1
|
Samim MM, Sorooshzadeh A, Mokhtassi-Bidgoli A, Sabet MS. Effect of melatonin on the contents of fatty acids and antioxidants of saffron. Heliyon 2025; 11:e41766. [PMID: 39897882 PMCID: PMC11782986 DOI: 10.1016/j.heliyon.2025.e41766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Early leaf senescence at the end of the growing season poses a significant challenge in saffron cultivation. While changes in leaf composition during senescence have been extensively documented in various plants, similar studies on saffron remain unexplored. Furthermore, there has been no investigation into the potential role of melatonin in delaying leaf senescence in saffron. This study aimed to examine the changes in saffron leaf composition and evaluate the effects of melatonin foliar application during the late growth stage. The research was conducted over two consecutive cropping years (2020-2021 and 2021-2022). In the first experiment, five concentrations of melatonin (0, 50, 100, 150, and 200 μM) were applied as foliar sprays to assess their effects on fatty acid composition and plant greenness. The second experiment involved varying melatonin concentrations and two application timings (124 and 131 days after germination) to study their impact on antioxidant enzyme activity. Both experiments were designed as factorial trials within a completely randomized block design with three replicates. The results demonstrated that treatment with 100 μM melatonin significantly increased the production of fatty acids, including C8:0 (67.60 %), C10:0 (98.66 %), C12:0 (40.73 %), and C18:0 (35.32 %) compared to the untreated control. Also, the highest activities of ascorbate peroxidase and catalase enzymes were observed with 100 μM melatonin applied 124 days after germination. On the same day, the highest total protein content was recorded with 50 μM melatonin, although it was not significantly different from the 100 μM treatment. In conclusion, the 100 μM melatonin treatment was found to be the most effective in enhancing plant greenness, modifying fatty acid composition, boosting antioxidant enzyme activity, and increasing total protein content. However, the timing of melatonin application emerged as a critical factor warranting careful consideration. These findings highlight the promising role of melatonin in improving the physiological and biochemical attributes of saffron plants.
Collapse
Affiliation(s)
- Mohammad Mehdi Samim
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Ali Sorooshzadeh
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| |
Collapse
|
2
|
Mohd Zainal Abidin Shukri Y, Abd Rahim IN, Abdul Nasir NA, Osman CP, Mohd Kasim NA. Saffron's protective role against atherosclerosis-induced cataract progression in New Zealand white rabbits with phytochemical analysis of saffron's extract. PLoS One 2025; 20:e0315178. [PMID: 39808674 PMCID: PMC11731970 DOI: 10.1371/journal.pone.0315178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Cataracts are significant causes of blindness, closely linked to prolonged hypercholesterolemia. While saffron has the potential for eye health, its effects on lens lesions remain understudied. This study aimed to investigate the effect of saffron on the lens changes in atherosclerotic-induced New Zealand white rabbits (NZWR). Thirty-five NZWRs were subjected to four to eight weeks of high-cholesterol diet to induce atherosclerosis, resulting in cataractous lens changes. The rabbits were categorised randomly into three groups: normal diet group, pre-treated group and treated group. The pre-treated group was divided into early atherosclerosis(HC4) and established atherosclerosis (HC8). The saffron-treated group was fed with the HCD diet followed by saffron treatment of 50mg/kg/day (TG450, TG840) and 100mg/kg/day (TG4100, TG8100) of saffron ethanolic extract (SEE) respectively. The normal diet group was given a normal diet over the 8 weeks. After completing the 16-week experimental protocol, the NZWR were euthanized, and their lenses were extracted for histopathological evaluation. The pre-treated group exhibited cataractous lens changes of grade 2, characterized by increased homogenisation, swollen lens fibers, and intracellular vacuolisation. Interestingly, these cataract changes showed a positive trend from grade 2 to grade 1 post-treatment with SEE. In the saffron-treated group, vacuoles and pinkish homogenised areas were reduced. Additionally, a uniform layer of anterior epithelium and decreased non-swollen lens fibers indicated significant cataract lesion improvement. The normal diet group displayed minimal to zero cataractous changes (Grade 0). HPLC analysis demonstrated the presence of crocin, crocetin, and picocrocin in the saffron ethanolic extract, with peak absorptions at 440nm (12.817min), 440nm (1.620min), and 254nm (6.553min) respectively. The phytochemical screening of saffron ethanolic extract was conducted and showed the presence of phytochemical compounds including saponins, flavonoids, tannins, and steroids. The positive effects on lenses in the TG groups could be due to crocin and crocetin, bioactive components of saffron, and its phytochemical compounds. This study highlights saffron's potential in managing cataract-induced conditions, emphasizing the importance of further research for its full therapeutic potential in cataract management.
Collapse
Affiliation(s)
- Yasmin Mohd Zainal Abidin Shukri
- Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Medicine, Department of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Iman Nabilah Abd Rahim
- Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Medicine, Department of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Department of Pharmacology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Che Puteh Osman
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Medicine, Department of Pathology, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
3
|
Mildažienė V, Žūkienė R, Fomins LD, Naučienė Z, Minkutė R, Jarukas L, Drapak I, Georgiyants V, Novickij V, Koga K, Shiratani M, Mykhailenko O. Effects of Corm Treatment with Cold Plasma and Electromagnetic Field on Growth and Production of Saffron Metabolites in Crocus sativus. Int J Mol Sci 2024; 25:10412. [PMID: 39408740 PMCID: PMC11477176 DOI: 10.3390/ijms251910412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Crocus sativus L. is a widely cultivated traditional plant for obtaining dried red stigmas known as "saffron," the most expensive spice in the world. The response of C. sativus to pre-sowing processing of corms with cold plasma (CP, 3 and 5 min), vacuum (3 min), and electromagnetic field (EMF, 5 min) was assessed to verify how such treatments affect plant performance and the quality and yield of herbal raw materials. The results show that applied physical stressors did not affect the viability of corms but caused stressor-dependent changes in the kinetics of sprouting, growth parameters, leaf trichome density, and secondary metabolite content in stigmas. The effect of CP treatment on plant growth and metabolite content was negative, but all stressors significantly (by 42-74%) increased the number of leaf trichomes. CP3 treatment significantly decreased the length and dry weight of flowers by 43% and 60%, respectively, while EMF treatment increased the length of flowers by 27%. However, longer CP treatment (5 min) delayed germination. Vacuum treatment improved the uniformity of germination by 28% but caused smaller changes in the content of stigma compounds compared with CP and EMF. Twenty-six compounds were identified in total in Crocus stigma samples by the HPLC-DAD method, including 23 crocins, rutin, picrocrocin, and safranal. Processing of Crocus corms with EMF showed the greatest efficiency in increasing the production of secondary metabolites in saffron. EMF increased the content of marker compounds in stigmas (crocin 4: from 8.95 to 431.17 mg/g; crocin 3: from 6.27 to 164.86 mg/g; picrocrocin: from 0.4 to 1.0 mg/g), although the observed effects on growth were neutral or slightly positive. The obtained findings indicate that treatment of C. sativus corms with EMF has the potential application for increasing the quality of saffron by enhancing the amounts of biologically active compounds.
Collapse
Affiliation(s)
- Vida Mildažienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Rasa Žūkienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Laima Degutytė Fomins
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Zita Naučienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Studentu Str. 10, LT-53361 Akademija, Lithuania; (R.Ž.); (L.D.F.); (Z.N.)
| | - Rima Minkutė
- Department of Clinical pharmacy, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Laurynas Jarukas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine;
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska St., 61168 Kharkiv, Ukraine;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| | - Kazunori Koga
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (K.K.); (M.S.)
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (K.K.); (M.S.)
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska St., 61168 Kharkiv, Ukraine;
- Department of Pharmaceutical and Biological Chemistry, Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
4
|
Akhlada, Siddiqui N, Anurag, Saifi A, Kesharwani A, Parihar VK, Sharma A. Neuroprotective Action of Selected Natural Drugs Against Neurological Diseases and Mental Disorders: Potential Use Against Radiation Damage. Neurochem Res 2024; 49:2336-2351. [PMID: 38864943 DOI: 10.1007/s11064-024-04184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Exposure to radiation, ionizing and non-ionizing radiation, is a significant concern in modern society. The brain is the organ that is most sensitive to radiation exposure. This review describes how exposure to radiation can affect neurotransmitters in different brain regions, affecting brain function. This review covers neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuroinflammation due to changes in neurons in the central nervous system, and the effects thereon of medicinal plants such as Allium cepa, Allium sativum, Centella asiatica, Coriandrum sativum, and Crocus sativus plants, used for centuries in traditional medicine. These herbal medicines exert free radical scavenging, and antioxidant as well as anti-inflammatory properties which can be beneficial in managing neurological diseases. The present review compiles the neuroprotective effects of selected natural plants against neurological damage, as well as highlights the different mechanisms of action elicited to induce and produce beneficial effects. The current review describes recent studies on the pharmacological effects of neuroprotective herbs on various neurological and mental illnesses, and shows the way further studies can impact this field, including potential effects on radiation-induced damage.
