1
|
Hassan MAM, Fahmy MI, Azzam HN, Ebrahim YM, El-Shiekh RA, Aboulmagd YM. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01694-1. [PMID: 40097877 DOI: 10.1007/s10787-025-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Catalpol, classified as an iridoid glucoside, is recognized for its significant role in medicine, particularly in the treatment of various conditions such as diabetes mellitus, neuronal disorders, and inflammatory diseases. This review aims to evaluate the biological implications of catalpol and the mechanisms underlying its diverse pharmacological effects. A thorough exploration of existing literature was conducted utilizing the keyword "Catalpol" across prominent public domains like Google Scholar, PubMed, and EKB. Catalpol has demonstrated a diverse array of pharmacological effects in experimental models, showcasing its anti-diabetic, cardiovascular-protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and antioxidant properties. In summary, catalpol manifests a spectrum of biological effects through a myriad of mechanisms, prominently featuring its anti-inflammatory and antioxidant capabilities. Its diverse pharmacological profile underscores its potential for therapeutic applications across a range of conditions. Further research is warranted to fully elucidate the clinical implications of catalpol and optimize its use in medical practice.
Collapse
Affiliation(s)
- Mennat-Allah M Hassan
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Hany N Azzam
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yara M Aboulmagd
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
3
|
Dang Z, Liu S, Wang X, Ren F, Hussain SA, Jia D. Protective effect of avicularin against lung cancer via inhibiting inflammation, oxidative stress, and induction of apoptosis: an in vitro and in vivo study. In Vitro Cell Dev Biol Anim 2024; 60:374-381. [PMID: 38592596 DOI: 10.1007/s11626-024-00854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/06/2023] [Indexed: 04/10/2024]
Abstract
The purpose of this research was to investigate whether or not avicularin (AVL) possesses any anticancer properties when tested against lung cancer. In the beginning, the effect that it had on the cellular viability of A549 cells was investigated, and it was discovered that AVL has a considerable negative impact on cellular viability. Following that, an investigation using flow cytometry was carried out to investigate its function in the process of apoptosis and the cell cycle of A549 cells. It has been discovered that AVL significantly promotes apoptosis and stops the cell cycle at the G2/M phase. The colony-forming capacity of A549 cells was observed to be greatly suppressed as the AVL concentration increased compared to the group that received no treatment. In addition to this, the benzo(a)pyrene in vivo model was established in order to investigate the pharmacological value of AVL. The findings revealed that AVL greatly prevented the formation of pro-inflammatory cytokines, in addition to the reduction in oxidative stress, which was evidenced by a reduction in the concentration of TNF-α, IL-1β, IL-6, and MDA with an improvement in the concentration of SOD and GPx, respectively. Our results successfully demonstrated the pharmacological benefit of avicularin against lung cancer, and it has been suggested that it showed a multifactorial effect.
Collapse
Affiliation(s)
- Zhiguo Dang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Baoji, Baoji, 721000, China
| | - Songbo Liu
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China
| | - XiaoJuan Wang
- Endoscopy Room, People's Hospital of Baoji, Baoji, 721000, China
| | - Fangfang Ren
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, 11451, Riyadh, Saudi Arabia
| | - Dong Jia
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China.
| |
Collapse
|
4
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
5
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
6
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Jianfei Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| |
Collapse
|
7
|
Zhang W, Cui N, Su F, Sun Y, Li B, Ren Y, Wang P, Bai H, Guan W, Yang B, Wang Q, Kuang H. Serum, spleen metabolomics and gut microbiota reveals effect of catalpol on blood deficiency syndrome caused by cyclophosphamide and acetylphenylhydrazine. Front Immunol 2023; 14:1280049. [PMID: 38022670 PMCID: PMC10655121 DOI: 10.3389/fimmu.2023.1280049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Catalpol (CA), extracted from Rehmannia Radix, holds extensive promise as a natural medicinal compound. This study employed 16S rRNA gene sequencing and combined serum and spleen metabolomics to profoundly investigate the therapeutic effects of CA on blood deficiency syndrome (BDS) and the underlying mechanisms. Notably, CA exhibited effectiveness against BDS induced by cyclophosphamide (CP) and acetylphenylhydrazine (APH) in rats-CA substantially elevated levels of crucial indicators such as erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), tumor necrosis factor-alpha (TNF-a), and interleukin-6 (IL-6). Additionally, CA could alleviate peripheral blood cytopenia. Furthermore, the analysis of 16S rRNA revealed that CA had the potential to reverse the Firmicutes/Bacteroidetes (F/B) ratio associated with BDS. Through comprehensive serum and spleen metabolomic profiling, we successfully identified 22 significant biomarkers in the serum and 23 in the spleen, respectively. Enrichment analysis underscored Glycerophospholipid metabolism and Sphingolipid metabolism as potential pathways through which CA exerts its therapeutic effects on BDS.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yupeng Ren
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Ping Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Guangdong Pharmaceutical University, School of Chinese Materia Medica, Guangdong, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Guo Y, Gan H, Xu S, Zeng G, Xiao L, Ding Z, Zhu J, Xiong X, Fu Z. Deciphering the Mechanism of Xijiao Dihuang Decoction in Treating Psoriasis by Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:2805-2819. [PMID: 37719360 PMCID: PMC10504908 DOI: 10.2147/dddt.s417954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aims to confirm the efficacy of Xijiao Dihuang decoction (XJDHT), a classic prescription, in treating psoriasis and to explore the potential therapeutic mechanism. Methods For pharmacodynamic analysis, a mouse model of imiquimod cream (IMQ)-induced psoriasis was constructed. Active ingredients and genes of XJDHT, as well as psoriasis-related targets, were obtained from public databases. Intersecting genes (IGEs) of XJDHT and psoriasis were collected by Venn Diagram. A protein-protein interaction (PPI) network of IGEs is constructed through the STRING database. The Molecular Complex Detection (MCODE) and Cytohubba plug-ins of Cytoscape software were used to identified hub genes. In addition, we conducted enrichment analysis of IGEs using the R package clusterProfiler. Hub genes were validated via external GEO databases. The influence of XJDHT on Hub gene expression was examined by qPCR and ELISA, and molecular docking was used to evaluate the binding efficacy between active ingredients and hub genes. Results The results revealed that XJDHT possesses 92 potential genes for psoriasis, and 8 Hub genes were screened. Enrichment analysis suggested that XJDHT ameliorate psoriasis through multiple pathways, including AGE-RAGE, HIF-1, IL-17 and TNF signaling pathway. Validation data confirmed the differential expression of IL6, VEGFA, TNF, MMP9, STAT3, and TLR4. Molecular docking revealed a strong affinity between active ingredients and Hub genes. The efficacy of XJDHT in improving psoriatic lesions in model mice was demonstrated by PASI score and HE staining, potentially attributed to the down-regulation of VEGFA, MMP9, STAT3, TNF, and IL-17A, as evidenced by ELISA and qPCR. Conclusion This study employed network pharmacology and in vitro experiments to identify the potential mechanisms underlying the therapeutic effects of XJDHT on psoriasis, providing a new theoretical basis for its clinical application in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yicheng Guo
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Huiqun Gan
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Shigui Xu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Guosheng Zeng
