1
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
2
|
Chisty TTE, Sarif S, Jahan I, Ismail IN, Chowdhury FI, Siddiqua S, Yasmin T, Islam MN, Khan F, Subhan N, Alam MA. Protective effects of l-carnitine on isoprenaline -induced heart and kidney dysfunctions: Modulation of inflammation and oxidative stress-related gene expression in rats. Heliyon 2024; 10:e25057. [PMID: 38322874 PMCID: PMC10845729 DOI: 10.1016/j.heliyon.2024.e25057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The aim of this study was to evaluate the effect of l-carnitine (L-CAR) treatment on isoprenaline (ISO) administered kidney and heart impairment in male Long Evans rats. Four groups of rats were engaged in this study such as control, ISO, control + L-CAR, and ISO + L-CAR, where n = 6 in each group. The rats were also provided with chow food and water ad libitum. At the end of the study, all rats were sacrificed, and blood and tissue samples were collected for bio-chemical analysis. Oxidative stress parameters and antioxidant enzyme activities were determined in plasma and tissues. Antioxidant and inflammatory genes expression were analyzed in the kidney cortex, and histopathological studies of kidney tissues were performed. This study showed that creatinine and uric acid in plasma were significantly increased in ISO-administered rats. l-carnitine treatment lowered the uric acid and creatinine level. ISO-administered rats showed increased lipid peroxidation and declined levels of antioxidant enzymes activities in kidneys and heart. l-carnitine treatment restored antioxidant enzymes activities and protect against oxidative stress in kidney and heart. This effect is correlated with the restoration of Nrf-2-HO-1 genes expression followed by increased SOD and catalase genes expression in the kidney. l-carnitine treatment also prevented the TNF-α, IL-6, and NF-кB expression in kidneys of ISO administered rats. Histopathology staining showed that l-carnitine treatment prevented kidney damage and collagen deposition in ISO administered rats. The result of this study exhibited that l-carnitine treatment reduced oxidative stress and increased antioxidant enzyme activities by enhancing antioxidant genes expression in ISO administered rats.
Collapse
Affiliation(s)
| | - Sumaia Sarif
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | | | | | | | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Md Nurul Islam
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| |
Collapse
|
3
|
Rathore A, Sharma AK, Murti Y, Bansal S, Kumari V, Snehi V, Kulshreshtha M. Medicinal Plants in the Treatment of Myocardial Infarction Disease: A Systematic Review. Curr Cardiol Rev 2024; 20:e290424229484. [PMID: 38685783 PMCID: PMC11327834 DOI: 10.2174/011573403x278881240405044328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), also referred to as a "heart attack," is brought on by a partial or total interruption of blood supply to the myocardium. Myocardial infarction can be "silent," go undiagnosed, or it can be a catastrophic occurrence that results in hemodynamic decline and untimely death. In recent years, herbal remedies for MI have become effective, secure, and readily accessible. OBJECTIVE The purpose of this review was to examine the medicinal plants and phytochemicals that have been used to treat MI in order to assess the potential contribution of natural substances to the development of herbal MI treatments. METHODOLOGY A literature search was employed to find information utilizing electronic databases, such as Web of Science, Google Scholar, PubMed, Sci Finder, Reaxys, and Cochrane. RESULTS The identification of 140 plants from 12 families led to the abstraction of data on the plant families, parts of the plant employed, chemical contents, extracts, model used, and dose. CONCLUSION The majority of the MI plants, according to the data, belonged to the Fabaceae (11%) and Asteraceae (9%) families, and the most prevalent natural components in plants with MI were flavonoids (43%), glucosides (25%), alkaloids (23%), phenolic acid (19%), saponins (15%), and tannins (12%).
Collapse
Affiliation(s)
- Anamika Rathore
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anuj Kumar Sharma
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Yogesh Murti
- G.L.A. University, Mathura, Uttar Pradesh, India
| | - Sonal Bansal
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Vibha Kumari
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Varsha Snehi
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Mayank Kulshreshtha
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
4
|
Spórna-Kucab A, Tekieli A, Kisiel A, Grzegorczyk A, Skalicka-Woźniak K, Starzak K, Wybraniec S. Antioxidant and Antimicrobial Effects of Baby Leaves of Amaranthus tricolor L. Harvested as Vegetable in Correlation with Their Phytochemical Composition. Molecules 2023; 28:1463. [PMID: 36771133 PMCID: PMC9919180 DOI: 10.3390/molecules28031463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Amaranth is used as a spinach replacement; therefore, it is sometimes called Chinese Spinach. So far, the activity of the plant has not been associated with the presence of specific compounds. Three cultivars of Amaranthus tricolor L. were investigated for their antioxidant and antimicrobial activities. The correlation between the bioactivity and metabolite profiles was investigated in order to indicate active compounds in A. tricolor. The phytochemical profile of a total of nine extracts was studied by HPLC-DAD-ESI/HRMS, revealing the presence of 52 compounds. The highest antioxidant activity was noticed in the Red cultivar (0.06 mmol TE/g DE (Trolox Equivalent/Dry Extract Weight) and was related to the presence of amino acids, flavonoids and phenolic acids, as well as individual compounds such as tuberonic acid hexoside. All studied extracts revealed antimicrobial activity. Gram-positive bacteria were more susceptible to N-(carboxyacetyl) phenylalanine, phenylalanine, tuberonic acid and succinic acid and Gram-negative bacteria to dopa, tryptophan, norleucine, tuberonic acid hexoside, quercetin-O-hexoside, luteolin-O-rhamnosylhexoside, luteolin-6-C-hexoside succinic acid, gallic acid-O-hexoside, dihydroxybenzoic acid and hydroxybenzoic acid. Maleic acid showed promising antifungal activity. In summary, A. tricolor is a good source of antioxidant and antimicrobial compounds.