Collapse
Affiliation(s)
- Akhlada
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| |
Collapse
|
5
|
Zhang CX, Zhang GH, Wei F, Kong GH, He Y, Li YK, Cai XH. Ionones from cigar tobacco leaves. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1033-1040. [PMID: 38835269 DOI: 10.1080/10286020.2024.2342509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
Phytochemical studies on cigar tobacco leaves led to the isolation of 18 ionone-type compounds, including previously undescribed cigatobanes E (1) and F (2). Additionally, compounds vomifoliol acetate (3), dehydrovomifoliol (4), 8,9-dihydromegastigmane-4,6-diene-3-one (5), 7α,8α-epoxyblumenol B (6), 3-oxoactinidol (12), and loliolide acetate (15), 4β-hydroxy-dihydroactinidiolide (17), were found in tobacco leaves for the first time. The structural elucidation of all compounds was accomplished through rigorous spectral analysis.
Collapse
Affiliation(s)
- Chen-Xi Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Guang-Hai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Feng Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guang-Hui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Yue He
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming 650011, China
| | - Yin-Ke Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
6
|
Liu H, Liu Y, Tian Z, Li J, Li M, Zhao Z. Coordinating Macrophage Targeting and Antioxidation by Injectable Nanocomposite Hydrogel for Enhanced Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37656-37668. [PMID: 38987704 DOI: 10.1021/acsami.4c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Rheumatoid arthritis (RA), an immune-mediated inflammatory disease, is characterized by a large number of infiltrated immune cells and abnormally elevated reactive oxygen species (ROS) in the joint. Various proinflammatory factors secreted by macrophages and the elevated ROS by inflammatory cells are deeply intertwined and together contribute to joint damage. Targeted and sustained anti-inflammation and antioxidation strategies are needed for RA treatment. To alleviate the oxidative stress and target the source of inflammatory cytokines, we developed a thermosensitive injectable hydrogel, Dex-DSLip/Cro@Gel, to coordinate the targeted anti-inflammatory and antioxidation effects. Within the injectable gel, dexamethasone (Dex)-loaded liposomes (Dex-DSLip), modified with dextran sulfate (DS), target macrophages via interaction with scavenger receptor A (SR-A). Simultaneously, crocin I (Cro) is loaded in the gel with a high loading capacity. The porous structure of Dex-DSLip/Cro@Gel successfully prolongs the retention time of both drugs and sustains the release of Dex and Cro. After intra-articular injection of Dex-DSLip/Cro@Gel in RA rats, the expression of inflammatory factors in the ankle joints was significantly reduced. Joint erythema and bone erosion were markedly alleviated. Through the synergistic effects of Dex and Cro, Dex-DSLip/Cro@Gel demonstrates targeted anti-inflammatory and antioxidation effects as well as mitigated bone erosion and long-term therapeutic effects for RA. This thermosensitive injectable nanocomposite hydrogel synergizes anti-inflammatory and antioxidation effects and targets the microenvironment in the joint, offering a new approach for RA treatment.
Collapse
Affiliation(s)
- Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yingke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhipeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
7
|
Rashid M, Rashid R, Saroya S, Deverapalli M, Brim H, Ashktorab H. Saffron as a Promising Therapy for Inflammatory Bowel Disease. Nutrients 2024; 16:2353. [PMID: 39064796 PMCID: PMC11280066 DOI: 10.3390/nu16142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn's disease (CD) or ulcerative colitis (UC). Despite substantial advances in understanding the underlying causes of IBD, the available treatments remain restricted and are sometimes accompanied by severe consequences. Consequently, there is an urgent need to study alternate therapeutic options. This review assesses the present drugs, identifies their limitations, and proposes the use of saffron, a natural plant with great therapeutic potential based on preclinical and clinical investigations. Saffron has gained attention for its potential therapeutic benefits in treating various ailments due to its established bioactive compounds possessing antioxidant and anti-inflammatory properties. This review covers how saffron impacts the levels of calprotectin, an inflammatory marker, for various inflammatory responses in multiple diseases including IBD. Data from clinical trials were assessed to determine the efficacy and safety of using saffron to counter inflammation in multiple diseases. Studies have shown that saffron may protect against inflammatory bowel disease (IBD) through several mechanisms by inhibiting pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), reducing oxidative stress through antioxidant effects, enhancing mucosal barrier function by upregulating tight junction proteins, and modulating the gut microbiota composition to promote beneficial bacteria while suppressing pathogenic ones; these combined actions contribute to its therapeutic potential in managing and alleviating the symptoms of IBD. This will enable future research endeavors and expedite the translation of saffron-based interventions into clinical practice as a valuable adjunctive therapy or a potential alternative to conventional treatments, thereby enhancing the quality of life for individuals suffering from inflammatory diseases including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA; (M.R.); (R.R.); (S.S.); (M.D.); (H.B.)
| |
Collapse
|
8
|
Eshaghi M, Rashidi-Monfared S. Co-regulatory network analysis of the main secondary metabolite (SM) biosynthesis in Crocus sativus L. Sci Rep 2024; 14:15839. [PMID: 38982154 PMCID: PMC11233700 DOI: 10.1038/s41598-024-65870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Saffron (Crocus sativus L.) is being embraced as the most important medicinal plant and the commercial source of saffron spice. Despite the beneficial economic and medicinal properties of saffron, the regulatory mechanism of the correlation of TFs and genes related to the biosynthesis of the apocarotenoids pathway is less obvious. Realizing these regulatory hierarchies of gene expression networks related to secondary metabolites production events is the main challenge owing to the complex and extensive interactions between the genetic behaviors. Recently, high throughput expression data have been highly feasible for constructing co-regulation networks to reveal the regulated processes and identifying novel candidate hub genes in response to complex processes of the biosynthesis of secondary metabolites. Herein, we performed Weighted Gene Co-expression Network Analysis (WGCNA), a systems biology method, to identify 11 regulated modules and hub TFs related to secondary metabolites. Three specialized modules were found in the apocarotenoids pathway. Several hub TFs were identified in notable modules, including MADS, C2H2, ERF, bZIP, HD-ZIP, and zinc finger protein MYB and HB, which were potentially associated with apocarotenoid biosynthesis. Furthermore, the expression levels of six hub TFs and six co-regulated genes of apocarotenoids were validated with RT-qPCR. The results confirmed that hub TFs specially MADS, C2H2, and ERF had a high correlation (P < 0.05) and a positive effect on genes under their control in apocarotenoid biosynthesis (CCD2, GLT2, and ADH) among different C. sativus ecotypes in which the metabolite contents were assayed. Promoter analysis of the co-expressed genes of the modules involved in apocarotenoids biosynthesis pathway suggested that not only are the genes co-expressed, but also share common regulatory motifs specially related to hub TFs of each module and that they may describe their common regulation. The result can be used to engineer valuable secondary metabolites of C. sativus by manipulating the hub regulatory TFs.