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Lili Xiao
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhijun Ding
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Jie Zhu
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Xinglong Xiong
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhiyuan Fu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| |
Collapse
|
9
|
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007. [PMID: 37327587 DOI: 10.1016/j.biopha.2023.115007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have been proposed as a novel therapeutic tool for preventing human diseases. However, the number of well-verified plant ELNs remains limited. In this study, the microRNAs in ELNs derived from fresh Rehmanniae Radix, a well-known traditional Chinese herb for treating inflammatory and metabolic diseases, were determined by using microRNA sequencing to investigate the active components in the ELNs and the protection against lipopolysaccharide (LPS)-induced acute lung inflammation in vivo and in vitro. The results showed that rgl-miR-7972 (miR-7972) was the main ingredient in ELNs. It exerted stronger protective activities against LPS-induced acute lung inflammation than catalpol and acteoside, which are two well-known chemical markers in this herb. Moreover, miR-7972 decreased the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide (NO) in LPS-exposed RAW264.7 cells, thereby facilitating M2 macrophage polarization. Mechanically, miR-7972 downregulated the expression of G protein-coupled receptor 161 (GPR161), activating the Hedgehog pathway, and inhibited the biofilm form of Escherichia coli via targeting virulence gene sxt2. Therefore, miR-7972 derived from fresh R. Radix alleviated LPS-induced lung inflammation by targeting the GPR161-mediated Hedgehog pathway, recovering gut microbiota dysbiosis. It also provided a new direction for gaining novel bioactivity nucleic acid drugs and broadening the knowledge on cross-kingdom physiological regulation through miRNAs.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Jia-Feng Wang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Chang-Yi Shi
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Westlake University, Hangzhou 310024, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
10
|
Li S, Tian Z, Xian X, Yan C, Li Q, Li N, Xu X, Hou X, Zhang X, Yang Y, Xue S, Ma S, Cui S, Sun L, Yao X. Catalpol rescues cognitive deficits by attenuating amyloid β plaques and neuroinflammation. Biomed Pharmacother 2023; 165:115026. [PMID: 37336148 DOI: 10.1016/j.biopha.2023.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
This study sought to investigate the anti-amyloid β (Aβ) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS The effects of catalpol on Aβ formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aβ deposits, and NF-κB pathway activity. Aβ peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS Catalpol potently inhibited Aβ fibril and oligomer formation. In microglial cells stimulated by Aβ, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aβ-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aβ deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION The administration of catalpol protected neurons by preventing neuroinflammation and Aβ deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziqi Tian
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Cuihuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nan Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaokang Xu
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaojie Hou
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyun Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sisi Xue
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengkai Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuanlong Cui
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
11
|
Fu Z, Su X, Zhou Q, Feng H, Ding R, Ye H. Protective effects and possible mechanisms of catalpol against diabetic nephropathy in animal models: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1192694. [PMID: 37621314 PMCID: PMC10446169 DOI: 10.3389/fphar.2023.1192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Aim of the Study: Rehmannia glutinosa is a core Chinese herbal medicine for the treatment of diabetes and diabetic nephropathy (DN). It has been used for the treatment of diabetes for over 1,000 years. Catalpol is the main active compound in Rehmannia roots. Current evidence suggests that catalpol exhibits significant anti-diabetic bioactivity, and thus it has attracted increasing research attention for its potential use in treating DN. However, no studies have systematically evaluated these effects, and its mechanism of action remains unclear. This study aimed to evaluate the effects of catalpol on DN, as well as to summarize its possible mechanisms of action, in DN animal models. Materials and Methods: We included all DN-related animal studies with catalpol intervention. These studies were retrieved by searching eight databases from their dates of inception to July 2022. In addition, we evaluated the methodological quality of the included studies using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool. Furthermore, we calculated the weighted standard mean difference (SMD) with 95% confidence interval (CI) using the Review Manager 5.3 software and evaluated publication bias using the Stata (12.0) software. A total of 100 studies were retrieved, of which 12 that included 231 animals were finally included in this review. Results: As compared to the control treatment, treatment with catalpol significantly improved renal function in DN animal models by restoring serum creatinine (Scr) (p = 0.0009) and blood urea nitrogen (BUN) (p < 0.00001) levels, reducing proteinuria (p < 0.00001) and fasting blood glucose (FBG) (p < 0.0001), improving kidney indices (p < 0.0001), and alleviating renal pathological changes in the animal models. In addition, it may elicit its effects by reducing inflammation and oxidative stress, improving podocyte apoptosis, regulating lipid metabolism, delaying renal fibrosis, and enhancing autophagy. Conclusion: The preliminary findings of this preclinical systematic review suggest that catalpol elicits significant protective effects against hyperglycemia-induced kidney injury. However, more high-quality studies need to be carried out in the future to overcome the methodological shortcomings identified in this review.
Collapse
Affiliation(s)
- Zhongmei Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Słuczanowska-Głabowska S, Salmanowicz M, Staniszewska M, Pawlik A. The Role of Sirtuins in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:10782. [PMID: 37445960 DOI: 10.3390/ijms241310782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is the most common chronic inflammatory skin disease with a genetic basis. It is characterised by keratinocyte hyperproliferation, parakeratosis and inflammatory cell infiltration. Psoriasis negatively affects a patient's physical and emotional quality of life. Sirtuins (SIRTs; silent information regulators) are an evolutionarily conserved group of enzymes involved in the post-translational modification of proteins, including deacetylation, polyADP-ribosylation, demalonylation and lipoamidation. SIRTs are involved in a number of cellular pathways related to ageing, inflammation, oxidative stress, epigenetics, tumorigenesis, the cell cycle, DNA repair and cell proliferation, positioning them as an essential component in the pathogenesis of many diseases, including psoriasis. Activation of SIRT1 counteracts oxidative-stress-induced damage by inhibiting the mitogen-activated protein kinases (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways and may mitigate pathological events in psoriasis. There is a significant reduction in the expression of SIRT1, SIRT2, SIRT3, SIRT4 and SIRT5 and an increase in the expression of SIRT6 and SIRT7 in psoriasis. The aim of the review is to draw the attention of physicians and scientists to the importance of SIRTs in dermatology and to provide a basis and impetus for future discussions, research and pharmacological discoveries to modulate SIRT activity. In light of the analysis of the mode of action of SIRTs in psoriasis, SIRT1-SIRT5 agonists and SIRT6 and SIRT7 inhibitors may represent new therapeutic options for the treatment of psoriasis.
