1
|
Erath JW, Vigh N, Muk B, Israel CW, Keck S, Pilecky D, Duray GZ, Vamos M. Clinical Impact of Digitalis Therapy in a Large Multicenter Cohort of CRT-Recipients. J Cardiovasc Dev Dis 2024; 11:173. [PMID: 38921673 PMCID: PMC11203494 DOI: 10.3390/jcdd11060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Introduction: Digitalis use in patients with severe heart failure is controversial. We assessed the effects of digitalis therapy on mortality in a large, observational study in recipients of cardiac resynchronization therapy (CRT). (2) Methods: Consecutive patients receiving a CRT-defibrillator in three European tertiary referral centers were enrolled and followed-up for a mean 37 months ± 28 months. Digitalis use was assessed at the time of CRT implantation. A multivariate Cox-regression model and propensity score matching were used to determine all-cause mortality as the primary endpoint. CRT-response (defined as improvement of ≥1 NYHA class), echocardiographic improvement (defined as improvement of LVEF of ≥ 5%) and incidence of ICD shocks and rehospitalization were assessed as secondary endpoints in a subgroup of patients. (3) Results: The study comprised 552 CRT-recipients with standard indications, including 219 patients (40%) treated with digitalis. Compared to patients without digitalis, they had more often atrial fibrillation, poorer LVEF and a higher NYHA class (all p ≤ 0.002). Crude analysis of all-cause mortality demonstrated a similar relative risk of death for patients with and without digitalis (HR = 1.14; 95% CI 0.88-1.5; p = 0.40). After adjustment for independent predictors of mortality, digitalis therapy did not alter the risk for death (adjusted HR = 1.04; 95% CI 0.75-1.45; p = 0.82). Furthermore, in comparison to 286 propensity-score-matched patients, mortality was not affected by digitalis intake (propensity-adjusted HR = 1.11; 95% CI 0.72-1.70; p = 0.64). A CRT-response was predominant in digitalis non-users, concerning both improvement of HF symptoms and LVEF (NYHA p < 0.01; LVEF p < 0.01), while patients on digitalis had more often ventricular tachyarrhythmias requiring ICD shock (p = 0.01); although, rehospitalization for cardiac reasons was significantly lower among digitalis users compared to digitalis non-users (HR = 0.58; 95% C. I. 0.40-0.85; p = 0.01). (4) Conclusions: Digitalis therapy had no effect on mortality, but was associated with a reduced response to CRT and increased susceptibility to ventricular arrhythmias requiring ICD shock treatment. Although, digitalis administration positively altered the likelihood for cardiac rehospitalization during follow-up.
Collapse
Affiliation(s)
- Julia W. Erath
- Department of Cardiology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.)
| | - Nikolett Vigh
- Department of Cardiology, Medical Centre, Hungarian Defense Forces, 1062 Budapest, Hungary; (N.V.); (B.M.); (G.Z.D.)
| | - Balazs Muk
- Department of Cardiology, Medical Centre, Hungarian Defense Forces, 1062 Budapest, Hungary; (N.V.); (B.M.); (G.Z.D.)
- Department of Adult Cardiology, Gottsegen National Cardiovascular Center, 1096 Budapest, Hungary;
| | - Carsten W. Israel
- Department of Cardiology, Evangelical Hospital, 33617 Bielefeld, Germany;
| | - Sarah Keck
- Department of Cardiology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.)
| | - David Pilecky
- Department of Adult Cardiology, Gottsegen National Cardiovascular Center, 1096 Budapest, Hungary;
| | - Gabor Z. Duray
- Department of Cardiology, Medical Centre, Hungarian Defense Forces, 1062 Budapest, Hungary; (N.V.); (B.M.); (G.Z.D.)
| | - Mate Vamos
- Department of Cardiology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.)
- Cardiac Electrophysiology Division, Cardiology Center, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
2
|
Shen C, Ding X, Ruan J, Ruan F, Hu W, Huang J, He C, Yu Y, Zuo Z. Black phosphorus quantum dots induce myocardial inflammatory responses and metabolic disorders in mice. J Environ Sci (China) 2024; 137:53-64. [PMID: 37980037 DOI: 10.1016/j.jes.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 11/20/2023]
Abstract
As an ultrasmall derivative of black phosphorus (BP) sheets, BP quantum dots (BP-QDs) have been effectively used in many fields. Currently, information on the cardiotoxicity induced by BP-QDs remains limited. We aimed to evaluate BP-QD-induced cardiac toxicity in mice. Histopathological examination of heart tissue sections was performed. Transcriptome sequencing, real-time quantitative PCR (RT‒qPCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) assays were used to detect the mRNA and/or protein expression of proinflammatory cytokines, nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT), peroxisome proliferator-activated receptor gamma (PPARγ), and glucose/lipid metabolism pathway-related genes. We found that heart weight and heart/body weight index (HBI) were significantly reduced in mice after intragastric administration of 0.1 or 1 mg/kg BP-QDs for 28 days. In addition, obvious inflammatory cell infiltration and increased cardiomyocyte diameter were observed in the BP-QD-treated groups. Altered expression of proinflammatory cytokines and genes related to the NF-κB signaling pathway further confirmed that BP-QD exposure induced inflammatory responses. In addition, BP-QD treatment also affected the PI3K-AKT, PPARγ, thermogenesis, oxidative phosphorylation, and cardiac muscle contraction signaling pathways. The expression of genes related to glucose/lipid metabolism signaling pathways was dramatically affected by BP-QD exposure, and the effect was primarily mediated by the PPAR signaling pathway. Our study provides new insights into the toxicity of BP-QDs to human health.