Collapse
Affiliation(s)
- Mahsa Eshaghi
- Department of Plant Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi-Monfared
- Department of Plant Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Sánchez-González JM, De-Hita-Cantalejo C, González-Rodríguez ML, Fernández-Trueba-Fagúndez A, Ballesteros-Sánchez A, Martinez-Perez C, Caro-Díaz R, Guzman CM, González-Oyarce MF, Sánchez-González MC. Efficacy assessment of liposome crosslinked hyaluronic acid and standard hyaluronic acid eye drops for dry eye disease management: a comparative study employing the ocular surface analyzer and subjective questionnaires. Front Med (Lausanne) 2024; 11:1264695. [PMID: 39144670 PMCID: PMC11323390 DOI: 10.3389/fmed.2024.1264695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Dry eye disease (DED) is a prevalent condition causing ocular discomfort and visual disturbances, often managed with artificial tears. This study aimed to assess and compare the efficacy of eye drops containing Crosslinked Hyaluronic Acid (CHA) with liposomes and crocin and standard Hyaluronic Acid (HA) for DED management. Methods A single-blind, longitudinal study was conducted on 24 participants (48 eyes), randomized to receive one of the two treatments. Ocular health measures, including the ocular surface disease index (OSDI) and the standard patient evaluation of eye dryness (SPEED) scores, were assessed at baseline and 6 weeks post-treatment using the Ocular Surface Analyzer. Results CHA achieved a lipid layer thickness increase of 1.29 ± 1.08 Guillon pattern degree (p < 0.01), FNIBUT increase 0.64 ± 0.77 s (p < 0.01), MNIBUT increase1.28 ± 4.74 s (p = 0.19), OSDI decrease 11.72 ± 6.73 score points (p < 0.01) and SPEED decrease 1.16 ± 5.05 score points (p = 0.27). Significant reductions in the OSDI and SPEED scores post-treatment were observed with both treatments, indicating their effectiveness. Conclusion CHA with liposomes exhibits superior efficacy compared to standard HA eye drops in the management of DED. These findings highlight the potential for personalized treatment strategies incorporating CHA, indicating a more effective approach to DED management. However, further research is required to validate these results and investigate the long-term effects, which may pave the way for a data-driven and optimized approach to managing DED.
Collapse
Affiliation(s)
- José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, Seville, Spain
| | - Concepción De-Hita-Cantalejo
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, Seville, Spain
| | | | - Ana Fernández-Trueba-Fagúndez
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, Seville, Spain
| | - Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, Seville, Spain
- Department of Ophthalmology, Clínica Novovisión, Murcia, Spain
| | - Clara Martinez-Perez
- Department of Optometry, ISEC LISBOA-Instituto Superior de Educação e Ciências, Lisbon, Portugal
| | - Romina Caro-Díaz
- Department of Medical Technology with Ophthalmology and Optometry Mention, Medicine and Science School, Universidad San Sebastián, Valdivia, Chile
| | - Carla Montiel Guzman
- Department of Medical Technology with Ophthalmology and Optometry Mention, Medicine and Science School, Universidad San Sebastián, Valdivia, Chile
| | - María Fernanda González-Oyarce
- Department of Medical Technology with Ophthalmology and Optometry Mention, Medicine and Science School, Universidad San Sebastián, Valdivia, Chile
| | - María Carmen Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Deng J, Wei RQ, Zhang WM, Shi CY, Yang R, Jin M, Piao C. Crocin's role in modulating MMP2/TIMP1 and mitigating hypoxia-induced pulmonary hypertension in mice. Sci Rep 2024; 14:12716. [PMID: 38830933 PMCID: PMC11148111 DOI: 10.1038/s41598-024-62900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-β1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-β1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-β1-induced myofibroblast activation.
Collapse
Affiliation(s)
- Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China
| | - Rui-Qi Wei
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Wen-Mei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Chang-Yu Shi
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Rui Yang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Ming Jin
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China.
| | - Chunmei Piao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
11
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
12
|
Han S, Cao Y, Wu X, Xu J, Nie Z, Qiu Y. New horizons for the study of saffron (Crocus sativus L.) and its active ingredients in the management of neurological and psychiatric disorders: A systematic review of clinical evidence and mechanisms. Phytother Res 2024; 38:2276-2302. [PMID: 38424688 DOI: 10.1002/ptr.8110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 03/02/2024]
Abstract
Saffron (Crocus sativus), as an herbal medicine, has been extensively investigated for treating neurological and psychiatric disorders. This systematic review aimed to assess the overall effects of saffron on cognition, depression, anxiety, sleep disorders, attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Relevant randomized controlled trials (RCTs) were identified by searching PubMed/Medline, Web of Science, and Clinical Trials databases up to June 2023 according to search terms and inclusion criteria. The participants were either healthy or suffering from some diseases, including neurological and psychiatric disorders, and consumed saffron or its extracts as an intervention. The risk of bias was assessed according to the Cochrane guidelines, and the PRISMA statement was followed. The meta-analysis was performed using RevMan and STATA software. A random-effects or fixed-effects model was used to calculate the pooled effect sizes. Forty-six RCTs were enrolled, and the duration of these trials ranged from 4 to 48 weeks with saffron or its extracts, both alone or in combination with conventional drugs. Saffron was more effective than placebo in improving cognition, depression with an overall effect size of -4.26 (95% CI: -5.76, -2.77), anxiety of -3.75 (95% CI: -5.83, -1.67), and sleep disorders of -1.91 (95% CI: -2.88, -0.93). Saffron was non-inferior to conventional drugs for treating cognitive disorders, depression, anxiety, ADHD, and OCD, and it exhibited good tolerance with few side effects. Saffron may exert protective roles for neurological and psychiatric disorders and represents a relatively favorable and safe treatment.
Collapse
Affiliation(s)
- Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yifei Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xingrong Wu
- Male Department of General Psychiatry, Shanxi Provincial Mental Health Center and Taiyuan Psychiatric Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Jiaoyang Xu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Zizheng Nie
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Qiu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Kausar R, Nishiuchi T, Komatsu S. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress. J Proteomics 2024; 294:105072. [PMID: 38218428 DOI: 10.1016/j.jprot.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
14
|
Muduli N, Aparna S, Patri M, Sahoo KK. Saffron stigma extract and crocin play an important neuroprotective role in therapeutic measures against benzo[a]pyrene-induced behavioral alterations in zebrafish. Drug Chem Toxicol 2024; 47:131-142. [PMID: 37649374 DOI: 10.1080/01480545.2023.2250576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Saffron is a well-known expensive spice, which has many pharmacological properties against a variety of ailments. Saffron stigma and leaf contain apocarotenoids and bioactive phytochemicals having therapeutic potential against human disorders. Polycyclic aromatic hydrocarbons (PAHs) are one of the most common toxins in today's aquatic environment. Benzo[a]pyrene (B[a]P), a high molecular weight PAHs prototype, and reported as a potent neurotoxicant, which is profoundly contaminating the environment. The present study investigated the therapeutic efficacy of Saffron stigma extracts and crocin, on B[a]P-induced behavioral changes, altered antioxidant activities, and neurodegeneration in zebrafish. The behavioral responses monitored through the light-dark preference test and novel tank diving test suggested that B[a]P treated zebrafish group showed alteration in anxiolytic-like behavior. Animals exhibited their native behavior when treated alone with Saffron Stigma Extract (SSE) and crocin, an apocarotenoid which also reduced the altered behavior induced by B[a]P. The SSE and crocin stimulated the antioxidant activities with an accumulation of reduced glutathione and catalase enzymes, indicating a protective role against B[a]P-induced oxidative stress and behavioral deficits. The histopathological studies showed the percentage change of pyknotic cell counts in the Periventricular Gray Zone region of the Optic Tectum was 1.74 folds high in B[a]P treated animals as compared to control. Furthermore, the treatment of SSE and crocin reduced the pyknosis process induced by B[a]P-mediated neurodegeneration, possibly due to a better protective mechanism. Future studies may reveal the detailed mechanisms of action of potent SSE and crocin like bioactive compounds having neuroprotective potentials against neurodegenerative diseases.
Collapse
Affiliation(s)
- Namita Muduli
- Department of Botany, Ravenshaw University, Cuttack, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, Cuttack, India
| | - Manorama Patri
- Department of Zoology, Ravenshaw University, Cuttack, India
| | | |
Collapse
|
15
|
Bjørklund G, Cruz-Martins N, Goh BH, Mykhailenko O, Lysiuk R, Shanaida M, Lenchyk L, Upyr T, Rusu ME, Pryshlyak A, Shanaida V, Chirumbolo S. Medicinal Plant-derived Phytochemicals in Detoxification. Curr Pharm Des 2024; 30:988-1015. [PMID: 37559241 DOI: 10.2174/1381612829666230809094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana 8610, Norway
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Victoria, Malaysia
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonina Pryshlyak
- Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
16
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
17
|
Wu X, Yang Y, Zhang H. Microbial fortification of pharmacological metabolites in medicinal plants. Comput Struct Biotechnol J 2023; 21:5066-5072. [PMID: 37867972 PMCID: PMC10589376 DOI: 10.1016/j.csbj.2023.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Medicinal plants are rich in secondary metabolites with beneficial pharmacological effects. The production of plant secondary metabolites is subjected to the influences by environmental factors including the plant-associated microbiome, which is crucial to the host's fitness and survival. As a result, research interests are increasing in exploiting microbial capacities for enhancing plant production of pharmacological metabolites. A growing body of recent research provides accumulating evidence in support of developing microbe-based tools for achieving this objective. This mini review presents brief summaries of recent studies on medicinal plants that demonstrate microbe-augmented production of pharmacological terpenoids, polyphenols, and alkaloids, followed by discussions on some key questions beyond the promising observations. Explicit molecular insights into the underlying mechanisms will enhance microbial applications for metabolic fortification in medicinal plants.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Nanchang Institute of Industrial Innovation, Chinese Academy of Sciences, Nanchang 330224, China
- Jiangxi Center for Innovation and Incubation of Industrial Technologies, Chinese Academy of Sciences, Nanchang 330200, China
| |
Collapse
|
18
|
Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11:e15785. [PMID: 37537722 PMCID: PMC10400758 DOI: 10.14814/phy2.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.
