1
|
Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J, Zhang Y. NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res 2024; 345:199386. [PMID: 38705479 PMCID: PMC11091677 DOI: 10.1016/j.virusres.2024.199386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fuping Jian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Gambadauro A, Galletta F, Li Pomi A, Manti S, Piedimonte G. Immune Response to Respiratory Viral Infections. Int J Mol Sci 2024; 25:6178. [PMID: 38892370 PMCID: PMC11172738 DOI: 10.3390/ijms25116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The respiratory system is constantly exposed to viral infections that are responsible for mild to severe diseases. In this narrative review, we focalized the attention on respiratory syncytial virus (RSV), influenza virus, and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infections, responsible for high morbidity and mortality in the last decades. We reviewed the human innate and adaptive immune responses in the airways following infection, focusing on a particular population: newborns and pregnant women. The recent Coronavirus disease-2019 (COVID-19) pandemic has highlighted how our interest in viral pathologies must not decrease. Furthermore, we must increase our knowledge of infection mechanisms to improve our future defense strategies.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Alessandra Li Pomi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
3
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
4
|
Sun YL, Zhao PP, Zhu CB, Li XM, Yuan B. Qingfei Formula Protects against Human Respiratory Syn cytial Virus-induced Lung Inflammatory Injury by Regulating the M APK Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:969-983. [PMID: 37605417 PMCID: PMC11165710 DOI: 10.2174/1386207326666230821121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Qingfei formula (QF) is an empirical formula that shows good clinical efficacy in treating human respiratory syncytial virus pneumonia (RSVP). However, the underlying mechanism remains unclear. This study explores the possible pharmacological actions of QF in RSVP treatment. METHODS We used a network pharmacology approach to identify the active ingredients of QF, forecast possible therapeutic targets, and analyze biological processes and pathways. Molecular docking simulation was used to evaluate the binding capability of active ingredients and therapeutic targets. Finally, in vivo experiments confirmed the reliability of network pharmacology-based prediction of underlying mechanisms. RESULTS The study identified 92 potential therapeutic targets and corresponding 131 active ingredients. Enrichment analysis showed that QF downregulated the MAPK signaling pathway and suppressed the inflammatory injury to the lungs induced by the RSV virus. Molecular docking simulations demonstrated that the core active ingredients of QF could stably bind to genes associated with the MAPK signaling pathway. QF had a protective effect against pneumonia in RSV-infected mice. The QF group exhibited a significant reduction in the levels of inflammatory mediators, interleukin- 6 (IL-6), interleukin-8 (CXCL8, IL-8), and P-STAT3, compared to the RSV-induced group. The QF group showed remarkably inhibited MAPK1+3(P-ERK1+2) and MAPK8(P-JNK) protein expression. CONCLUSION The current study showed that QF downregulated the MAPK signaling pathway, which inhibited pulmonary inflammation triggered by RSV infection. This study recommends the appropriate use of QF in the clinical management of RSVP.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| |
Collapse
|
5
|
Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J 2023; 20:224. [PMID: 37798799 PMCID: PMC10557227 DOI: 10.1186/s12985-023-02194-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Respiratory syncytial virus (RSV), a member of the Pneumoviridae family, can cause severe acute lower respiratory tract infection in infants, young children, immunocompromised individuals and elderly people. RSV is associated with an augmented innate immune response, enhanced secretion of inflammatory cytokines, and necrosis of infected cells. Oxidative stress, which is mainly characterized as an imbalance in the production of reactive oxygen species (ROS) and antioxidant responses, interacts with all the pathophysiologic processes above and is receiving increasing attention in RSV infection. A gradual accumulation of evidence indicates that ROS overproduction plays an important role in the pathogenesis of severe RSV infection and serves as a major factor in pulmonary inflammation and tissue damage. Thus, antioxidants seem to be an effective treatment for severe RSV infection. This article mainly reviews the information on oxidative stress and ROS-mediated cellular events during RSV infection for the first time.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Xue Liu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yujun Nie
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Fei Zhan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
6
|
