliferation and induced apoptosis or DNA damage in HLECs. Those alterations induced by H2O2 were attenuated by ANRIL overexpression. MiR-21 was positively regulated by ANRIL, and both of them were repressed in H2O2-induced HLECs and cataract patient tissues. Inhibition of miR-21 but not miR-34a or miR-122-5p reversed the effects of ANRIL on H2O2-treated HLECs. Phosphorylation of AMPK and expression of β-catenin were increased by ANRIL via regulating miR-21. AMPK and β-catenin affected beneficial function of ANRIL-miR-21 axis.Therefore, lncRNA ANRIL attenuated H2O2-induced cell injury in HELCs via up-regulating miR-21 via the activation of AMPK and β-catenin.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
35
|
Shi H, Dong Z, Gao H. LncRNA TUG1 protects against cardiomyocyte ischaemia reperfusion injury by inhibiting HMGB1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3511-3516. [PMID: 31432688 DOI: 10.1080/21691401.2018.1556214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate whether lncRNA TUG1 could mediate the progression of ischemia-reperfusion injury following acute myocardial infraction. Mouse cardiomyocytes HL-1 cells were subjected to oxygen glucose deprivation followed by reperfusion (OGD/R) to induce myocardial I/R injury. The expression of TUG1 was detected by real-time PCR. Overexpression or down expression of TUG1 was performed in mouse HL-1 cardiomyocytes. The myocardial cell viability and apoptosis were respectively detected. In addition, the expression levels of inflammatory factors, apoptosis-related proteins and HMGB1 proteins were detected. Besides, an inhibitor of HMGB1 was used to treat cells to verify the relationship between TUG1 and HMGB1 protein. The expression of TUG1 was significantly up-regulated in OGD/R-induced myocardial HL-1 cells. The overexpression of TUG1-induced inflammation and apoptosis in OGD-R-induced myocardial HL-1 cells. Knock down of TUG1 protected OGD/R-induced myocardial I/R injury by inhibiting HMGB1 expression. Suppression of lncRNA TUG1 may prevent myocardial I/R injury following acute myocardial infarction via inhibiting HMGB1 expression.
Collapse
Affiliation(s)
- Hanyu Shi
- Cadre Health Section, Qilu Hospital of Shandong University , Ji'nan , China
| | - Zhenhua Dong
- Department of Endocrinology, Jinan Central Hospital , Ji'nan , China
| | - Haiqing Gao
- Cadre Health Section, Qilu Hospital of Shandong University , Ji'nan , China
| |
Collapse
|
36
|
Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819843889. [PMID: 30983509 PMCID: PMC6466467 DOI: 10.1177/1533033819843889] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer, one of the most common diseases among women, is regarded as a
heterogeneous and complicated disease that remains a major public health concern.
Recently, owing to the development of next-generation sequencing technologies, long
non-coding RNAs have received extensive attention. Numerous studies reveal that long
non-coding RNAs are playing important roles in tumor development. Although the biological
function and molecular mechanisms of long non-coding RNAs remain enigmatic, recent
researchers have demonstrated that an array of long non-coding RNAs express abnormally in
cancers, including breast cancer. Herein, we summarized the latest literature about long
non-coding RNAs in breast cancer, with a particular focus on the multiple molecular roles
of regulatory long non-coding RNAs that regulate cell proliferation, invasion, metastasis,
and apoptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Yan
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Tangwei Wu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- 2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongxin Lu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Cong M, Jing R. Long non-coding RNA TUSC7 suppresses osteosarcoma by targeting miR-211. Biosci Rep 2019; 39:BSR20190291. [PMID: 31652435 PMCID: PMC6851516 DOI: 10.1042/bsr20190291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/26/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in regulating cancer progression and metastasis. LncRNA tumor suppressor candidate 7 (TUSC-7) was shown to be a tumor suppressor in osteosarcoma. However, the regulation mechanism of TUSC-7 in osteosarcoma is unknown. Bioinformatics analysis showed that TUSC7 specifically binds to miR-211. MiR-211 was up-regulated in osteosarcoma and negatively correlated with the expression of TUSC7. miR-211 expression was inhibited remarkably by TUSC7 overexpression and the reciprocal inhibition exists between TUSC7 and miR-211. RNA pull-down and luciferase reporter assays were used to validate the sequence-specific correlation between miR-211 and TUSC7. TUSC7 inhibited the proliferation, migration of osteosarcoma cells and promoted cellular apoptosis, which is largely mediated by miR-211. We conclude that the TUSC7 acted as a tumor suppressor gene, which is negatively regulated by miR-211. Our study could suggest a potentially novel therapeutic strategy against osteosarcoma.