Collapse
Affiliation(s)
- Fatemeh Anaeigoudari
- Student Research Committee, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | | |
Collapse
|
19
|
El Hani O, García-Guzmán JJ, Palacios-Santander JM, Digua K, Amine A, Gharby S, Cubillana-Aguilera L. Geographical Classification of Saffron ( Crocus Sativus L.) Using Total and Synchronous Fluorescence Combined with Chemometric Approaches. Foods 2023; 12:1747. [PMID: 37174286 PMCID: PMC10178536 DOI: 10.3390/foods12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from Taroudant, Ouarzazate, and Azilal. Moreover, to differentiate between Afghan, Iranian, and Moroccan saffron, a unique fingerprint was assigned to each sample by visualizing the EEM physiognomy. Moreover, principal component analysis (LDA) and linear discriminant analysis (LDA) were successfully applied to classify the synchronous spectra of samples. High fluorescence intensities were registered for Ouarzazate and Taroudant saffron. Yet, the Azilal saffron was distinguished by its low intensities. Furthermore, Moroccan, Afghan, and Iranian saffron were correctly assigned to their origins using PCA and LDA for different offsets (Δλ) (20-250 nm) such that the difference in the fluorescence composition of the three countries' saffron was registered in the following excitation/emission ranges: 250-325 nm/300-480 nm and 360-425 nm/500-550 nm. These regions are characterized by the high polyphenolic content of Moroccan saffron and the important composition of Afghan saffron, including vitamins and terpenoids. However, weak intensities of these compounds were found in Iranian saffron. Furthermore, a substantial explained variance (97-100% for PC1 and PC2) and an important classification rate (70-90%) were achieved. Thus, the non-destructive applied methodology of discrimination was rapid, straightforward, reliable, and accurate.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
| | - Said Gharby
- Biotechnology Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir 80000, Morocco
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| |
Collapse
|
20
|
Yan M, Zhao J, Kang Y, Liu L, He W, Xie Y, Wang R, Shan L, Li X, Ma K. Effect and mechanism of safranal on ISO-induced myocardial injury based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116103. [PMID: 36586525 DOI: 10.1016/j.jep.2022.116103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.
Collapse
Affiliation(s)
- Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Jichuan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Rui Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| |
Collapse
|
21
|
Sánchez IA, Cuchimba JA, Pineda MC, Argüello YP, Kočí J, Kreider RB, Petro JL, Bonilla DA. Adaptogens on Depression-Related Outcomes: A Systematic Integrative Review and Rationale of Synergism with Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5298. [PMID: 37047914 PMCID: PMC10094590 DOI: 10.3390/ijerph20075298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Depression is considered the most important disorder affecting mental health. The aim of this systematic integrative review was: (i) to describe the effects of supplementation with adaptogens on variables related to depression in adults; and (ii) to discuss the potential combination with physical exercise to aid planning and commissioning future clinical research. An integrative review was developed complementing the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PROSPERO registration: CRD42021249682). A total of 41 articles met the inclusion criteria. With a Price index of 46.4%, we found that: (i) Hypericum perforatum (St. John's Wort) is the most studied and supported adaptogen (17/41 [41.46%], three systematic reviews with meta-analysis) followed by Crocus sativus L. or saffron (6/41 [14.63%], three systematic reviews with meta-analysis and two systematic reviews); (ii) it is possible that the significantly better performance of adaptogens over placebo is due to the reduction of allostatic load via the action of secondary metabolites on BDNF regulation; and, (iii) the number of studies reporting physical activity levels is limited or null for those that combine an exercise program with the consumption of adaptogens. Aware of the need for a multidisciplinary approach for depression treatment, this systematic integrative review provides an up-to-date view for supporting the use of St. John's Wort and saffron as non-pharmacological strategies while also help commissioning future research on the efficacy of other adaptogens. It also contributes to the design of future clinical research studies that evaluate the consumption of herbal extracts plus physical exercise, mainly resistance training, as a potentially safe and powerful strategy to treat depression.
Collapse
Affiliation(s)
- Isabel A. Sánchez
- Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud—GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia; (I.A.S.)
| | - Jaime A. Cuchimba
- Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud—GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia; (I.A.S.)
| | - María C. Pineda
- Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud—GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia; (I.A.S.)
| | - Yenny P. Argüello
- Grupo de Investigación Cuerpo, Sujeto y Educación—CSE, Universidad Santo Tomás, Bogotá 205070, Colombia
| | - Jana Kočí
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia; (J.K.); (J.L.P.)
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia; (J.K.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia; (J.K.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
22
|
Anwar N, Ahmed NZ, Fathima AF, Khan AA. Analytical review of Tiryāq-i-Wabāī - A Unani panacea for the control of COVID-19. J Herb Med 2023; 39:100653. [PMID: 37073363 PMCID: PMC10101772 DOI: 10.1016/j.hermed.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Introduction COVID-19 has affected the whole world drastically and led to a substantial loss of human life. Relentless research is underway to identify effective treatment to control the disease. Traditional systems are also being explored to search for a potent drug. Unani formulation 'Tiryāq-i-Wabāī' has long been used in cholera, plague and other epidemic diseases. This review is aimed at analysing the possible role of Tiryāq-i-Wabāī in the prevention and control of COVID-19. Methodology Unani classical texts and Pharmacopoeias available in the library of Regional Research Institute of Unani Medicine, Chennai were reviewed to collect information related to epidemics, commonly prescribed drugs during epidemics, and therapeutic uses of Tiryāq-i-Wabāī ingredients. ScienceDirect, Springer, PubMed and Google Scholar were searched to collect information regarding current pandemic and pharmacological activities of ingredients and phytoconstituents present in the formulation. The collected data was analyzed and interpreted. Results Tiryāq-i-Wabāī was found to be the most recommended prophylactic and curative drug during epidemics. The formulation ingredients, Sibr (Aloe vera (L.) Burm.f.), Murr Makki (Commiphora myrrha (T.Nees) Engl.) and Zāfrān (Crocus sativus L.) are categorized under Tiryāqi Advia (literally - antidote drugs) and are considered to be very effective in SARS related conditions. These ingredients have been reported to exhibit immunomodulatory, antioxidant, antiviral, antibacterial, antitussive, smooth muscle relaxant, antipyretic and anti-inflammatory activities corroborating the traditional use of Tiryāq-i-Wabāī. Conclusion Scientific data imply great potential and utility of the formulation which could be a possible alternative approach for the prevention and control of current and future pandemics.