Collapse
Affiliation(s)
| | - Maria Salmanowicz
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| |
Collapse
|
13
|
Kong Y, Liu S, Wang S, Yang B, He W, Li H, Yang S, Wang G, Dong C. Design, synthesis and anticancer activities evaluation of novel pyrazole modified catalpol derivatives. Sci Rep 2023; 13:7756. [PMID: 37173367 PMCID: PMC10182059 DOI: 10.1038/s41598-023-33403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Catalpol, a natural product mainly existed in plenty of Chinese traditional medicines, is an iridoid compound with the comprehensive effects on neuroprotective, anti-inflammatory, choleretic, hypoglycemic and anticancer. However, there are some disadvantages for catalpol such as a short half-life in vivo, low druggability, stingy binding efficiency to target proteins and so on. It is necessary to make structural modification and optimization which enhance its performance on disease treatments and clinic applications. Pyrazole compounds have been reported to have excellent anticancer activities. Based on the previous research foundation of our research group on iridoids and the anticancer activities of catalpol and pyrazole, a series of pyrazole modified catalpol compounds were synthesized by principle of drug combination for serving as potential cancer inhibitors. These derivatives are characterized by 1H NMR, 13C NMR and HRMS. The efficacy of anti-esophageal cancer and anti-pancreatic cancer activities were evaluated by the MTT assay on two esophageal cancer cells Eca-109 and EC-9706, and two pancreatic cancer cells PANC-1, BxPC-3 and normal pancreatic cell line HPDE6-C7, which showed that the compound 3e had strong inhibitory activity against esophageal cancer cells, this providing a theoretical basis for the discovery of catalpol-containing drugs.
Collapse
Affiliation(s)
- Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuanglin Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Henan Polysaccharide Research Center, Zhengzhou, 450046, Henan, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, 450046, Henan, China
| | - Shaopei Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Henan Polysaccharide Research Center, Zhengzhou, 450046, Henan, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, 450046, Henan, China
| | - Bin Yang
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wei He
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Hehe Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Siqi Yang
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Guoqing Wang
- Department of Applied Chemistry, Zhengzhou University of Light Industry, ZhengzhouHenan, 450001, China.
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
- Henan Polysaccharide Research Center, Zhengzhou, 450046, Henan, China.
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
14
|
Shi WB, Wang ZX, Liu HB, Jia YJ, Wang YP, Xu X, Zhang Y, Qi XD, Hu FD. Study on the mechanism of Fufang E'jiao Jiang on precancerous lesions of gastric cancer based on network pharmacology and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116030. [PMID: 36563889 DOI: 10.1016/j.jep.2022.116030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang E'jiao Jiang (FEJ) is a prominent traditional Chinese medicine prescription, which consists of Asini Corii Colla (Donkey-hide gelatin prepared by stewing and concentrating from the hide of Equus asinus Linnaeus., ACC), Codonopsis Radix (the dried roots of Codonopsis pilosula (Franch.) Nannf., CR), Ginseng Radix et Rhizoma Rubra (the steamed and dried root of Panax ginseng C.A. Mey., GRR), Crataegi Fructus (the mature fruits of Crataegus pinnatifida Bunge., CF), and Rehmanniae Radix Praeparata (the steamed and sun dried tuber of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey., RRP). It is a popularly used prescription for "nourishing Qi and nourishing blood". AIM OF THE STUDY To explore the potential mechanism of FEJ on precancerous lesion of gastric cancer in rats by combining network pharmacology and metabolomics. METHODS Traditional Chinese Medicine Systems Pharmacology and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine were used to identify the ingredients and potential targets of FEJ. GeneCards database was used to define PLGC-associated targets. We built a herb-component-disease-target network and analyzed the protein-protein interaction network. Underlying mechanisms were identified using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. In addition, 40% ethanol, N-methyl-N'-nitro-N-nitroguanidine and irregular eating were used to establish PLGC rats model. We also evaluated the efficacy of FEJ on MNNG-induced PLGC rats by body weight, histopathology, blood routine and cytokine levels, while the predicted pathway was determined by the Western blot. Ultra-performance liquid chromatography-tandem mass spectrometry-based serum non-targeted metabolomics was used to select potential biomarkers and relevant pathways for FEJ in the treatment of PLGC. RESULTS Network pharmacology showed that FEJ exhibited anti-PLGC effects through regulating ALB, TNF, VEGFA, TP53, AKT1 and other targets, and the potential pathways mainly involved cancer-related, TNF, PI3K-AKT, HIF-1, and other signaling pathways. Animal experiments illustrated that FEJ could suppress inflammation, regulate gastrointestinal hormones, and inhibit the expression of PI3K/AKT/HIF-1α pathway-related proteins. Based on serum non-targeted metabolomics analysis, 12 differential metabolites responding to FEJ treatment were identified, and metabolic pathway analysis showed that the role of FEJ was concentrated in 6 metabolic pathways. CONCLUSION Based on network pharmacology, animal experiments and metabolomics, we found that FEJ might ameliorate gastric mucosal injury in PLGC rats by regulating gastrointestinal hormones and inhibiting inflammation, and its mechanism of action is related to the inhibition of excessive activation of PI3K/AKT/HIF-1α signaling pathway and regulation of disorders of body energy metabolism. This comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Wen-Bo Shi
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Zi-Xia Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Hai-Bin Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, 252052, China
| | - Yan-Jun Jia
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Yan-Ping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Xu Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, 730000, China
| | - Yan Zhang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, 252052, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China.
| | - Xiao-Dan Qi
- Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China
| | - Fang-Di Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Liu J, Du J, Li Y, Wang F, Song D, Lin J, Li B, Li L. Catalpol induces apoptosis in breast cancer in vitro and in vivo: Involvement of mitochondria apoptosis pathway and post-translational modifications. Toxicol Appl Pharmacol 2022; 454:116215. [PMID: 36067808 DOI: 10.1016/j.taap.2022.116215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer.