Collapse
Affiliation(s)
- Chao Shen
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoyan Ding
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinpeng Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiping Hu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yi Yu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhenghong Zuo
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Zhuang W, He T, Jia BB, Wang ZZ, Zhang L, Dong XZ, Xi SY. Interaction between Chinese medicine and digoxin: Clinical and research update. Front Pharmacol 2023; 14:1040778. [PMID: 36825153 PMCID: PMC9941676 DOI: 10.3389/fphar.2023.1040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Digoxin is one of the most widely and commonly used cardiac drug, which plays an irreplaceable role in treating heart failure and arrhythmia. The 2010 Edition of Pharmacopoeia of the People's Republic of China stipulates that the effective range of digoxin plasma concentration is 0.5-2.0 ng/mL and it is toxic at plasma concentration >2 ng/mL. Its effective plasma drug concentration is close to the toxic concentration, and large individual differences in the effects of the drug have been observed. It is often used in combination with other drugs, but drug interactions have a great impact on the plasma concentration of digoxin and lead to adverse reactions (ADRs), such as poisoning. Most of the reported drug interactions are with Western drugs. However, there are many combinations of traditional Chinese medicine (TCM) and Western drugs, TCM interacting with digoxin comprises monomer components, single medicines, and Chinese patent medicines. Aim of the study: We aimed i) to provide an overview of the TCM formulations affecting the pharmacology of digoxin and their mechanisms of action and ii) to provide a theoretical reference for the safe and rational use of digoxin in combination with TCM in clinical practice and to avoid ADRs. Methods: A literature search of electronic databases, including PubMed, MEDLINE, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and WANFANG Data, was performed to search for articles published between 1 January 1960, and 1 August 2022. Search terms used included "digoxin," "traditional Chinese medicine," "Chinese patent medicine," and "adverse reactions" and their combinations. Results: A total of 49 articles were obtained, including clinical reports, pharmacological experiments and in vitro experiments. The mechanisms of action affecting the pharmacology of digoxin are complex. TCM formulations may affect the pharmacology of digoxin in vivo by influencing gastrointestinal motility or gastric juice pH, regulating P-glycoprotein levels, exerting cumulative pharmacological effects, and enhancing the sensitivity of the heart to digoxin. Although studies have shown that some TCM formulations interact with digoxin, they may be influenced by the complexity of the composition and the pharmacological effects of the TCM, the sensitivity of digoxin concentration determination methods, etc. The results of existing studies are controversial and further in-depth studies are required. Conclusion: Combinations of digoxin and TCM formulations are commonly used. This article serves as a reference to understand the interactions between TCM formulations and digoxin to avoid the occurrence of ADRs and improve the efficacy and safety of digoxin.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Tao He
- Department of Pharmacy, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei-Bei Jia
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Zhi-Zhou Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, China,*Correspondence: Xian-Zhe Dong, ; Sheng-Yan Xi,
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Xian-Zhe Dong, ; Sheng-Yan Xi,
| |
Collapse
|
4
|
Zardast M, Behmanesh K, Farkhondeh T, Roshanravan B, Aramjoo H, Aschner M, Samarghandian S, Kiani Z. Evaluation of the Effectiveness of Dantrolene Sodium against Digoxininduced Cardiotoxicity in Adult Rats. Cardiovasc Hematol Agents Med Chem 2023; 22:60-65. [PMID: 36698240 DOI: 10.2174/1871525721666230125091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Digoxin poisoning commonly occurs in people treated with digoxin. It has been suggested that treatment with dantrolene may be a suitable strategy for digoxin-induced cardiotoxicity. OBJECTIVE The aim of this study was to evaluate the protective effect of dantrolene on digoxininduced cardiotoxicity in male rats. METHODS This study was approved by the ethics committee of Birjand University of Medical Sciences (Ethical number: IR.BUMS.REC.1400.067). Forty-two Wistar rats weighing between 300- 350 gr were randomly allocated to 7 groups (n = 6) as follows: Normal Saline (NS) group, Normal Saline + Ethanol (NS + ETOH) group, Normal Saline + dantrolene 10 mg/kg (NS + Dan 10) group, Digoxin (Dig) group), Digoxin + dantrolene 5 mg/kg (Dig + Dan 5) group, Digoxin + dantrolene 10 mg/kg (Dig + Dan 10) group, Digoxin + dantrolene 20 mg/kg (Dig + Dan 20) group, Dig was injected intravenously at 12 mL / h (0.25 mg / mL). Dan (5, 10 and 20 mg/kg) was injected intravenously at 5-8 min/mL. After 1 hour, blood samples were obtained from the animals' cavernous sinus and each animal's heartremoved. The blood sample was rapidly centrifuged at 2,500 rpm for 10 minutes and the serum was separated for measurement of creatine phosphokinase (CPK), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg). The samples were stored at -20°C. The heart samples were fixed in formalin 10% for histopathological evaluation. RESULTS K levels slightly increased in the dig group versus the NS group. A significant increase in the K levels was observed in the Dig + Dan 20 group versus the NS group (p < 0.001). Dig slightly decreased Ca levels in the treated group versus the NS group. The levels of Ca significantly increased in the Dig + Dan 10 group versus the Dig group (p < 0.05). Histological examination of the heart tissue in the dig group showed cardiomyocyte degeneration, increased edematous intramuscular space associated with hemorrhage, and congestion. Focal inflammatory cell accumulation in the heart tissue was also seen. Cardiomyocytes were clear and arranged in good order in the Dig + Dan 10 group. CONCLUSION dantrolene (10 mg/kg) was cardioprotective in a model of digoxin-induced cardiotoxicity, secondary to cardiac remodeling and hyperkalemia. However, further research is necessary to determine dantrolene's cardioprotective and cardiotoxic doses in animal models.