Collapse
|
23
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
24
|
Frattaruolo L, Marra F, Lauria G, Siciliano C, Curcio R, Muto L, Brindisi M, Aiello D, Napoli A, Fiermonte G, Cappello AR, Fiorillo M, Ahmed A, Dolce V. A Picrocrocin-Enriched Fraction from a Saffron Extract Affects Lipid Homeostasis in HepG2 Cells through a Non-Statin-like Mode. Int J Mol Sci 2023; 24:3060. [PMID: 36834472 PMCID: PMC9965904 DOI: 10.3390/ijms24043060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins currently represent the main pharmacological therapy, but their contraindications and side effects limit their use. This is stimulating the search for new therapeutic strategies. In this work, we investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a precious spice that has already displayed interesting biological properties. Spectrophotometric assays, as well as expression level of the main enzymes involved in lipid metabolism, have highlighted the interesting hypolipidemic effects of this natural compound; they seem to be exerted through a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood lipid homeostasis.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Luigina Muto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amer Ahmed
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
25
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Luo J, Zhang A, Tan K, Yang S, Ma X, Bai X, Hou Y, Bai J. Study on the interaction mechanism between Crocus sativus and Fusarium oxysporum based on dual RNA-seq. PLANT CELL REPORTS 2023; 42:91-106. [PMID: 36350395 DOI: 10.1007/s00299-022-02938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The saffron phenylpropane synthesis pathway and Fusarium oxysporum cell wall-degrading enzymes play key roles in their early interactions. Saffron (Crocus sativus) is a highly important crop with diverse medicinal properties. F. oxysporum is a widely-distributed soil-borne fungus, causing the serious saffron rot disease. Currently, there is no effective management strategy to control this disease because of no resistant cultivars and limited information about the resistance and pathogenic mechanisms. In this study, we first characterized the infection process and physiological responses of saffron infected by F. oxysporum. The molecular mechanism of these infection interactions was revealed by dual RNA-seq analysis. On the 3rd day of infection, the hyphae completely entered, colonized and spread in the corm cells; while on the 6th day of infection, hyphae had appeared in the xylem cells, blocking these vessels. Transcriptome results indicate that within the host, phenylpropanoid metabolism, plant hormone signal transduction and plant pathogen interaction pathways were activated during infection. These pathways were conducive to the enhancement of cell wall, the occurrence of hypersensitivity, and the accumulation of various antibacterial proteins and phytoantitoxins. Meanwhile, in the fungus, many up-regulated genes were related to F. oxysporum cell wall degrading enzymes, toxin synthesis and pathogenicity gene, showing its strong pathogenicity. This study provides new ideas for the control of saffron corm rot, and also provides a theoretical basis for mining the key functional genes.
Collapse
Affiliation(s)
- Juan Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Aolai Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kaifeng Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shuting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaona Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaolin Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yutong Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jie Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
27
|
Interactions of Apigenin and Safranal with the 5HT1A and 5HT2A Receptors and Behavioral Effects in Depression and Anxiety: A Molecular Docking, Lipid-Mediated Molecular Dynamics, and In Vivo Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248658. [PMID: 36557792 PMCID: PMC9783496 DOI: 10.3390/molecules27248658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The current study utilizes in silico molecular docking/molecular dynamics to evaluate the binding affinity of apigenin and safranal with 5HT1AR/5HT2AR, followed by assessment of in vivo effects of these compounds on depressive and anxious behavior. METHODS The docking between apigenin and safranal and the 5HT1A and 5HT2A receptors was performed utilizing AutoDock Vina software, while MD and protein-lipid molecular dynamics simulations were executed by AMBER16 software. For in vivo analysis, healthy control (HC), disease control (DC), fluoxetine-, and apigenin-safranal-treated rats were tested for changes in depression and anxiety using the forced swim test (FST) and the elevated plus-maze test (EPMT), respectively. RESULTS The binding affinity estimations identified the superior interacting capacity of apigenin over safranal for 5HT1A/5HT2A receptors over 200 ns MD simulations. Both compounds exhibit oral bioavailability and absorbance. In the rodent model, there was a significant increase in the overall mobility time in the FST, while in the EPMT, there was a decrease in latency and an increase in the number of entries for the treated and HC rats compared with the DC rats, suggesting a reduction in depressive/anxiety symptoms after treatment. CONCLUSIONS Our analyses suggest apigenin and safranal as prospective medication options to treat depression and anxiety.
Collapse
|
28
|
Zheng X, Mi J, Balakrishna A, Liew KX, Ablazov A, Sougrat R, Al‐Babili S. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2202-2216. [PMID: 35997958 PMCID: PMC9616529 DOI: 10.1111/pbi.13901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves. We demonstrate that co-expression of GjCCD4a with phytoene synthase and β-carotene hydroxylase genes is an optimal combination for heterologous production of crocetin, crocins and picrocrocin in citrus callus. By profiling apocarotenoids and using in vitro assays, we show that GjCCD4a cleaved β-carotene, in planta, and produced crocetin dialdehyde via C30 β-apocarotenoid intermediate. GjCCD4a also cleaved C27 β-apocarotenoids, providing a new route for C17 -dialdehyde biosynthesis. Callus lines overexpressing GjCCD4a contained higher number of plastoglobuli in chromoplast-like plastids and increased contents in phytoene, C17:0 fatty acid (FA), and C18:1 cis-9 and C22:0 FA esters. GjCCD4a showed a wider substrate specificity and higher efficiency in Nicotiana leaves, leading to the accumulation of up to 1.6 mg/g dry weight crocins. In summary, we established a system for investigating CCD enzymatic activity in planta and an efficient biotechnological platform for crocins production in green and non-green crop tissues/organs.
Collapse
Affiliation(s)
- Xiongjie Zheng
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jianing Mi
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kit Xi Liew
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Abdugaffor Ablazov
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Rachid Sougrat
- Advanced Nanofabrication Imaging and Characterization CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
29
|
Potential Role of Phytochemical Extract from Saffron in Development of Functional Foods and Protection of Brain-Related Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6480590. [PMID: 36193081 PMCID: PMC9526642 DOI: 10.1155/2022/6480590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The present review is designed to measure the effects of saffron extract in functional foods and its pharmacological properties against various disorders. Saffron is a traditional medicinal plant used as a food additive. The stigma of saffron has bioactive compounds such as safranal, crocin, crocetin, picrocrocin, kaempferol, and flavonoid. These bioactive compounds can be extracted using conventional (maceration, solvent extraction, soxhlet extraction, and vapor or hydrodistillation) and novel techniques (emulsion liquid membrane extraction, ultrasound-assisted extraction, enzyme-associated extraction, pulsed electric field extraction, microwave-assisted extraction, and supercritical fluid extraction). Saffron is used as a functional ingredient, natural colorant, shelf-life enhancer, and fortifying agent in developing different food products. The demand for saffron has been increasing in the pharma industry due to its protection against cardiovascular and Alzheimer disease and its antioxidant, anti-inflammatory, antitumor, and antidepressant properties. Conclusively, the phytochemical compounds of saffron improve the nutrition value of products and protect humans against various disorders.
Collapse
|
30
|
Medicinal Plants Used for Anxiety, Depression, or Stress Treatment: An Update. Molecules 2022; 27:molecules27186021. [PMID: 36144755 PMCID: PMC9500625 DOI: 10.3390/molecules27186021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Depression, anxiety, stress, and other mental disorders, which are on the rise worldwide, are indications that pharmacological therapy can have serious adverse effects, which is why many patients prefer to use herbal products to treat these symptoms. Here, we reviewed plants and products derived from them that are commonly used for the above indications, focusing on clinical data and safety profiles. While lavender, hops, maypop, lemon balm, and valerian have consistently been shown in clinical trials to relieve mild forms of neurological disorders, particularly depression, anxiety, and stress, currently available data do not fully support the use of peppermint for anxiety disorders and depression. Recent studies support the use of saffron for depression; however, its toxicological profile raises safety concerns. St. John’s wort is effective in alleviating mild to moderate depression; however, careful use is necessary particularly due to possible interactions with other drugs. In conclusion, more studies are needed to validate the mechanism of action so that these plants can be used successfully and safely to alleviate or eliminate various mental disorders.
Collapse
|
31
|
Han S, Song R, Cao Y, Yan X, Gao H, Lian F. Crocin mitigates atherosclerotic progression in LDLR knockout mice by hepatic oxidative stress and inflammatory reaction reduction, and intestinal barrier improvement and gut microbiota modulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
32
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
33
|
Sánchez-González JM, De-Hita-Cantalejo C, Martínez-Lara C, Sánchez-González MC. Lipid, Aqueous and Mucin Tear Film Layer Stability and Permanence within 0.15% Liposome Crosslinked Hyaluronic Acid versus 0.15% Non-Crosslinked Hyaluronic Acid Measured with a Novel Non-Invasive Ocular Surface Analyzer. J Clin Med 2022; 11:jcm11133719. [PMID: 35807004 PMCID: PMC9267243 DOI: 10.3390/jcm11133719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
To evaluate the stability and permanence of the liquid film created after the instillation of 0.15% crosslinked hyaluronic acid with liposomes and crocin versus the effect of 0.15% standard hyaluronic acid, a prospective, longitudinal, single-blind, single-center study was conducted in symptomatic populations with a novel noninvasive ocular surface analyzer. Limbal and bulbar redness classification, lipid layer thickness, tear meniscus height, and first and mean noninvasive break-up time (FNIBUT and MNIBUT) were performed before and 30 and 45 min after liposome-crosslinked hyaluronic acid (LCHA) and standard hyaluronic acid (HA) eye drop instillations. LCHA had a higher lipid layer thickness than HA (grades 2.00 ± 0.83 and 1.17 ± 0.63 on the Guillon pattern, respectively). LCHA achieved a better tear meniscus height than HA (0.23 ± 0.02 and 0.21 ± 0.02 mm, respectively). LCHA improved FNIBUT and MNIBUT more than HA (for FNIBUT, 6.30 ± 0.94 and 4.77 ± 0.89 s, respectively. For MNIBUT, 17.23 ± 5.11 and 12.41 ± 4.18 s, respectively). Crosslinking hyaluronic acid with liposomes and crocin significantly increases the permanence and stability of the lipid, aqueous, and mucin tear film layers. In a short-term period, liposome and crosslinked hyaluronic acid achieved better first and mean noninvasive break-up times than standard hyaluronic acid.