Collapse
Affiliation(s)
- Jierong Liu
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Bao'an Shenzhen (Group) Shenzhen, China
| | - Yuanhua Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Daibo Song
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China; Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiantao Lin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
16
|
Wang H, Wu J, Fan H, Ji Y, Han C, Li C, Jiang S. The Impact of Catalpol on Proliferation, Apoptosis, Migration, and Oxidative Stress of Lung Cancer Cells Based on Nrf2/ARE Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5621341. [PMID: 35898682 PMCID: PMC9313965 DOI: 10.1155/2022/5621341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
The effects of catalpol on lung cancer cell proliferation, apoptosis, migration, and oxidative stress via the Nrf2/ARE signaling pathway are investigated in this work. Catalpol-12 g/mL group, catalpol-24 g/mL group, catalpol-48 g/mL group, catalpol - 48 g/mL + vector group, catalpol - 48 g/mL + Nrf2 group, si-NC group, and si-Nrf2 group were used to split lung cancer cells A549 into control groups. Proliferation was detected using the CCK-8 assay; apoptosis was detected using flow cytometry; migration was detected using the transwell chamber; ROS was distinguished using the DCFHDA method; MDA, SOD, and GSH were detected using the microvolume method; and Cleaved Caspase-3, Cleaved Caspase-9, Nrf2, HO-1, MMP-9, and MMP-2 were detected using the Western blot method. Catalpol 12 g/mL and 24 g/mL-48 g/mL treatment decreased the proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells when compared to the control group. SOD and GSH levels of lung cancer cells were decreased, and MDA and ROS levels were increased. Cleaved caspase-3, cleaved caspase-9 protein expression levels, and apoptosis were boosted (P < 0.05). The proliferation activity, migration number, and protein levels of Nrf2, HO-1, MMP-9, and MMP-2 in the catalpol - 48 g/mL + Nrf2 group were raised compared to the catalpol - 48 g/mL + vector group, whereas there was an apparent drop in the Cleaved Caspase-3, Cleaved Caspase-9, and apoptosis rate. Similarly, SOD and GSH contents increased, whereas MDA and ROS decreased (P < 0.05). The proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells in the si-Nrf2 group were all decreased when compared to the si-NC and control groups. Cleaved Caspase-3 and Cleaved Caspase-9 protein expression, on the other hand, increased as MDA and ROS levels were raised while SOD and GSH levels dropped (P < 0.05). It reveals that catalpol inhibits the Nrf2/ARE signaling pathway, which causes antiproliferation, migration, apoptosis, and oxidative stress in cancer cells of lungs. The rate of apoptosis was also lowered.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Jingtao Wu
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Haiyin Fan
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Yuan Ji
- Department of Clinical Nursing, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chunbin Han
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, unige.it, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Zhou H, Li F, Li Y. Anti-Cancer Activity of Gedunin by Induction of Apoptosis in Human Gastric Cancer AGS Cells. Appl Biochem Biotechnol 2022; 194:5322-5332. [PMID: 35759172 DOI: 10.1007/s12010-022-04001-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Currently, gastric cancer is considered one of the major causes of high mortality and morbidity worldwide. Recent advances in therapeutics, clinical treatment, staging procedures, and imaging techniques are high, yet the prevalence of gastric cancer has not been reduced. Usage of the synthetic drug has many side effects that can lead to other ailments. Gedunin, a phytochemical derived from Azadirachta indica (neem tree), exhibits several pharmacological activities including antitumor, anti-inflammatory, antiulcer, antipyretics, antibacterial, antifungal, anti-diabetic, and antimalarial properties. In the current investigation, the effect of gedunin on the cell viability; reactive oxygen species (ROS) generation by DCFH-DA staining; mitochondrial membrane potential (MMP) by Rh-123 staining; apoptosis by AO/EtBr staining; cell migration and wound healing ability by wound scratch assay; and Bcl-2, Bax, caspase-3, and caspase-9 by ELISA techniques were analyzed in the AGS cells. The treatment with gedunin effectively inhibited the cell viability with IC50 = 20µM, increased the ROS generation, and triggered the apoptosis in AGS cells. The gedunin-treated AGS cells also demonstrated a decreased MMP status. The increment in the ROS generation leads to oxidative stress which in turn induce the apoptosis. The activity of Bax gene was upregulated and the activity of Bcl-2 gene was down-regulated in the AGS cells after the treatment with gedunin. In the AGS cells treated with gedunin, the caspase-3 and caspase-9 activities were increased. In overall, these findings suggested that gedunin can be used as a potent chemotherapeutic agent in the future to treat gastric cancer.
Collapse
Affiliation(s)
- Heying Zhou
- Department of General Surgery, Jiyang District People's Hospital, No. 17, Xinyuan Road, Jiyang District, 251400, Ji Nan City, China
| | - Fengxia Li
- College of Health, Binzhou Polytechnic, No. 919, Huanghe 12th Road, 256603, Binzhou City, China
| | - Yanli Li
- College of Health, Binzhou Polytechnic, No. 919, Huanghe 12th Road, 256603, Binzhou City, China.
| |
Collapse
|
18
|
Zhong L, Shi C, Hou Q, Yang R, Li M, Fu X. Promotive effects of four herbal medicine
ARCC
on wound healing in mice and human. Health Sci Rep 2022; 5:e494. [PMID: 35509387 PMCID: PMC9059203 DOI: 10.1002/hsr2.494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Background Traditional Chinese medicine (TCM) had been extensively used in China for wound management and had shown great potential in wound treatment while its mechanism is still needed to be addressed. Objective The present study sought to investigate the therapuetic effect of the TCM ARCC on acute and chronic wounds. Methods Here, using the ultra‐low temperature preparation method, the mixed ultramicro powder prepared with Angelica (A), Angelica (R), Calcined Gypsum (C) and Caleramide (C) named as ARCC. The effects of ARCC on wound healing in adult and aged mice were comparatively evaluated through a full‐thickness skin defect model. In addition, we randomly selected 10 patients aged 55 to 70 years from a cohort of 500 patients with diabetic feet to assess their prognosis. Results As the results showed that the healing rate had delayed in aged mice compared to adult mice, while ARCC prominently augmented the healing process in aged mice. Moreover, ARCC treatment wounds in aged mice showed accelerated re‐epithelization, enhanced granulation tissue formation, and increased vascularization, which was similar to that of adult mice. Furthermore, ARCC also achieved therapeutic effects in diabetic foot patients, accelerating wound healing. The results found that foot ulcers improved significantly 7 days after the ARCC administration, and 80% of patients were healed within 1 month. Discussion In the present study, ARCC was found to have therapeutic effects on both acute and chronic wounds in animal models. ARCC also demonstrated therapeutic effects in diabetic feet, which promoted wound healing, prevented wound infection, and avoided the risk of further surgery or amputation. All these evidences suggested ARCC was a promising approach for wound treatment. Conclusions ARCC might be recommended as a promising therapeutic medication in diabetic and chronic refractory wounds.