Luo T, Jia X, Feng WD, Wang JY, Xie F, Kong LD, Wang XJ, Lian R, Liu X, Chu YJ, Wang Y, Xu AL. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy. Acta Pharmacol Sin 2023; 44:1867-1878. [PMID: 37142684 PMCID: PMC10462717 DOI: 10.1038/s41401-023-01094-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Inhibition of NLRP3 inflammasome activation produces potent therapeutic effects in a wide array of inflammatory diseases. Bergapten (BeG), a furocoumarin phytohormone present in many herbal medicines and fruits, exibits anti-inflammatory activity. In this study we characterized the therapeutic potential of BeG against bacterial infection and inflammation-related disorders, and elucidated the underlying mechanisms. We showed that pre-treatment with BeG (20 μM) effectively inhibited NLRP3 inflammasome activation in both lipopolysaccharides (LPS)-primed J774A.1 cells and bone marrow-derived macrophages (BMDMs), evidenced by attenuated cleaved caspase-1 and mature IL-1β release, as well as reduced ASC speck formation and subsequent gasdermin D (GSDMD)-mediated pyroptosis. Transcriptome analysis revealed that BeG regulated the expression of genes involved in mitochondrial and reactive oxygen species (ROS) metabolism in BMDMs. Moreover, BeG treatment reversed the diminished mitochondrial activity and ROS production after NLRP3 activation, and elevated the expression of LC3-II and enhanced the co-localization of LC3 with mitochondria. Treatment with 3-methyladenine (3-MA, 5 mM) reversed the inhibitory effects of BeG on IL-1β, cleaved caspase-1 and LDH release, GSDMD-N formation as well as ROS production. In mouse model of Escherichia coli-induced sepsis and mouse model of Citrobacter rodentium-induced intestinal inflammation, pre-treatment with BeG (50 mg/kg) significantly ameliorated tissue inflammation and injury. In conclusion, BeG inhibits NLRP3 inflammasome activation and pyroptosis by promoting mitophagy and maintaining mitochondrial homeostasis. These results suggest BeG as a promising drug candidate for the treatment of bacterial infection and inflammation-related disorders.
Collapse
Affiliation(s)
- Tong Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wan-di Feng
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Yong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling-Dong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Jiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Lian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ying-Jie Chu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - An-Long Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
8
|
Sun YL, Zhao PP, Zhu CB, Jiang MC, Li XM, Tao JL, Hu CC, Yuan B. Integrating metabolomics and network pharmacology to assess the effects of quercetin on lung inflammatory injury induced by human respiratory syncytial virus. Sci Rep 2023; 13:8051. [PMID: 37198253 DOI: 10.1038/s41598-023-35272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Quercetin (QR) has significant anti-respiratory syncytial virus (RSV) effects. However, its therapeutic mechanism has not been thoroughly explored. In this study, a lung inflammatory injury model caused by RSV was established in mice. Untargeted lung tissue metabolomics was used to identify differential metabolites and metabolic pathways. Network pharmacology was used to predict potential therapeutic targets of QR and analyze biological functions and pathways modulated by QR. By overlapping the results of the metabolomics and the network pharmacology analyses, the common targets of QR that were likely to be involved in the amelioration of RSV-induced lung inflammatory injury by QR were identified. Metabolomics analysis identified 52 differential metabolites and 244 corresponding targets, while network pharmacology analysis identified 126 potential targets of QR. By intersecting these 244 targets with the 126 targets, hypoxanthine-guanine phosphoribosyltransferase (HPRT1), thymidine phosphorylase (TYMP), lactoperoxidase (LPO), myeloperoxidase (MPO), and cytochrome P450 19A1 (CYP19A1) were identified as the common targets. The key targets, HPRT1, TYMP, LPO, and MPO, were components of purine metabolic pathways. The present study demonstrated that QR effectively ameliorated RSV-induced lung inflammatory injury in the established mouse model. Combining metabolomics and network pharmacology showed that the anti-RSV effect of QR was closely associated with purine metabolism pathways.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chan-Chan Hu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Ouyang Y, Liao H, Hu Y, Luo K, Hu S, Zhu H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front Microbiol 2022; 13:865592. [PMID: 35308390 PMCID: PMC8931408 DOI: 10.3389/fmicb.2022.865592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory infection in young children. Nearly all individuals become infected in their early childhood, and reinfections with RSV are common throughout life. Primary infection with RSV is usually involved in the symptom of bronchiolitis and pneumonia in the lower respiratory tract, which accounts for over 3 million hospitalizations and approximately 66,000 deaths annually worldwide. Despite the widespread prevalence and high morbidity and lethality rates of diseases caused by RSV infection, there is currently no licensed RSV vaccine. During RSV infection, innate immunity plays the first line of defense to suppress RSV infection and replication. However, RSV has evolved multiple mechanisms to evade the host’s innate immune responses to gain a window of opportunity for efficient viral replication. This review discusses the comprehensive interaction between RSV infection and the host antiviral innate immunity and updates recent findings on how RSV modulates the host innate immune response for survival, which may provide novel insights to find potent drug targets and vaccines against RSV.