Collapse
Affiliation(s)
- Menglin Cong
- Department of Orthopaedic, Qi Lu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan City 250012, Shandong Province, P.R. China
| | - Rui Jing
- Department of Radiology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan City 250033, Shandong Province, P.R. China
| |
Collapse
|
38
|
Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, Alahari SK. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 2019; 39:953-974. [PMID: 31601996 DOI: 10.1038/s41388-019-1040-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer, and the second cause of cancer-related deaths (after lung cancer) among women. Developing tumor metastasis and invasion is the most important cause of death in breast cancer patients. Several key factors participate in breast cancer metastasis including long noncoding RNAs (lncRNAs). lncRNAs are a category of cellular RNAs that are longer than 200 nucleotides in length. Accumulating evidence suggests that lncRNAs have the potential to be promising diagnostic, prognostic biomarkers and therapeutic targets in breast cancer. Understanding the role of lncRNAs and their mechanisms of functions might help to further discovery of breast cancer biological characteristics. In this review, we discuss physiological functions, epigenetic regulation, transcriptional regulation of lncRNAs, and their important role in tumor progression and metastasis. Some lncRNAs function as oncogenes and some function as tumor suppressors. Interestingly, recent reports depict that hypomethylation of promoters of lncRNAs play a pivotal role in cancer progression, suggesting the importance of epigenetic regulation. Furthermore, we discuss the role of lncRNAs in exosomes and their function in drug resistance, and therapeutic importance of exosomal lncRNAs in cancer biology. In summary, lncRNAs have a great potential to consider them as novel prognostic biomarkers as well as new therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA
| | - Maryam Maheronnaghsh
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
39
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
40
|
Comprehensive Analysis of the Expression and Prognosis for E2Fs in Human Breast Cancer. Mol Ther 2019; 27:1153-1165. [PMID: 31010740 DOI: 10.1016/j.ymthe.2019.03.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors (E2Fs), a group of genes that encode a family of transcription factors, have been identified as being involved in the tumor progression of various cancer types. Increasing experimental evidence indicates that E2Fs are implicated in breast cancer tumorigenesis. However, the diverse expression patterns and prognostic values of eight E2Fs have yet to be analyzed. Herein we investigated the transcriptional and survival data of E2Fs in patients with breast cancer from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, and cBioPortal databases. We found that the expression levels of E2F1-3 and 5-8 were higher in breast cancer tissues than in normal breast tissues, whereas the expression level of E2F4 was lower in the former than in the latter. The expression levels of E2F2, 5, 7, and 8 were correlated with advanced tumor stage. Survival analysis using the Kaplan-Meier Plotter database revealed that the high transcription levels of E2F1-3, 5, 7, and 8 were associated with low relapse-free survival in all of the patients with breast cancer. Conversely, high E2F4 and E2F6 levels predicted high relapse-free survival in these patients. This study implied that E2F1-3, 5, 7, and 8 are potential targets of precision therapy for patients with breast cancer and that E2F4 and 6 are new biomarkers for the prognosis of breast cancer.
Collapse
|
41
|
Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: A functional long noncoding RNA in tumorigenesis. J Cell Physiol 2019; 234:17100-17112. [PMID: 30912122 DOI: 10.1002/jcp.28464] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Taurine-upregulated gene 1 (TUG1) is a 7.1 kb long noncoding RNA (lncRNA) first recognized in 2005 as an important element for retinal development in rodents. Subsequently, this lncRNA has been shown to participate in oncogenic processes through alteration in chromatin structure, sponging microRNAs, and affecting the expression of some cancer-related pathways. While most of the studies have revealed an oncogenic role for this lncRNA, some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In triple negative breast cancer samples, the expression of this lncRNA has been decreased. Besides, its expression has been higher in HER2-enriched and basal-like subtypes compared with luminal A. In the current review, we discuss the latest literature about the expression pattern and functional roles of TUG1 in diverse cancer types. In addition, its role in epithelial-mesenchymal transition and activation of Wnt/β-catenin pathway in human malignancies will be explored.