Collapse
Affiliation(s)
- Lingzhi Zhong
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Cuijuan Shi
- Department of Endocrinology First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China
- National Clinical Research Center for Chinese Meicine Acupuncture and Moxibustion Tianjin China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Rungong Yang
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- Central Laboratory, Trauma Treatment Center, Central Laboratory Chinese PLA General Hospital Hainan Hospital Sanya China
| | - Xiaobing Fu
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration Beijing China
- Research Unit of Trauma Care, Tissue Repair and Regeneration Chinese Academy of Medical Sciences 2019RU051 Beijing China
| |
Collapse
|
19
|
Li M, Jiang H, Hao Y, Du K, Du H, Ma C, Tu H, He Y. A systematic review on botany, processing, application, phytochemistry and pharmacological action of Radix Rehmnniae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114820. [PMID: 34767834 DOI: 10.1016/j.jep.2021.114820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Rehmanniae (RR) is the tuber root of Rehmannia glutionsa Libosch, which was firstly recorded in Shennong's Classic of Materia Medica (⟪⟫). RR is a non-toxic and wide used traditional Chinese medicine. RR has the effect of clearing heat, generating essence, cooling blood, stopping bleeding, nourishing yin and blood, and filling marrow. It is used in clinic in the form of processed decoction pieces, including Dry Radix Rehmnniae (DRR) and Rehmanniae Radix Praeparata (RRP). The application of RR in traditional Chinese medicine (TCM) prescriptions can treat various diseases, such as anemia, irregular menstruation, deficiency of liver yin, renal failure and so on. AIM OF REVIEW This paper aims to provide a comprehensive and productive review of RR, which mainly contains botanical characteristics, processing methods, traditional application, chemical composition, quality control and pharmacological action. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Radix Rehmnniae", "Rehmanniae Radix Praeparata", "processing", "clinical application", "chemical composition", "quality control", and "pharmacological action". In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS RR is a traditional Chinese herbal medicine with clinical value and rich resources. More than 100 components have been isolated and identified from RR. It has multiple pharmacological actions, such as hemostasis, antioxidation, anti-osteoporosis, lowering blood sugar, improving renal function, anti-inflammation, protecting neuronal function, antidepression and anti-anxiety. DRR and RRP are two different processed products of RR. After processing, there are great changes in property, taste, efficacy, clinical application, chemical composition and pharmacological action. At present, identifying chemical constituents of RR and its medicinal value has been deeply studied. However, there is a lack of research on the reasons for the differences in pharmacological effects between DRR and RRP. The reasons for these differences need to be further verified. Catalpol, the active component of RR, has been studied extensively in the literature, but the pharmacological effects of catalpol cannot represent the pharmacological effects of the whole RR. In the future, effective components such as rehmannioside D, polysaccharide, total glycosides, and effective parts in RR need to be further studied and developed. The pharmacodynamic material basis and mechanism of RR need to be further discussed. The scientific connotation and processing methods of RRP need to be studied and standardized.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yule Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hongling Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - He Tu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, 610041, China.
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Guizhou Yibai Pharmaceutical Co. Ltd. Guiyang, 550008, China.
| |
Collapse
|
20
|
Liu S, Kong Y, Cai J, Dong C. Advances in Structural Modification and Pharmacological Activity of Catalpol and its Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuanglin Liu
- Henan University of Chinese Medicine
- Henan Polysaccharide Research Center Zhengzhou 450046 China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research
| | | | - Juntao Cai
- Henan University of Chinese Medicine
- Henan Polysaccharide Research Center Zhengzhou 450046 China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research
| | - Chunhong Dong
- Henan University of Chinese Medicine
- Henan Polysaccharide Research Center Zhengzhou 450046 China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research
| |
Collapse
|
21
|
Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? Nutrients 2021; 13:nu13092974. [PMID: 34578851 PMCID: PMC8466600 DOI: 10.3390/nu13092974] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Iridoids are glycosides found in plants, having inherent roles in defending them against infection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers, and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers. This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, invasion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addition, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs), resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors, i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent rapid cancer progression and metastasis.
Collapse
|
22
|
Thu VK, Thoa NT, Hien NTT, Hang DTT, Kiem PV. Iridoid glycosides link with phenylpropanoids from Rehmannia glutinosa. Nat Prod Res 2021; 36:5370-5375. [PMID: 34039230 DOI: 10.1080/14786419.2021.1931189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two new iridoid glycosides link with phenylpropanoids, rehmanniosides G (1) and H (2) along with 11 known compounds, 6-O-(E)-caffeoylajugol (3), 6-O-(E)-feruloylajugol (4), verbasoside (5), jionoside C (6), acteoside (7), leucosceptoside A (8), brachynoside (9), jionoside B1 (10), jionoside A1 (11), isoacteoside (12) and isomartynoside (13) were isolated from the roots of Rehmannia glutinosa (Gaertn.) DC. Their chemical structures were elucidated on the basis of extensive spectroscopic methods, including 1D, 2D NMR and mass spectra. Compounds 7 - 11 showed significant inhibitory α-glucosidase with IC50 values ranging from 261.4 to 408.7 μM (acarbose, IC50 of 204.2 ± 19.9 μM).
Collapse
Affiliation(s)
- Vu Kim Thu
- Hanoi University of Mining and Geology, Hanoi, Vietnam
| | | | | | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
23
|
Xiang Z, Wang S, Li H, Dong P, Dong F, Li Z, Dai L, Zhang J. Detection and Identification of Catalpol Metabolites in the Rat Plasma, Urine and Faeces Using Ultra-high Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole-orbitrap High-resolution Accurate Mass Spectrometry. Curr Drug Metab 2021; 22:173-184. [PMID: 33243112 DOI: 10.2174/1389200221999201125205515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Catalpol, an iridoid glycoside, is one of the richest bioactive components present in Rehmannia glutinosa. More and more metabolites of drugs have exhibited various pharmacological effects, thus providing guidance for clinical application. However, few researches have paid attention to the metabolism of catalpol. OBJECTIVE This study aimed to establish a rapid and effective method to identify catalpol metabolites and evaluate the biotransformation pathways of catalpol in rats. METHODS In this study, catalpol metabolites in rat urine, plasma and faeces were analyzed by UHPLC-Q-Exactive MS for the characterization of the metabolism of catalpol. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of catalpol were identified by comparing the diagnostic product ions (DPIs), chromatographic retention times, neutral loss fragments (NLFs) and accurate mass measurement with those of catalpol reference standard. RESULTS A total of 29 catalpol metabolites were detected and identified in both negative and positive ion modes. Nine metabolic reactions, including deglycosylation, hydroxylation, dihydroxylation, hydrogenation, dehydrogenation, oxidation of methylene to ketone, glucuronidation, glycine conjugation and cysteine conjugation, were proposed. CONCLUSION A rapid and effective method based on UHPLC-Q-Exactive MS was developed to mine the metabolism information of catalpol. Results of metabolites and biotransformation pathways of catalpol suggested that when orally administrated, catalpol was firstly metabolized into catalpol aglycone, after which phase I and phase II reactions occurred. However, hydrophilic chromatography-mass spectrometry is still needed to further find the polar metabolites of catalpol.