Collapse
Affiliation(s)
- José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.C.S.-G.)
- Correspondence: ; Tel.: +34-9554-20861
| | - Concepción De-Hita-Cantalejo
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.C.S.-G.)
| | - Concepción Martínez-Lara
- Department of Nursing, University Hospital Virgen Macarena, University of Seville, 41009 Seville, Spain;
- Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain
| | - María Carmen Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, Vision Sciences Research Group (CIVIUS), Pharmacy School, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.C.S.-G.)
| |
Collapse
|
34
|
Cellat M, İşler CT, Kutlu T, Kuzu M, Etyemez M, Alakuş H, Güvenç M. Investigation of the effects of safranal on the experimentally created rheumatoid arthritis model in rats. J Biochem Mol Toxicol 2022; 36:e23140. [PMID: 35674002 DOI: 10.1002/jbt.23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic chronic disease characterized by inflammation and synovitis. More effective treatment methods with less side effects need to be developed. In this context, current study investigated the therapeutic effects of safranal in a model of complete Freund's adjuvant (CFA)-induced RA. The control group was given 1 ml of saline orally starting from the 8th day, and 0.2 ml of CFA was given to the RA, RA + Safranal and RA + Methotrexate (MTX) groups on the 0th day of the experiment. Starting from the 8th day of the experiment, 1 ml of saline was given to the RA group, safranal was given at 200 mg/kg of body weight to the RA + MTX group, and 3 mg/kg of MTX to the RA + MTX group twice a week. The results showed that weight gain decreased in the RA group compared to the control group while arthritis index score, thymus index, and planter temperature were found to be increased. Additionally, a deterioration in blood parameters, an increase in alanine aminotransferase, aspartate aminotransferase, urea, creatinine, C-reactive protein, and malondialdehyde levels, and a decrease in reduced glutathione levels and glutathione peroxidase and catalase (CAT) activities were seen while tumor necrosis factor-α, interleukin-6 (IL-6), cyclooxygenase-2, nuclear factor kappa B levels were found to be increased. However, the safranal had a regulatory effect on all the values, except IL-6 and CAT, and blood parameters. Moreover, histopathological examination revealed that safranal reduced inflammatory cell infiltration and edema.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Cafer T İşler
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk, Türkiye
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Halil Alakuş
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| |
Collapse
|
35
|
Seshadri VD, Oyouni AAA, Hawsawi YM, Aljohani SAS, Al-Amer O, AlZamzami W, Mufti AH. Chemopreventive role of Tin oxide-Chitosan-Polyethylene glycol-Crocin nanocomposites against Lung cancer: an in vitro and in vivo approach. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mech Ageing Dev 2022; 205:111686. [DOI: 10.1016/j.mad.2022.111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
37
|
Rahimi G, Shams S, Aslani MR. Effects of crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:2605-2615. [PMID: 35470916 DOI: 10.1002/ptr.7474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial reproductive condition common in women of reproductive age. Hyperlipidemia, insulin resistance, obesity, and chronic low-grade inflammation are associated with PCOS. In a clinical trial study, women with PCOS were divided into two groups (n = 25 each): the intervention group receiving crocin (15 mg, twice daily) and the control group receiving a placebo. The duration of intervention in both groups was 12 weeks. Pre- and postintervention, demographic information, lipid profile, fasting blood glucose (FBG), fasting insulin, and inflammatory markers (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-α]) were measured. Intervention with crocin significantly increased the mean high-density lipoprotein cholesterol postintervention compared to the placebo group, while exerting a suppressive effect on the increase in mean low-density lipoprotein cholesterol, triglycerides, and cholesterol levels. Intervention with crocin also exerted inhibitory effects on changes in FBG and insulin, so that crocin improved insulin and cardioprotective indices. Finally, despite the increased inflammatory markers (IL-6 and TNF-α) in the placebo group, crocin treatment had protective effects on their increased changes. Thus, crocin supplementation could be considered in the therapeutic targets of women with PCOS.
Collapse
Affiliation(s)
- Giti Rahimi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeideh Shams
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Ahmad T, Farooq S, Mirza DN, Kumar A, Mir RA, Riyaz-Ul-Hassan S. Insights into the Endophytic Bacterial Microbiome of Crocus sativus: Functional Characterization Leads to Potential Agents that Enhance the Plant Growth, Productivity, and Key Metabolite Content. MICROBIAL ECOLOGY 2022; 83:669-688. [PMID: 34241654 DOI: 10.1007/s00248-021-01810-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The study was undertaken to unravel the culturable endophytic bacterial microbiome of Crocus sativus L. (saffron crocus) and consequently obtain potential leads to develop plant growth-promoting and biocontrol agents for increased productivity and sustainable cultivation. The endophytes formed 47 different operational taxonomic units (OTUs), spanning over 28 genera. The host was preferentially colonized by the genus Bacillus, followed by Burkholderia and Pantoea, respectively. Several endophytes possessed potential plant growth-promoting properties and inhibitory activities against the specific fungal pathogens of saffron. The endophytes, except for Microbacterium oxydans, did not cause any disease symptoms in the pot experiments. The selected cultures, Burkholderia gladioli, Streptomyces achromogenes, and three species of Bacillus, enhanced the host plant growth significantly. Based on the pot experiment results, two isolates, Bacillus mojavensis CS4EB32 and Burkholderia gladioli E39CS3, were selected for the field experiments. We obtained an increase of 67.5%, 69.8%, and 68.3% in the production of flowers with the individual and collective treatments, respectively. The treatments also enhanced the biomass of the plant and the length and weight of stigmas significantly. The endophyte treatments induced the expression of the pathway genes, resulting in a marked increase in the concentration of apocarotenoids. The study indicates that the dominant endophytes support plant growth and development in nature and present an opportunity for developing microbial formulations for the sustainability of saffron cultivation.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, J&K, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, J&K, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Dania Nazir Mirza
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, J&K, India
| | - Amit Kumar
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India
| | - Raouf Ahmad Mir
- Research and Development Division, GloBiLs Agri and Food Enterprises, IGC Lassipora, Pulwama, 192305, J&K, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, J&K, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
39
|
Ahrazem O, Zhu C, Huang X, Rubio-Moraga A, Capell T, Christou P, Gómez-Gómez L. Metabolic Engineering of Crocin Biosynthesis in Nicotiana Species. FRONTIERS IN PLANT SCIENCE 2022; 13:861140. [PMID: 35350302 PMCID: PMC8957871 DOI: 10.3389/fpls.2022.861140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Crocins are high-value soluble pigments that are used as colorants and supplements, their presence in nature is extremely limited and, consequently, the high cost of these metabolites hinders their use by other sectors, such as the pharmaceutical and cosmetic industries. The carotenoid cleavage dioxygenase 2L (CsCCD2L) is the key enzyme in the biosynthetic pathway of crocins in Crocus sativus. In this study, CsCCD2L was introduced into Nicotiana tabacum and Nicotiana glauca for the production of crocins. In addition, a chimeric construct containing the Brevundimonas sp. β-carotene hydroxylase (BrCrtZ), the Arabidopsis thaliana ORANGE mutant gene (AtOrMut), and CsCCD2L was also introduced into N. tabacum. Quantitative and qualitative studies on carotenoids and apocarotenoids in the transgenic plants expressing CsCCD2L alone showed higher crocin level accumulation in N. glauca transgenic plants, reaching almost 400 μg/g DW in leaves, while in N. tabacum 36 μg/g DW was obtained. In contrast, N. tabacum plants coexpressing CsCCD2L, BrCrtZ, and AtOrMut accumulated, 3.5-fold compared to N. tabacum plants only expressing CsCCD2L. Crocins with three and four sugar molecules were the main molecular species in both host systems. Our results demonstrate that the production of saffron apocarotenoids is feasible in engineered Nicotiana species and establishes a basis for the development of strategies that may ultimately lead to the commercial exploitation of these valuable pigments for multiple applications.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| |