Collapse
Affiliation(s)
- Soudeh Ghaforui-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
43
|
Li X, Zhang Y, Wang L, Lin Y, Gao Z, Zhan X, Huang Y, Sun C, Wang D, Liang S, Wu L. Integrated Analysis of Brain Transcriptome Reveals Convergent Molecular Pathways in Autism Spectrum Disorder. Front Psychiatry 2019; 10:706. [PMID: 31649562 PMCID: PMC6795181 DOI: 10.3389/fpsyt.2019.00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental disorders with etiology that remains elusive. Although there is a mounting body of investigation in different brain regions related to ASD, our knowledge about the common and distinct perturb condition between them is at the threshold of accumulation. In this study, based on protein-protein interactions, post-mortem transcriptome analysis was performed with corpus callosum (CC) and prefrontal cortex (PFC) samples from ASD individuals and controls. Co-expression network analysis revealed that a total of seven (four for CC set, three for PFC set) core dysfunctional modules strongly enriched for known ASD-risk genes. Three quarters of them in CC set (M4, M6, M29) significantly enriched for genes annotated by genetically associated variants in our previous whole genome sequencing data. We further determined transcriptional and post-transcriptional regulation subnetwork for each ASD-correlated module, including 47 pivot transcription factors, 130 pivot miRNAs, and 7 pivot lncRNAs. Moreover, there were significantly more interactions between CC-M4, -M6, and PFC-M2, mainly involved in synaptic functions and neuronal development. Our integrated multifactor analysis of ASD brain transcriptome profile illustrated underlying common and distinct molecular mechanisms and the module crosstalk between CC and PFC, helping to shed light on the molecular neuropathological underlying ASD.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Yuncong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Luxi Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Yunqing Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhaomin Gao
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Xiaolei Zhan
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Yan Huang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China.,Province Key Laboratory of Children Development and Genetic Research, Heilongjiang, China
| |
Collapse
|
44
|
Zhu M, Wang X, Gu Y, Wang F, Li L, Qiu X. MEG3 overexpression inhibits the tumorigenesis of breast cancer by downregulating miR-21 through the PI3K/Akt pathway. Arch Biochem Biophys 2019; 661:22-30. [DOI: 10.1016/j.abb.2018.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
|
45
|
Leng Y, Luo Q, Chen X, Chen F, Wang X, Pan Y. Clinicopathological and prognostic significance of zinc finger antisense 1 overexpression in cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e13378. [PMID: 30544408 PMCID: PMC6310591 DOI: 10.1097/md.0000000000013378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND An increasing number of studies have recently highlighted the role of zinc finger antisense 1(ZFAS1) as a prognostic marker in cancers. However, these results remain controversial. Hence, a meta-analysis was conducted to further investigate the effects of ZFAS1 expression on clinicopathological features and survival outcomes. METHOD All eligible studies were searched from PubMed, Embase, Web of Science, and the Cochrane Library. All included articles evaluated the relationship between the expression levels of ZFAS1 and survival, or the range of pathological features in cancer patients. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were computed to evaluate the effect of ZFAS1 expression on overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS). The relationship between ZFAS1 expression and clinicopathological features was determined through pooled odds ratios (ORs) and 95% CIs. RESULTS In total 8 studies, which comprised of 820 patients, were qualified for analysis. Results revealed that the overexpression of ZFAS1 was significantly associated with poor OS (HR = 1.97, 95% CI: 1.53-2.54), worse RFS (HR = 1.95, 95% CI: 1.24-3.04) and worse DFS (HR = 2.35, 95% CI: 1.43-3.88) in cancers. Further subgroup analysis revealed that ZFAS1 overexpression was significantly correlated with poor OS in different cancer types, HR obtain methods and sample sizes. In addition, this meta-analysis revealed that the upregulated expression of ZFAS1 was significantly associated with lymph node metastasis, Tumor Node Metastasis (TNM) stage, and tumor size. CONCLUSIONS This meta-analysis revealed that the expression of ZFAS1 was associated with tumor prognosis. ZFAS1 could be used as a predictor for tumor progression in various cancers.