Collapse
Affiliation(s)
- Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Haoran Li
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Dong
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Li
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long Dai
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
24
|
Liu A, Zhang B, Zhao W, Tu Y, Wang Q, Li J. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered 2020; 12:183-195. [PMID: 33323018 PMCID: PMC8806253 DOI: 10.1080/21655979.2020.1863015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects approximately 2% of worldwide population, and causing long-term troubles to the patients. Therefore, it is urgent to develop safe and effective therapeutic drugs. Catalpol is a natural iridoid glucoside, that has several remarkable pharmacological effects, however, whether catalpol can alleviated psoriasis has not been explored. The goal of the present work is to study the role of catalpol in psoriasis in vivo and in vitro. Imiquimod-induced psoriasis-like mice were applied with different concentrations of catalpol for 8 consecutive days. The severity degree of psoriasis was estimated and the skin pathological changes were detected by H&E staining. Also, TNF-α-stimulated keratinocytes were treated with different concentrations of catalpol, then the oxidative stress and inflammation factors, as well as the expression of SIRT1 and activation of NF-kB and MAPK pathways were measured. The results showed that catalpol reduced the erythema, scaling, ear thickness, and changed pathological phenotypes in the lesioned skin region in mice. Treatment with catalpol significantly suppressed the oxidative stress and inflammatory reactions in vivo and in vitro, as reflected by the decreased secretion or expression of oxidative stress indicators and proinflammatory factors. Furthermore, the SIRT1 was up-regulated and the NF-κB and MAPKs signaling pathways were suppressed by the treatment of catalpol in vivo and in vitro. In summary, our data suggested that catalpol may have a therapeutic property of psoriasis by ameliorating oxidative stress and inflammation partly through SIRT1 mediated suppression of NF-κB and MAPKs pathways. Abbreviation: CAT: catalase; ELISA: enzyme-linked immunosorbent assay; GSH: glutathione; HRP: horseradish peroxidase; IMQ: imiquimod; JNK: c-Jun NH 2-terminal kinases; MAPKs: mitogen-activated protein kinases; MDA: malondialdehyde; NC: negative control group; NF-kB: nuclear factor kappa B; PASI: psoriasis area and severity index; PVDF: polyvinylidene difluoride membranes; qRT-PCR: quantitative real time polymerase chain reaction; ROS: reactive oxygen species; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SIRT1: silent information regulator 1; SOD: Cu/Zn superoxide dismutase
Collapse
Affiliation(s)
- Aimin Liu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Wei Zhao
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Qingxing Wang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Jing Li
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| |
Collapse
|
25
|
Wu L, Li H, Chen S, Wu X, Chen X, Wang F. Catalpol inhibits the proliferation, migration and metastasis of HCC cells by regulating miR‑140‑5p expression. Mol Med Rep 2020; 23:29. [PMID: 33179108 PMCID: PMC7673346 DOI: 10.3892/mmr.2020.11667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent malignant tumor. Catalpol is a Chinese medicine extract with a number of pharmacologically active properties. The present study aimed to investigate the effects and mechanisms of catalpol in HCC. HCC cells were treated with catalpol in the presence or absence of microRNA (miR)-140-5p inhibitor, and assays to determine cell viability, proliferation, invasion and migration were performed. Reverse transcription-quantitative PCR and western blotting were performed to determine the mRNA and protein expression levels of miR-140-5p, vimentin, N-Cadherin and E-Cadherin. Moreover, cells were treated with catalpol in the absence or presence of transforming growth factor (TGF)-β1, and the cell morphology was observed under a microscope. The results demonstrated that catalpol inhibited cell proliferation, invasion and migration, and decreased the expression levels of vimentin and N-cadherin, but increased the expression levels of E-cadherin and miR-140-5p. Catalpol inhibited morphological changes in epithelial-mesenchymal transformation (EMT) of cells induced by TGF-β1. Following inhibition of miR-140-5p expression, the proliferation, invasion and migration of HCC cells were promoted, E-cadherin expression was decreased, and the levels of vimentin and N-cadherin were increased. The miR-140-5p inhibitor effectively reversed the inhibitory effect of catalpol on cell proliferation, invasion and migration. Thus, the results suggested that the antitumor potential of catalpol in HCC may be exerted by regulating the expression of miR-140-5p to inhibit proliferation, invasion, migration and EMT of HCC cells.
Collapse
Affiliation(s)
- Linsheng Wu
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Haoxia Li
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shengyou Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaoqiang Wu
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaomin Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Fangping Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Xinchang, Shaoxing, Zhejiang 312500, P.R. China
| |
Collapse
|
26
|
Rahamooz-Haghighi S, Bagheri K, Sharafi A, Danafar H. Establishment and elicitation of transgenic root culture of Plantago lanceolata and evaluation of its anti-bacterial and cytotoxicity activity. Prep Biochem Biotechnol 2020; 51:207-224. [PMID: 32845793 DOI: 10.1080/10826068.2020.1805757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hairy root induction in Plantago lanceolata was optimized to take advantage of transformed root cultures. The highest frequency of transformation was achieved using leaf explant, A4 strain, pre-cultivation of explant, 150 µM Acetosyringone, 5 min inoculation, half-strength Murashige and Skoog basal medium as co-cultivation, and half-strength Gamborg's basal medium as a selective medium with 3% sucrose. Among the studied compound encompassing gallic acid, catalpol and apigenin, only the production of gallic acid in hairy roots was affected by 20 mg L-1 AgNO3 and 100 mg L-1 chitosan at 24 hr which yielded 7.63, 4.76-fold increase in its content, respectively. The methanolic extracts of hairy roots elicited by 20 mg L-1 AgNO3 exhibited anti-bacterial activity (MIC and MBC = 25 mg mL-1) against Klebsiella pneumoniae, Proteus vulgaris and Salmonella typhi and anti-bacterial potential of non-elicited hairy roots of P. lanceolata (MIC = 25 mg mL-1 and MBC = 35 mg mL-1) were more active against Klebsiella pneumoniae and P. vulgaris than other bacteria. The methanolic extracts of the P. lanceolata hairy roots demonstrated significant cytotoxic activity on colorectal carcinoma cell line (SW-480) with IC50 = 250.65 ± 6.8 µg mL-1 in comparison to human embryonic kidney (HEK-293) with IC50 = 5263.65 ± 4.6 µg mL-1. Plantago lanceolata hairy roots showed important biological activity explaining its role in traditional medicine.