Collapse
|
40
|
Zhang H, Lin J, Shen Y, Pan J, Wang C, Cheng L. Protective Effect of Crocin on Immune Checkpoint Inhibitors-Related Myocarditis Through Inhibiting NLRP3 Mediated Pyroptosis in Cardiomyocytes via NF-κB Pathway. J Inflamm Res 2022; 15:1653-1666. [PMID: 35282269 PMCID: PMC8906878 DOI: 10.2147/jir.s348464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs)-related myocarditis is now one of the most critical immune-related adverse effects (irAEs) in tumor immunotherapy, which has raised great concern in cardio-oncology. The pathogenesis involved in cardiac injury remains elusive. Crocin, the main component of saffron, has shown distinct functions in cardioprotective and anti-inflammation properties. We therefore aimed to investigate the potential effect of crocin on the protection of ICIs-related myocarditis and its underlying molecular mechanism. Methods We immunized the BALB/c mice with murine cardiac troponin I (cTnI) peptide and additionally gave anti-mouse programmed death 1 (PD-1) to induce the mouse model of ICIs-related myocarditis. Mice were treated with crocin at different dosages. In vitro, HL-1 cells were pre-incubated with crocin at different concentrations and then stimulated with lipopolysaccharide (LPS). Myocardial contractile functions, myocardial inflammation and fibrosis, and myocardial injury were assessed. The expressions of pyroptosis-related proteins and nuclear factor-κB (NF-κB) pathway were evaluated. Results Crocin treatment could partially reverse the ICIs-related myocarditis in terms of improving heart function, ameliorating inflammation and fibrosis in the myocardium, and alleviating myocardial injury. Mechanistically, ICIs administration significantly activated pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes. Crocin treatments significantly downregulated the expression of NLRP3, cleaved gasdermin D (GSDMD), cleaved caspase1, interleukin-1β (IL-1β), and IL-18. Besides, crocin inhibited the activation of NF-κB pathway, which performed as reducing the phosphorylation of p-NF-kappa-B inhibitor-α (p-IκBα), degradation of IκBα, phosphorylation of p65 and p65 DNA binding activity both in vivo and in vitro. Conclusion By reversing the pyroptosis in cardiomyocytes, crocin treatment in a mouse model exerted great potential to aid in the prevention of ICIs-related myocarditis from a novel target.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, People’s Republic of China
| | - Jinyi Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People’s Republic of China
| | - Yihui Shen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, People’s Republic of China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Chunhui Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Leilei Cheng
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, People’s Republic of China
- Correspondence: Leilei Cheng, Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China, Fax +86-21-51217561, Email
| |
Collapse
|
41
|
Annemer S, Ez zoubi Y, Ramzi A, El Hadrami EM, El Ouali Lalami A, Satrani B, Farah A. Variations in saffron quality in Morocco (Taliouine and Taznakht) according to altitude and provenance: Chemometric investigation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saoussan Annemer
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Yassine Ez zoubi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Biotechnology, Environmental Technology and Valorization of Bio‐Resources Team Department of Biology Faculty of Sciences and Techniques Al‐Hoceima Abdelmalek Essaadi University Tetouan Morocco
| | - Amal Ramzi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Abdelhakim El Ouali Lalami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Higher Institute of Nursing Professions and Health Techniques of Fez Regional Health Directorate Fez Meknes El Ghassani Hospital Fez Morocco
| | - Badr Satrani
- Forestry Research Center ‐ Rabat Rabat‐Agdal Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| |
Collapse
|
42
|
Pazoki B, Zandi N, Assaf Z, Moghaddam HS, Zeinoddini A, Mohammadi MR, Akhondzadeh S. Efficacy and safety of saffron as adjunctive therapy in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2022. [DOI: 10.1016/j.aimed.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
The Novel Role of Crocus sativus L. in Enhancing Skin Flap Survival by Affecting Apoptosis Independent of mTOR: A Data-Virtualized Study. Aesthetic Plast Surg 2022; 46:3047-3062. [PMID: 36044060 PMCID: PMC9430006 DOI: 10.1007/s00266-022-03048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite the improvements to enhance skin flap viability, the effects of ischemia-reperfusion (IR), oxidative stress, necrosis, and apoptosis are still challenging. Crocus sativus L. (Saffron) is highly noticeable due to its tissue-protective and antioxidant properties. So, we aimed to investigate its effects on skin flap viability, oxidative stress, apoptosis markers, histopathological changes, and mTOR/p-mTOR expression. MATERIALS AND METHODS 40 Sprauge-Dawley rats, weighting 200-240 g, were divided into four groups including: (1) Sham (8 × 3 cm skin cut, without elevation); (2) Flap Surgery (8 × 3 cm skin flap with elevation from its bed); (3) Saffron 40 mg/kg + Flap Surgery; and (4) Saffron 80 mg/kg + Flap Surgery. Saffron was administrated orally for 7 days. At day 7, flap necrosis percentage, histopathological changes, malondialdehyde level, Myeloperoxidase and superoxide dismutase activity, Bax, Bcl-2, mTOR, and p-mTOR expression were measured. Protein expressions were controlled by β-Actin. RESULTS Saffron administration decreased flap necrosis percentage (p < 0.01), which was not dose-dependent. Treatment groups showed significant histological healing signs (Neovascularization, Fibroblast migration, Epithelialization, and Epithelialization thickness), decreased MDA content (p < 0.01), increased SOD (p < 0.01) and decreased MPO activity (p < 0.01). Bax and Bcl-2 expression, decreased and increased respectively in treated groups (p < 0.0001). mTOR and p-mTOR expression were not changed significantly in Saffron treated groups. CONCLUSION Saffron could increase skin flap viability, alleviate necrosis, decrease oxidative stress and decrease apoptotic cell death, after skin flap surgery, but it acts independent of the mTOR pathway. So, Saffron could potentially be used clinically to enhance skin flap viability. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266. https://www.springer.com/00266.
Collapse
|
44
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| |
Collapse
|
45
|
Intraperitoneal Lavage with Crocus sativus Prevents Postoperative-Induced Peritoneal Adhesion in a Rat Model: Evidence from Animal and Cellular Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5945101. [PMID: 34956439 PMCID: PMC8702342 DOI: 10.1155/2021/5945101] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Postoperative peritoneal adhesions are considered the major complication following abdominal surgeries. The primary clinical complications of peritoneal adhesion are intestinal obstruction, infertility, pelvic pain, and postoperative mortality. In this study, regarding the anti-inflammatory and antioxidant activities of Crocus sativus, we aimed to evaluate the effects of Crocus sativus on the prevention of postsurgical-induced peritoneal adhesion. Male Wistar-Albino rats were used to investigate the preventive effects of C. sativus extract (0.5%, 0.25% and 0.125% w/v) against postsurgical-induced peritoneal adhesion compared to pirfenidone (PFD, 7.5% w/v). We also investigated the protective effects of PFD (100 μg/ml) and C. sativus extract (100, 200, and 400 μg/ml) in TGF-β1-induced fibrotic macrophage polarization. The levels of cell proliferation and oxidative, antioxidative, inflammatory and anti-inflammatory, fibrosis, and angiogenesis biomarkers were evaluated both in vivo and in vitro models. C. sativus extract ameliorates postoperational-induced peritoneal adhesion development by attenuating oxidative stress [malondialdehyde (MDA)]; inflammatory mediators [interleukin- (IL-) 6, tumour necrosis factor- (TNF-) α, and prostaglandin E2 (PGE2)]; fibrosis [transforming growth factor- (TGF-) β1, IL-4, and plasminogen activator inhibitor (PAI)]; and angiogenesis [vascular endothelial growth factor (VEGF)] markers, while propagating antioxidant [glutathione (GSH)], anti-inflammatory (IL-10), and fibrinolytic [tissue plasminogen activator (tPA)] markers and tPA/PAI ratio. In a cellular model, we revealed that the extract, without any toxicity, regulated the levels of cell proliferation and inflammatory (TNF-α), angiogenesis (VEGF), anti-inflammatory (IL-10), M1 [inducible nitric oxide synthase (iNOS)] and M2 [arginase-1 (Arg 1)] biomarkers, and iNOS/Arg-1 ratio towards antifibrotic M1 phenotype of macrophage, in a concentration-dependent manner. Taken together, the current study indicated that C. sativus reduces peritoneal adhesion formation by modulating the macrophage polarization from M2 towards M1 cells.