Collapse
Affiliation(s)
- Yuanxiu Leng
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Qing Luo
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Xumei Chen
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Fang Chen
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Xue Wang
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Yana Pan
- Hematology and Oncology Department, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong Province, Doumen District, Zhuhai,China
| |
Collapse
|
46
|
Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 2018; 37:289. [PMID: 30482236 PMCID: PMC6260744 DOI: 10.1186/s13046-018-0945-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yueyong Li
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yanfei Ma
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Jinlan Lu
- Department of Dental, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yongcheng Chen
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiulan Jiang
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiang Qin
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Lifeng Zhao
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qianfang Huang
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Zhizhai Luo
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Shiqing Huang
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
- Department of Tumor, Youjiang Medical College Affiliated Hospital, Zhongshan Second Road, No. 18, Baise, 533000 Guangxi China
| | - Zhongheng Wei
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| |
Collapse
|
47
|
Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J. The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep 2018; 38:BSR20180772. [PMID: 30217944 PMCID: PMC6165837 DOI: 10.1042/bsr20180772] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and principal cause of death among females worldwide. Invasion and metastasis are major causes which influence the survival and prognosis of BC. Therefore, to understand the molecule mechanism underlying invasion and metastasis is paramount for developing strategies to improve survival and prognosis in BC patients. Recent studies have reported that long non-coding RNAs (lncRNAs) play critical roles in the regulation of BC invasion and metastasis through a variety of molecule mechanisms that endow cells with an aggressive phenotype. In this article, we focused on the function of lncRNAs on BC invasion and metastasis through participating in epithelial-to-mesenchymal transition, strengthening cancer stem cells generation, serving as competing endogenous lncRNAs, influencing multiple signaling pathways as well as regulating expressions of invasion-metastasis related factors, including cells adhesion molecules, extracellular matrix, and matrix metallo-proteinases. The published work described has provided a better understanding of the mechanisms underpinning the contribution of lncRNAs to BC invasion and metastasis, which may lay the foundation for the development of new strategies to prevent BC invasion and metastasis.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| | - Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Sujin Yang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiahua Hu
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Qian Zhang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Heda Zhang
- Department of General Surgery, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| |
Collapse
|
48
|
Gao X, Zhang T, Zeng XY, Li GJ, Du LJ, Ma ZH, Wan J, Yang Y. Effect of silencing lncRNATUG1 on rapamycin-induced inhibition of endothelial cell proliferation and migration. Exp Ther Med 2018; 16:1891-1899. [PMID: 30186415 PMCID: PMC6122411 DOI: 10.3892/etm.2018.6352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from existing blood vessels. The proliferation and migration of endothelial cells serves a key function in this process. Previous research has demonstrated that rapamycin suppresses endothelial cell proliferation and migration, as well as angiogenesis. However, the mechanism by which rapamycin inhibits the proliferation and migration of endothelial cells remains unclear. Long noncoding RNAs (lncRNAs) serve a key function in the regulation of endothelial cell function. The aim of the current study was to investigate whether lncRNA taurine upregulated 1 (lncRNATUG1) is involved in rapamycin-induced inhibition of proliferation and migration in human umbilical vein endothelial cells (HUVECs). Reverse transcription quantitative polymerase chain reaction results indicated that the expression of lncRNATUG1 was upregulated in HUVECs that had been cultured with rapamycin. Subsequently, HUVECs were transfected with siRNAs and CCK-8 assays were performed to detect cell proliferation; additionally, flow cytometry was employed to detect cell apoptosis, and wound healing assays were performed to investigate cell migration. The results demonstrated that rapamycin suppressed the proliferation and migration of HUVECs, and promoted the apoptosis of HUVECs. In addition, rapamycin downregulated the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and MMP-9 in HUVECs. However, silencing of lncRNATUG1 was revealed to attenuate rapamycin-induced inhibition of cellular proliferation and migration of HUVECs, as well as upregulating the expression of VEGF, MMP2 and MMP-9. These results suggested that lncRNATUG1 regulates rapamycin-induced inhibition of endothelial cell proliferation and migration. Therefore, lncRNATUG1 may serve a key function in rapamycin-induced inhibition of endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Xue Gao