Collapse
Affiliation(s)
- Yan Ouyang
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hongqun Liao
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
| | - Yan Hu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kaiyuan Luo
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shaowen Hu
- Basic Medical College of Gannan Medical University, Ganzhou, China
| | - Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
- Basic Medical College of Gannan Medical University, Ganzhou, China
- Institute of Children's Medical, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huifang Zhu,
| |
Collapse
|
10
|
Ji JJ, Sun QM, Nie DY, Wang Q, Zhang H, Qin FF, Wang QS, Lu SF, Pang GM, Lu ZG. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin 2021; 42:1630-1641. [PMID: 33495515 PMCID: PMC8463687 DOI: 10.1038/s41401-020-00573-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is leading cause of respiratory tract infections in early childhood. Gut microbiota is closely related with the pulmonary antiviral immunity. Recent evidence shows that gut dysbiosis is involved in the pathogenesis of RSV infection. Therefore; pharmacological and therapeutic strategies aiming to readjust the gut dysbiosis are increasingly important for the treatment of RSV infection. In this study, we evaluated the therapeutic effects of a probiotic mixture on RSV-infected mice. This probiotic mixture consisted of Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and VSL#3 was orally administered to neonatal mice on a daily basis either for 1 week in advance or for 3 days starting from the day of RSV infection. We showed that administration of the probiotics protected against RSV-induced lung pathology by suppressing RSV infection and exerting an antiviral response via alveolar macrophage (AM)-derived IFN-β. Furthermore, administration of the probiotics reversed gut dysbiosis and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in RSV-infected mice, which consequently led to elevated serum SCFA levels. Moreover, administration of the probiotics restored lung microbiota in RSV-infected mice. We demonstrated that the increased production of IFN-β in AMs was attributed to the increased acetate in circulation and the levels of Corynebacterium and Lactobacillus in lungs. In conclusion, we reveal that probiotics protect against RSV infection in neonatal mice through a microbiota-AM axis, suggesting that the probiotics may be a promising candidate to prevent and treat RSV infection, and deserve more research and development in future.
Collapse
Affiliation(s)
- Jian-Jian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin-Mei Sun
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Deng-Yun Nie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Wang
- International Education College, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Han Zhang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fen-Fen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi-Sheng Wang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guo-Ming Pang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China.
| | - Zhi-Gang Lu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- International Education College, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China.
| |
Collapse
|
11
|
Wang Z, Hou D, Fang J, Zhu L, Sun Y, Tan Y, Gu Z, Shan L. Screening and pharmacodynamic evaluation of the antirespiratory syncytial virus activity of steroidal pyridine compounds in vitro and in vivo. J Med Virol 2021; 93:3428-3438. [PMID: 33064304 DOI: 10.1002/jmv.26604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections and there are currently no safer or more effective drugs available. It is important to find novel medications for RSV infection. A series of steroidal pyridines were synthesized for screening and evaluation of their antiviral activity and investigation of their antiviral mechanism of action. Compound 3l had the highest antiviral activity, with a half-maximal effective concentration (EC50 ) of 3.13 μM. Compound 3l was explored for its effects in vitro on RSV 2 h before infection (pretreatment), at the time of infection (competition), and 2 h after infection (postinfection). Toll-like receptor (TLR)-3, retinoic acid-inducible gene (RIG)-I, interleukin (IL)-6, and interferon (IFN)-β were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound 3l. Decreased expression of TLR-3, RIG-I, IL-6, IFN-β, and IL-10 was also found in vivo. The results indicated that compound 3l exerted its antiviral effects mainly through inhibition of viral replication and downregulation of inflammatory factors.