Collapse
|
46
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
47
|
Lin CY, Shibu MA, Wen R, Day CH, Chen RJ, Kuo CH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Leu 27 IGF-II-induced hypertrophy in H9c2 cardiomyoblasts is ameliorated by saffron by regulation of calcineurin/NFAT and CaMKIIδ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:2475-2483. [PMID: 34495567 DOI: 10.1002/tox.23360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The insulin-like growth factor II receptor (IGF-IIR) induces myocardial hypertrophy under various pathological conditions like diabetes and hypertension via G protein receptors like Gαq or Gαs. Increased expression of the ligand IGF II and IGF-IIR induces pathological hypertrophy through downstream signaling mediators such as calcineurin, nuclear factor of activated T cells 3 and calcium-calmodulin (CaM)-dependent kinase II (CaMKII)-histone deacetylase 4 (HDAC4). The dried stigma of Crocus sativus L. (saffron) has a long repute as a traditional medicine against various disorders. In the present study, we have investigated whether C. sativus extract (CSE) canameliorate Leu27 IGF-II triggered hypertrophy and have elucidated the underlying mechanism of protection. Additionally, the effects of oleic acid (OA), an activator of calcineurin and CaMKII was investigated thereof. The results demonstrate that CSE can ameliorate Leu27 IGF-II-induced hypertrophy seemingly through regulation of calcineurin-NFAT3 and CaMKII-HDAC4 signaling cascade.
Collapse
Affiliation(s)
- Chin-Yi Lin
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Yuan Sheng Hospital, ChangHua, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Renee Wen
- Walnut High School, Walnut, California, USA
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Science, China Medical University, Taichung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
48
|
Multivariate Statistical Analysis Uncovers Spectrum–Effect Relationship between HPLC Fingerprints and Antioxidant Activity of Saffron. J CHEM-NY 2021. [DOI: 10.1155/2021/7352938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Crocus sativus L. is commonly used as functional food and medicinal herb in traditional Chinese medicine. In this study, the spectrum–effect relationship was established between HPLC fingerprints and in vitro antioxidant activity of saffron to improve the quality evaluation method of saffron. The fingerprints of 21 batches of saffron collected from different regions were assessed, and the data were further analyzed by chemometric methods, including similarity analysis, hierarchical clustering analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The spectrum–effect relationship between fingerprints and antioxidant effect of saffron was analyzed by grey relational analysis and partial least square methods to figure out the antioxidant component of saffron. Thirteen common peaks of 21 batches of saffron were included in the analysis, and peak 3 (picrocrocin), peak 7 (crocin I), and peak 10 (crocin II) were identified as the main active components responsible for antioxidant efficacy. Besides, a multi-index quality control method was developed for simultaneous determination of these three antioxidant components in saffron. Taken together, this study provided new strategies for the quality control and the development of new bioactive products of saffron in the future.
Collapse
|
49
|
Predieri S, Magli M, Gatti E, Camilli F, Vignolini P, Romani A. Chemical Composition and Sensory Evaluation of Saffron. Foods 2021; 10:2604. [PMID: 34828885 PMCID: PMC8618029 DOI: 10.3390/foods10112604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The quality and economic value of saffron, one of the most counterfeited spices, are based on three key substances that are relatively easy to measure: crocines (colour); picrocrocines (bitter); safranal (odour impact). Despite being well-known, as their concentration is correlated to sensory intensity, a detailed sensory evaluation, performed by a trained panel, supported by advanced analytical approaches, may better show the relationships between saffron composition and sensory perception. Three saffron samples of different Italian origins (Sardinia and Tuscany) were evaluated by a trained sensory panel and their chemical composition was determined by HPLC (High Performance Liquid Chromatography) and spectrophotometry. Safranal concentration and the perceived odour intensity were positively correlated while relationships between picrocrocine and bitter perception were more complex to detect. By correlating (Multiple Factor Analysis) saffron sensorial and chemical profiles, this work aims at improving saffron characterisation while providing better information on the quality of this valuable spice.
Collapse
Affiliation(s)
- Stefano Predieri
- IBE-CNR, Institute of BioEconomy, c/o Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, BO, Italy; (S.P.); (M.M.); (E.G.)
| | - Massimiliano Magli
- IBE-CNR, Institute of BioEconomy, c/o Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, BO, Italy; (S.P.); (M.M.); (E.G.)
| | - Edoardo Gatti
- IBE-CNR, Institute of BioEconomy, c/o Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, BO, Italy; (S.P.); (M.M.); (E.G.)
| | - Francesca Camilli
- IBE-CNR, Institute of BioEconomy, Via Caproni 8, 50145 Firenze, FI, Italy;
| | - Pamela Vignolini
- Phytolab, Department of Statistics, Informatics, Applications “G.Parenti”, DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy;
| | - Annalisa Romani
- Phytolab, Department of Statistics, Informatics, Applications “G.Parenti”, DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy;
| |
Collapse
|
50
|
Fernández-Albarral JA, Martínez-López MA, Marco EM, de Hoz R, Martín-Sánchez B, San Felipe D, Salobrar-García E, López-Cuenca I, Pinazo-Durán MD, Salazar JJ, Ramírez JM, López-Gallardo M, Ramírez AI. Is Saffron Able to Prevent the Dysregulation of Retinal Cytokines Induced by Ocular Hypertension in Mice? J Clin Med 2021; 10:jcm10214801. [PMID: 34768320 PMCID: PMC8584889 DOI: 10.3390/jcm10214801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
Cytokine- and chemokine-mediated signalling is involved in the neuroinflammatory process that leads to retinal ganglion cell (RGC) damage in glaucoma. Substances with anti-inflammatory properties could decrease these cytokines and chemokines and thus prevent RGC death. The authors of this study analysed the anti-inflammatory effect of a hydrophilic saffron extract standardized to 3% crocin content, focusing on the regulation of cytokine and chemokine production, in a mouse model of unilateral laser-induced ocular hypertension (OHT). We demonstrated that following saffron treatment, most of the concentration of proinflammatory cytokines (IL-1β, IFN-γ, TNF-α, and IL-17), anti-inflammatory cytokines (IL-4 and IL-10), Brain-derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and fractalkine were unaffected in response to laser-induced OHT in both the OHT eye and its contralateral eye. Only IL-6 levels were significantly increased in the OHT eye one day after laser induction compared with the control group. These results differed from those observed in animals subjected to unilateral OHT and not treated with saffron, where changes in cytokine levels occurred in both eyes. Therefore, saffron extract regulates the production of proinflammatory cytokines, VEGF, and fractalkine induced by increasing intraocular pressure (IOP), protecting the retina from inflammation. These results indicate that saffron could be beneficial in glaucoma by helping to reduce the inflammatory process.
Collapse
Affiliation(s)
- José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
| | - Miguel A. Martínez-López
- Departamento de Fisiología, Facultad de Medicina, Grupo UCM 951579, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.M.-L.); (B.M.-S.); (D.S.F.)
| | - Eva M. Marco
- Departamento de Genética, Facultad de CC. Biológicas, Fisiología y Microbiología, Grupo UCM 951579, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Martín-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Grupo UCM 951579, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.M.-L.); (B.M.-S.); (D.S.F.)
| | - Diego San Felipe
- Departamento de Fisiología, Facultad de Medicina, Grupo UCM 951579, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.M.-L.); (B.M.-S.); (D.S.F.)
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
| | - María D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”—FISABIO and Cellular and Molecular Ophthalmobiology Unit, University of Valencia, 46017 Valencia, Spain;
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
- Departamento de Inmunología, Facultad de Medicina, Oftalmología y ORL, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Departamento de Fisiología, Facultad de Medicina, Grupo UCM 951579, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.M.-L.); (B.M.-S.); (D.S.F.)
- Correspondence: (M.L.-G.); (A.I.R.)
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (E.S.-G.); (I.L.-C.); (J.J.S.); (J.M.R.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (M.L.-G.); (A.I.R.)
| |
Collapse
|