- Department of Geriatric Disease, The First Hospital of Kunming, Kunming, Yunnan 650011, P.R. China
| | - Tao Zhang
- Department of Geriatric Disease, The First Hospital of Kunming, Kunming, Yunnan 650011, P.R. China
| | - Xi-Yun Zeng
- Department of Geriatric Disease, The First Hospital of Kunming, Kunming, Yunnan 650011, P.R. China
| | - Guo-Jian Li
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Ling-Juan Du
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Zhen-Huan Ma
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Jia Wan
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Yong Yang
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
49
|
Tang T, Cheng Y, She Q, Jiang Y, Chen Y, Yang W, Li Y. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother 2018; 107:338-346. [PMID: 30098551 DOI: 10.1016/j.biopha.2018.07.076] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of women death worldwide. Several long non-coding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors during the progression of cancers. However, the role of taurine upregulated gene (TUG1) in mediating the chemotherapy sensitivity of triple negative breast cancer (TNBC) has not been studied yet. In TNBC patients, we observed a significant decrease of TUG1 in tumor tissues compared to the normal tissues. Similarly, TUG1 expression was significantly decreased in TNBC cell lines compared with normal breast epithelial cell line and cell lines of other subtypes of breast cancer. In MDA-MB-231 and BT549, cisplatin induced cell growth arrest was remarkably augmented by overexpression of TUG1 and was significantly reduced by TUG1 silencing. Moreover, very low concentration of cisplatin caused cell proliferation inhibition in TUG1-overexpressed-TNBC cells. In addition, we found that TUG1 negatively regulated miR-197 expression in the tested TNBC cell lines. Sponging of TUG1 to miR-197 was proved by a dual luciferase reporter assay. We further predicted and validated that nemo-like kinase (NLK), which was positively controlled by TUG1, was a target gene of miR-197. Via regulation of miR-197/NLK, TUG1 inactivated WNT signaling pathway and thus increasing chemotherapy sensitivity of TNBC cells. Analysis of TCGA database showed that higher expression of TUG1 was associated with better prognosis in breast cancer patients. Our current study drew a preliminary conclusion that TUG1 was involved in chemotherapy sensitivity in TNBC cells.
Collapse
Affiliation(s)
- Tielei Tang
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Yonggang Cheng
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Qing She
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Yaru Jiang
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Yuanyuan Chen
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Wenqiang Yang
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China
| | - Youhuai Li
- Department of Breast Surgery, Baoji Municipal Central Hospital, Baoji, Shannxi, 721008, China.
| |
Collapse
|
50
|
Mello SS, Attardi LD. Neat-en-ing up our understanding of p53 pathways in tumor suppression. Cell Cycle 2018; 17:1527-1535. [PMID: 29895201 DOI: 10.1080/15384101.2018.1464835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Although the p53 transcription factor has a well-established role in tumor suppression, little is known about how the non-coding targets of p53 mediate its tumor suppression function. Analysis of ncRNAs regulated by p53 revealed Neat1 as a direct p53 target gene. Neat1 has physiological roles in the development and differentiation of the mammary gland and corpus luteum, but its roles in cancer have been conflicting. To unequivocally understand Neat1 function in cancer, we used Neat1 null mice. Interestingly, we found that Neat1 deficiency promotes transformation both in oncogene-expressing fibroblasts and in a mouse model for pancreatic cancer. Specifically, Neat1 loss in the pancreas results in the enhanced development of preneoplastic lesions associated with dampened expression of differentiation genes. While the exact mechanisms underlying tumor suppression are unknown, there are several described mechanisms that may be responsible for Neat1-mediated tumor suppression. Collectively, these findings suggest that Neat1 enforces differentiation to suppress pancreatic cancer.
Collapse
Affiliation(s)
- Stephano Spano Mello
- a Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA
| | - Laura Donatella Attardi
- a Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA.,b Stanford Cancer Institute , Stanford University School of Medicine , Stanford , CA , USA.,c Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|