Collapse
Affiliation(s)
- Zhenya Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Duoduo Hou
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyu Fang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhu
- Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yingying Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Yayun Tan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Zichen Gu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Lihong Shan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Asha K, Khanna M, Kumar B. Current Insights into the Host Immune Response to Respiratory Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:59-83. [PMID: 34661891 DOI: 10.1007/978-3-030-67452-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells. Immediately upon infection, a range of proinflammatory cytokines, chemokines and an interferon response is generated, thereby making the immune response a two edged sword, on one hand it is required to eliminate viral pathogens while on other hand it's prolonged response can lead to chronic infection and significant pulmonary damage. Since vaccines to all respiratory viruses are not available, a better understanding of the virus-host interactions, leading to the development of immune response, is critically needed to design effective therapies to limit the severity of inflammatory damage, enhance viral clearance and to compliment the current strategies targeting the virus. In this chapter, we discuss the host responses to common respiratory viral infections, the key players of adaptive and innate immunity and the fine balance that exists between the viral clearance and immune-mediated damage.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Madhu Khanna
- Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
13
|
GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death Dis 2020; 11:917. [PMID: 33100331 PMCID: PMC7585938 DOI: 10.1038/s41419-020-03120-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.
Collapse
|
14
|
Silica dioxide nanoparticles aggravate airway inflammation in an asthmatic mouse model via NLRP3 inflammasome activation. Regul Toxicol Pharmacol 2020; 112:104618. [PMID: 32087352 DOI: 10.1016/j.yrtph.2020.104618] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Silica dioxide nanoparticles (SiONPs) are mainly used in the rubber industry; however, they are a major air pollutant in Asia. Thus, extensive research on this issue is required. In this study, we investigated the effects of SiONPs on asthma aggravation and elucidated the underlying mechanism using ovalbumin (OVA)-induced asthmatic mice model and in NCI-H292 cells. Mice exposed to SiONPs showed markedly increased Penh values, inflammatory cell counts, and inflammatory cytokine levels compared to OVA-induced asthmatic mice. Exposure to SiONPs also induced additional airway inflammation and mucus secretion with increases in protein expression levels of thioredoxin-interacting protein (TXNIP), NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, and interleukin (IL)-1β compared to those in OVA-induced asthmatic mice. Treatment of SiONPs in NCI-H292 cells also significantly increased mRNA expression levels of inflammatory cytokines accompanied with elevation in the levels of TXNIP, NLRP3 inflammasome, and IL-1β proteins in a concentration-dependent manner. Taken together, exposure to SiONPs aggravated asthma development, which is closely related to inflammasome activation. Our results provide useful information about the toxicological effects of SiONPs on asthma exacerbation and suggest the need to avoid SiONP exposure especially in individuals with respiratory diseases.
Collapse
|
15
|
Xu H, He L, Chen J, Hou X, Fan F, Wu H, Zhu H, Guo Y. Different types of effective fractions from Radix Isatidis revealed a multiple-target synergy effect against respiratory syncytial virus through RIG-I and MDA5 signaling pathways, a pilot study to testify the theory of superposition of traditional Chinese Medicine efficacy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111901. [PMID: 31051218 DOI: 10.1016/j.jep.2019.111901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Isatidis, a commonly used traditional Chinese medicine, is also documented in "Dictionary of Chinese Ethnic Medicine" being as an ethnic herb clinically utilized by different nations in China such as Mongol, Uygur, and Dong et al. It has been reported to have a very strong efficacy on respiratory viruses, but to date the mechanism remains unknown. Similarly, it is unclear how different types of effective fractions of Radix Isatidis interact to exert antiviral effects. AIM OF STUDY To reveal the underlying mechanisms for the inhibitory effects of three active fractions from Radix Isatidis, i.e. total alkaloids, lignans and organic acids, on respiratory syncytial virus when used alone or in combination. In addition, we investigated whether these three parts worked synergistically in vivo and in vitro. MATERIALS AND METHODS A mouse model of RSV infection was constructed by intranasal infection, and the pathological changes of lung tissues in different parts were observed. The level changes of IFNβ and inflammatory cytokines in the mouse alveolar lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). The anti-RSV effects of different effective fractions were evaluated by the plaque reduction test. The mRNA and protein expressions