Collapse
Affiliation(s)
- Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Anna Tekieli
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Aneta Kisiel
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Agnieszka Grzegorczyk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
5
|
Ojo OO, Rotimi S, Adegbite OS, Ozuem TI. Bridelia ferruginea Inhibit Rat Heart and Liver Mitochondrial Membrane Permeability Transition Pore Opening Following Myocardial Infarction. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09950-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sammeturi M, Shaik AH, Bongu SBR, Cheemanapalli S, Mohammad A, Kodidhela LD. Protective effects of syringic acid, resveratrol and their combination against isoprenaline administered cardiotoxicity in wistar rats. Saudi J Biol Sci 2019; 26:1429-1435. [PMID: 31762605 PMCID: PMC6864382 DOI: 10.1016/j.sjbs.2019.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To evaluate the cardio-protection of syringic acid (SA) in combination with resveratrol (RV) in isoproterenol (ISO) induced myocardial infarcted (MI) rats. Methods Groups of all rats were subjected oral pre-treatment at the beginning of the study with SA (50 mg/kg), RV (50 mg/kg) and combination (COMB) of SA (25 mg/kg) and RV (25 mg/kg) along with gallic acid (GA) (50 mg/kg) for 30 days. After sacrification, homogenate of heart tissue along with serum were utilized for further biochemical investigations. The effects on creatine kinase (CK), aspartate transaminase (AST), alanine transaminase (ALT) and gamma glutamyl transferase (GGT) were studied in serum and heart tissues. Glutathione-s-transferase (GST), glutathione peroxidase (GPX) and reduced glutathione (GSH), membrane bound enzymes and electrolytes were tested in heart tissues. Body weights and heart weights were also observed along with high sensitivity C-reactive protein (hs-CRP), uric acid and total protein content (TPC) in serum. Results CK, AST, ALT and GGT levels in serum were augmented significantly while these enzymes are decreased in cardiac tissue samples of ISO-treated rats. GST, GPX, GSH, Na+/K+, Mg2+, Ca2+ ATPases, K+ ions were significantly decreased while Na+ and Ca2+ ions were increased in the heart tissues of ISO-injected rats. Loss and gain of body and heart weights were noticed significantly in rats having ISO administration. ISO group showed significant increase in hs-CRP and Uric acid while significant decrease in TPC. All of actions of ISO were ameliorated by COMB. Conclusions COMB suppressed ISO induced MI in rats and exhibited cardio-protection.
Collapse
Affiliation(s)
- Manjunatha Sammeturi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Althaf Hussain Shaik
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sasi Bhusana Rao Bongu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | - Altaf Mohammad
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
7
|
Papadi G, Wesseling S, Troganis AN, Vervoort J, Rietjens IMCM. Induction of EpRE-mediated gene expression by a series of mediterranean botanicals and their constituents. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111940. [PMID: 31071423 DOI: 10.1016/j.jep.2019.111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/04/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A variety of Mediterranean plant species, traditionally used for the prevention and treatment of several health conditions, contain ingredients with potential biological activity of which many remain unexplored. Among the beneficial health effects of bioactive phytochemicals is the activation of cellular defense mechanisms involving the activation of EpRE (electrophile responsive element) - mediated changes in gene expression. AIM OF THE STUDY The present study aimed to identify botanicals and their active constituents able to activate the EpRE mediated gene expression within a series of Mediterranean plant species known for their hepatoprotective and/or cardioprotective properties. MATERIALS AND METHODS Methanolic extracts of 18 botanicals were prepared and tested for their ability to induce gene expression in EpRE-LUX reporter cells. Subsequently, LC-MS (Liquid Chromatography Mass Spectrometry) analysis combined with MAGMa (MS Annotation based on in silico Generated Metabolites) software for automated compound annotation was used to facilitate tentative identification of the active constituents within two of the active extracts. Selected annotated compounds were tested in the EpRE-LUX reporter gene assay followed by definite identification of the most active ones. RESULTS It appeared that 9 of the 18 extracts were able to activate EpRE-mediated gene expression. Many active ingredients of the methanolic extracts from Juglans regia and Rhamnus frangula were revealed. Among them, chrysophanol and aloe-emodin were confirmed to be active EpRE inducing ingredients and were definitely identified in the Rhamnus Frangula extract. CONCLUSIONS The protective effect of half of the tested botanical varieties via the activation of EpRE-mediated gene expression was confirmed. The study also provided an example of how in vitro bioassays can be combined with LC-MS and the automated chemical annotation software MAGMa, to identify biologically active constituents in complex botanical extracts.
Collapse
Affiliation(s)
- Georgia Papadi
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands; Department of Biological Applications & Technology, University of Ioannina, 45110, Ioannina, Greece.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Anastassios N Troganis
- Department of Biological Applications & Technology, University of Ioannina, 45110, Ioannina, Greece.
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Biswas S, Harwansh RK, Kar A, Mukherjee PK. Validated high-performance thin-layer chromatographic method for the simultaneous determination of quercetin, rutin, and gallic acid in Amaranthus tricolor L. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.2.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ranjit K. Harwansh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Pulok K. Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|