Collapse
Affiliation(s)
- Samaneh Rahamooz-Haghighi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Khadijeh Bagheri
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
27
|
Dai D, Wu H, He C, Wang X, Luo Y, Song P. Evidence and potential mechanisms of traditional Chinese medicine for the treatment of psoriasis vulgaris: a systematic review and meta-analysis. J DERMATOL TREAT 2020; 33:671-681. [PMID: 32610023 DOI: 10.1080/09546634.2020.1789048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dan Dai
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyan He
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqi Luo
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing China
| |
Collapse
|
28
|
Qiao PF, Yao L, Zeng ZL. Catalpol‑mediated microRNA‑34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer. Oncol Rep 2020; 43:1053-1066. [PMID: 32323786 PMCID: PMC7057773 DOI: 10.3892/or.2020.7494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common digestive tract tumors worldwide. Catalpol exerts inhibitory effects on the progression of several cancer types by regulating microRNAs (miRs). However, the precise role and carcinostatic mechanism of catalpol on CRC cells are poorly understood which limits the application of catalpol treatment. In the present study, miR-34a and sirtuin 1 (SIRT1) expression levels were detected in CRC tissues and CRC cell lines by RT-qPCR. Computational software analysis, luciferase assays and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Effects of catalpol on cell viability, apoptosis, autophagic flux and the miR-34a/SIRT1 axis in the CRC cells were assessed by CCK-8 assay, flow cytometry, electron microscopy and western blotting, respectively. Whether the miR-34a/SIRT1 axis participated in catalpol-mediated autophagy and apoptosis was investigated. The effects of catalpol on the miR-34a/SIRT1 axis and malignant behavior were evaluated in a rat model of azoxymethane (AOM)-induced CRC. It was revealed that miR-34a expression levels were significantly decreased while SIRT1 was overexpressed in most of the CRC tissues and all the CRC cell lines. Clinically, a low level of miR-34a was correlated with poor clinicopathological characteristics in CRC patients. Catalpol reduced cell viability, suppressed autophagy, promoted apoptosis, and regulated the expression of SIRT1 by inducing miR-34a in vitro and in vivo. The autophagy-inhibiting effect of catalpol may be a mechanism to promote apoptosis of CRC cells. miR-34a mimic transfection resulted in autophagy-suppressive activity similar to that of catalpol, while the miR-34a inhibitor attenuated the antiautophagic effects of catalpol. In conclusion, miR-34a is involved in regulating catalpol-mediated autophagy and malignant behavior by directly inhibiting SIRT1 in CRC.
Collapse
Affiliation(s)
- Peng-Fei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhao-Lin Zeng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
29
|
Nguyen H, Dan T, Uto T, Ohta T, Watanabe H, Shoyama Y. Phytochemical profile of the aerial parts of Rehmannia glutinosa liboschitz var. purpurea Makino. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_243_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Bhattamisra SK, Yap KH, Rao V, Choudhury H. Multiple Biological Effects of an Iridoid Glucoside, Catalpol and Its Underlying Molecular Mechanisms. Biomolecules 2019; 10:E32. [PMID: 31878316 PMCID: PMC7023090 DOI: 10.3390/biom10010032] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Catalpol, an iridoid glucoside, is widely distributed in many plant families and is primarily obtained from the root of Rehmanniaglutinosa Libosch. Rehmanniaglutinosa is a plant very commonly used in Chinese and Korean traditional medicine for various disorders, including diabetes mellitus, neuronal disorders, and inflammation. Catalpol has been studied extensively for its biological properties both in vitro and in vivo. This review aims to appraise the biological effects of catalpol and their underlying mechanisms. An extensive literature search was conducted using the keyword "Catalpol" in the public domains of Google scholar, PubMed, and Scifinder. Catalpol exhibits anti-diabetic, cardiovascular protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and anti-oxidant effects in experimental studies. Anti-inflammatory and antioxidant properties are mostly related for its biological effect. However, some specific mechanisms are also elucidated. Elevated serotonin and BDNF level by catalpol significantly protect against depression and neurodegeneration. Catalpol demonstrated an increased mitochondrial biogenesis and activation of PI3K/Akt pathway for insulin sensitizing effect. Further, its cardiovascular protective effect was linked to PI3K/Akt, apelin/APJ and Jak-Stat pathway. Catalpol produced a significant reduction in cell proliferation and an increase in apoptosis in different cancer conditions. Overall, catalpol demonstrated multiple biological effects due to its numerous mechanisms including anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kah Heng Yap
- School of Post graduate studies, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; (K.H.Y.); (V.R.)
| | - Vikram Rao
- School of Post graduate studies, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; (K.H.Y.); (V.R.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia;
| |
Collapse
|
31
|
Zhang J, Bi R, Meng Q, Wang C, Huo X, Liu Z, Wang C, Sun P, Sun H, Ma X, Wu J, Liu K. Catalpol alleviates adriamycin-induced nephropathy by activating the SIRT1 signalling pathway in vivo and in vitro. Br J Pharmacol 2019; 176:4558-4573. [PMID: 31378931 DOI: 10.1111/bph.14822] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Catalpol, a water-soluble active ingredient isolated from Rehmannia glutinosa, exhibits multiple pharmacological activities. However, the mechanism(s) underlying protection against renal injury by catalpol remains unknown. EXPERIMENTAL APPROACH Adriamycin-induced kidney injury models associated with podocyte damage were employed to investigate the nephroprotective effects of catalpol. In vivo, TUNEL and haematoxylin-eosin staining was used to evaluate the effect of catalpol on kidney injury in mice. In vitro, effects of catalpol on podocyte damage induced by adriamycin was determined by elisa kit, flow cytometry, Hoechst 33342, and TUNEL staining. The mechanism was investigated by siRNA, EX527, and docking simulations. KEY RESULTS In vivo, catalpol treatment significantly improved adriamycin-induced kidney pathological changes and decreased the number of apoptotic cells. In vitro, catalpol markedly decreased the intracellular accumulation of adriamycin and reduced the calcium ion level in podocytes and then attenuated apoptosis. Importantly, the regulatory effects of catalpol on sirtuin 1 (SIRT1), multidrug resistance-associated protein 2 (MRP2), and the TRPC6 channel were mostly abolished after incubation with SIRT1 siRNA or the SIRT1-specific inhibitor EX527. Furthermore, docking simulations showed that catalpol efficiently oriented itself in the active site of SIRT1, indicating a higher total binding affinity score than that of other SIRT1 activators, such as resveratrol, SRT2104, and quercetin. CONCLUSION AND IMPLICATIONS Taken together, our results suggest that catalpol exhibits strong protective effects against adriamycin-induced nephropathy by inducing SIRT1-mediated inhibition of TRPC6 expression and enhancing MRP2 expression.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Ran Bi
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Chong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
32
|
Zou G, Zhong W, Wu F, Wang X, Liu L. Inhibition of lncRNA Neat1 by catalpol via suppressing transcriptional activity of NF-κB attenuates cardiomyocyte apoptosis. Cell Cycle 2019; 18:3432-3441. [PMID: 31736383 DOI: 10.1080/15384101.2019.1673619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is considered as a major pathogenesis in myocardial damage; however, effective therapies are limited so far. The present study aimed to investigate the in vitro antioxidative mechanism of Catalpol in cardiomyocytes. The results indicated that Catalpol attenuated high glucose (HG)-induced apoptosis in mouse cardiomyocytes via significantly downregulating long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (Neat1) expression. Furthermore, Catalpol downregulated Neat1 expression and attenuated apoptosis by inhibiting production of intracellular reactive oxygen species (ROS) in HG-treated cardiomyocytes. Moreover, Catalpol also suppressed HG-induced degradation of IκBα and the nuclear localization of nulear factor-κB (NF-κB) by decreasing the intracellular ROS levels. Additionally, chromatin immunoprecipitation (ChIP) and dual-luciferase activity assays validated that NF-κB bound to Neat1 promoter to activate Neat1 expression. In summary, these results implied that Catalpol protected mouse cardiomyocytes against oxidative injury at least partly through ROS-NF-κB-Neat1 axis.