of RIG-I, MDA-5, MAVS and IRF3 in RAW264.7 cells were detected by RT-PCR and Western blot respectively. RESULTS HE staining showed that Radix Isatidis extracts alone or in combination relieved virus-induced mouse lung lesions. Compared with individual drugs, the lung lesions were alleviated more significantly after treatment with the three fractions in combination. ELISA demonstrated that the expression levels of IFNβ and inflammatory cytokines were maintained balanced between antiviral and proinflammatory effects. The plaque reduction test indicated that the antiviral effect of combination treatment was much stronger than those of individual drugs. RT-qPCR and Western blot suggested that the mRNA and protein expression levels of key signaling molecules in the RIG-I and MDA5 pathways in mouse macrophages were down-regulated by different effective parts alone or in combination. CONCLUSIONS The three effective fractions of Radix Isatidis have remarkable synergistic anti-RSV effects in vitro and in vivo, and total alkaloids and lignans show multi-target synergistic effects via the RIG-I and MDA5 signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Alkaloids/pharmacology
- Alkaloids/therapeutic use
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Drug Synergism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Hep G2 Cells
- Humans
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Lignans/pharmacology
- Lignans/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Medicine, Chinese Traditional
- Mice, Inbred BALB C
- Pilot Projects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Huiqin Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liwei He
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China.
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xianbang Hou
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Fangtian Fan
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Hongyan Wu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Hepeng Zhu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Yeqian Guo
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| |
Collapse
|
16
|
Hai-Lan C, Hong-Lian T, Jian Y, Manling S, Heyu F, Na K, Wenyue H, Si-Yu C, Ying-Yi W, Ting-Jun H. Inhibitory effect of polysaccharide of Sargassum weizhouense on PCV2 induced inflammation in mice by suppressing histone acetylation. Biomed Pharmacother 2019; 112:108741. [PMID: 30970528 DOI: 10.1016/j.biopha.2019.108741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1β, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.
Collapse
Affiliation(s)
- Chen Hai-Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Tan Hong-Lian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China; Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Yang Jian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Song Manling
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Feng Heyu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Kuang Na
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Hu Wenyue
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen Si-Yu
- Laboratory of Land Ecology, Field Science Center, Graduate School of Agricultural Science, Tohoku University, Miyagi 9896711, Japan
| | - Wei Ying-Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hu Ting-Jun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
17
|
Qian W, Shan J, Shen C, Yang R, Xie T, Di L. Brain Metabolomics Reveal the Antipyretic Effects of Jinxin Oral Liquid in Young Rats by Using Gas Chromatography⁻Mass Spectrometry. Metabolites 2019; 9:E6. [PMID: 30609645 PMCID: PMC6359216 DOI: 10.3390/metabo9010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Pyrexia is considered as a part of host's defense response to the invasion of microorganisms or inanimate matter recognized as pathogenic or alien, which frequently occurs in children. Jinxin oral liquid (JXOL) is a traditional Chinese medicine formula that has been widely used to treat febrile children in China. Experimental fever was induced by injecting yeast into young male Sprague-Dawley rats (80 ± 20 g) and the rectal temperature subsequently changed. Four hours later, the excessive production of interleukin (IL)-1β and prostaglandin (PG) E2 induced by yeast was regulated to normal by JXOL administration. A rat brain metabolomics investigation of pyrexia of yeast and antipyretic effect of JXOL was performed using gas chromatography-mass spectrometry (GC-MS). Clear separation was achieved between the model and normal group. Twenty-two significantly altered metabolites were found in pyretic rats as potential biomarkers of fever. Twelve metabolites, significantly adjusted by JXOL to help relieve pyrexia, were selected out as biomarkers of antipyretic mechanism of JXOL, which were involved in glycolysis, purine metabolism, tryptophan mechanism, etc. In conclusion, the brain metabolomics revealed potential biomarkers in the JXOL antipyretic process and the associated pathways, which may aid in advanced understanding of fever and therapeutic mechanism of JXOL.
Collapse
Affiliation(s)
- Wenjuan Qian
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cunsi Shen
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Rui Yang
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Xie
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liuqing Di
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|