Collapse
Affiliation(s)
- Guoliang Zou
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weili Zhong
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fan Wu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoxue Wang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Liu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Wang LY, Yu X, Li XX, Zhao YN, Wang CY, Wang ZY, He ZY. Catalpol Exerts a Neuroprotective Effect in the MPTP Mouse Model of Parkinson's Disease. Front Aging Neurosci 2019; 11:316. [PMID: 31849636 PMCID: PMC6889905 DOI: 10.3389/fnagi.2019.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The degeneration of dopaminergic (DA) neurons in Parkinson’s disease (PD) is related to inflammation and oxidative stress. Anti-inflammatory agents could reduce the risk or slow the progression of PD. Catalpol, an iridoid glycoside extracted from the roots of Rehmannia radix, has been reported to reduce the release of inflammatory factors and exert neuroprotective effects. 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP)-treated mice were used as the PD model and the roles of catalpol on DA neurons and its potential mechanism were investigated in this study. We found that catalpol administration mitigated the loss of DA neurons induced by MPTP and increased exploratory behavior along with tyrosine hydroxylase (TH) expression, which was accompanied by astrocyte and microglia activation. Importantly, catalpol administration significantly inhibited MPTP-triggered oxidative stress, restored growth-associated protein 43 (GAP43) and vascular endothelial growth factor (VEGF) levels. Further, we found that catalpol suppressed the activation of MKK4/JNK/c-Jun signaling, and reduced the pro-inflammatory factors and inflammasome in the mouse model of PD. Our results suggest that catalpol relieves MPTP-triggered oxidative stress, which may benefit to avoid the occurrence of chronic inflammatory reaction. Catalpol alleviates MPTP-triggered oxidative stress and thereby prevents neurodegenerative diseases-related inflammatory reaction, highlighting its therapeutic potential for the management of PD symptoms.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Xin Yu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Xiao-Xi Li
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Yi-Nan Zhao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhi-Yi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Zhao L, Wang Y, Liu Q. Catalpol inhibits cell proliferation, invasion and migration through regulating miR-22-3p/MTA3 signalling in hepatocellular carcinoma. Exp Mol Pathol 2019; 109:51-60. [DOI: 10.1016/j.yexmp.2019.104265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/13/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023]
|
35
|
Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 2019; 168:285-304. [PMID: 31301277 DOI: 10.1016/j.bcp.2019.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ginsenoside Rg5, a rare saponin belonging to the family of protopanaxadiol ginsenosides, has been demonstrated to have potential anti-tumor effects in various cancers. However, the effect of Rg5 on human gastric cancer and the underlying molecular mechanisms remain to be elucidated. In this study, Rg5 could suppress cell proliferation by causing G2/M phase arrest. Treatment with Rg5 could induce apoptosis through the extrinsic death receptor and intrinsic mitochondrial pathways. Autophagy induction was demonstrated by the formation of autophagosomes and autophagy-related proteins. Rg5-induced cell death was inhibited by the autophagy inhibitor 3-MA and apoptosis inhibitor Z-VAD-FMK. Moreover, the suppression of apoptosis weakened Rg5-induced autophagy, while the inhibition of autophagy attenuated Rg5-induced apoptosis. Further studies revealed that Rg5 induced ROS production and activated MAPK signaling pathways. The ROS scavenger NAC markedly diminished G2/M arrest, apoptosis, autophagy and activation of MAPK pathways induced by Rg5. The p38 inhibitor SB203580 or knockdown of p38 by siRNA clearly reversed Rg5-induced apoptosis and G2/M arrest. The JNK inhibitor SP600125 or knockdown of JNK by siRNA markedly attenuated Rg5-induced G2/M arrest, apoptosis and autophagy. The inhibition of ERK inhibitor U0126 or knockdown of ERK by siRNA clearly restored Rg5-induced apoptosis and autophagy. Finally, Rg5 significantly suppressed the growth of xenograft gastric tumors with fewer side effects. Overall, the evidence suggested that Rg5 is a novel and promising strategy for the treatment of gastric cancer owing to its high efficacy, multiple mechanisms and fewer side effects.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China.
| |
Collapse
|
36
|
Tang H, Du W, Jiang Y, Li H, Bo H, Song S. Upregulated expression of ROCK1 promotes cell proliferation by functioning as a target of miR-335-5p in non-small cell lung cancer. J Cell Physiol 2019. [PMID: 31140617 DOI: 10.1002/jcp.28886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Lung cancer is regarded as one of the dominant causes in cancer patients among men and women all over the world. Rho-associated coiled-coil forming protein kinase l (ROCK1) is characterized as pivotal downstream effectors of the small GTPase RhoA and reported to participate in tumor metastasis. miR-335-5p acts as tumor suppressor microRNA and is identified to be downregulated in tumor tissues. miR-335-5p/ROCK1 axis has been demonstrated to promote cell proliferation and metastasis in gastric cancer, hepatocellular carcinoma and so on. However, the role it plays in promoting cell proliferation in non-small cell lung cancer (NSCLC) is poorly understood. Here, we demonstrated that the upregulated expression of ROCK1 was highly correlated with downregulated expression of miR-335-5p in NSCLC tissues and cell lines. Mechanistically, Knockdown of ROCK1 inhibited cell proliferation in vitro, accompanied by cell cycle change confirmed by flow analysis. Furthermore, miR-335-5p can downregulate the ROCK1 expression by directly binding to the 3'-untranslated region in posttranscriptional level. In vivo animal model showed similar results. Our findings highlighted the crucial role that miR-335-5p acted as a tumor suppressor to modulate cell proliferation and cell cycle progression via downregulating ROCK1 expression. And this miR-335-5p/ROCK1 axis contributed to NSCLC pathogenesis and might be promising targets for NSCLC therapy.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongqian Jiang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Hongmiao Li
- Department of Respiratory Medicine, Jianhu Hospital Affiliated to Nantong University, Yancheng, China
| | - Hongjian Bo
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Shu Song
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
- Department of Pathology, The First People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
37
|
Wang JR, Shen GN, Luo YH, Piao XJ, Zhang Y, Wang H, Li JQ, Xu WT, Zhang Y, Wang SN, Zhang T, Xue H, Cao LK, Jin CH. 2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells. J Chemother 2019; 31:214-226. [PMID: 31074342 DOI: 10.1080/1120009x.2019.1610832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.
Collapse
Affiliation(s)
- Jia-Ru Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Gui-Nan Shen
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Ying-Hua Luo
- b College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Xian-Ji Piao
- c Department of Gynaecology and Obstetrics , The Fifth Affiliated Hospital of Harbin Medical University , Daqing , China
| | - Yi Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hao Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Jin-Qian Li
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Wan-Ting Xu
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Yu Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Shi-Nong Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Tong Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hui Xue
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Long-Kui Cao
- d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Cheng-Hao Jin
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China.,d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| |
Collapse
|