Collapse
Affiliation(s)
- Mahmoud Zardast
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kosar Behmanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 2091300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Kiani
- Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Patel S, Gururani R, Jain S, Tripathi N, Paliwal S, Paliwal S, Paliwal S, Sharma S. Repurposing of digoxin in pain and inflammation: An evidence-based study. Drug Dev Res 2022; 83:1097-1110. [PMID: 35315525 DOI: 10.1002/ddr.21935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 11/06/2022]
Abstract
In recent years, the drug repositioning strategy has gained considerable attention in the drug discovery process that involves establishing new therapeutic uses of already known drugs. In line with this, we have identified digoxin a cardiac glycoside, as a potent inhibitor of soluble epoxide hydrolase (sEH) enzyme employing in silico high throughput screening protocols and further confirmed using in vitro cell-free sEH inhibitory assay and in vivo preclinical studies in rodents for its repurposing in hyperalgesia, inflammation, and related disorders. Oral administration of digoxin at dose 0.2 mg/kg significantly reduced (p < .0001) the allodynia in mice induced by using hot plate (3.6 ± 1.9) and tail-flick test (7.58 ± 0.9). In addition, digoxin at a dose of 0.2 mg/kg showed marked reduction (94%, p < .0001) in acetic acid-induced abdominal contraction in rats. Further, digoxin also demonstrated antipyretic activity (37.04 ± 0.2, p < .0001) and showed notable reduction (0.60 ± 0.06) in carrageenan-induced paw edema in rats. Also, the histopathological evaluation revealed that digoxin treatment attenuated the edema, neutrophil infiltration, and alveolar septal thickening in lung tissue. These findings are novel and highlight the newer insights towards repurposing digoxin as a new lead in the treatment of hyperalgesia, inflammation, and related disorders.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Neetika Tripathi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, LLRM Medical College, Meerut, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
6
|
Cardiac Glycosides as Autophagy Modulators. Cells 2021; 10:cells10123341. [PMID: 34943848 PMCID: PMC8699753 DOI: 10.3390/cells10123341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Collapse
|
7
|
Liu C, Lai Y, Guan T, Zeng Q, Pei J, Zhang S, Wu D, Wu D. Association of Digoxin Application Approaches With Long-Term Clinical Outcomes in Rheumatic Heart Disease Patients With Heart Failure: A Retrospective Study. Front Cardiovasc Med 2021; 8:711203. [PMID: 34616781 PMCID: PMC8488133 DOI: 10.3389/fcvm.2021.711203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: This retrospective, case–control study was executed to assess the effects of digoxin (DGX) use approaches [continuous use of DGX (cDGX) vs. intermittent use of DGX (iDGX)] on the long-term prognosis in rheumatic heart disease (RHD) patients with heart failure (HF). Methods: A total of 642 RHD patients were enrolled to this study after propensity matching. The associations of DGX application approaches with the risks of all-cause mortality, cardiovascular death (CVD), HF re-hospitalization (1-, 3-, and 5-year), and new-onset atrial fibrillation (AF) were analyzed by multivariate Cox proportional hazards or binary logistic regression models, respectively. Results: cDGX was associated with increased risks of all-cause mortality (adjusted HR = 1.84, 95% CI: 1.27–2.65, P = 0.001) and CVD (adjusted HR = 2.23, 95% CI: 1.29–3.83, P = 0.004) in RHD patients with HF compared to iDGX. With exception of 1-year HF re-hospitalization risk, cDGX was associated with increased HF re-hospitalization risk of 3-year (adjusted OR = 1.53, 95% CI: 1.03–2.29, P = 0.037) and 5-year (adjusted OR = 1.61, 95% CI: 1.05–2.50, P = 0.031) as well as new-onset AF (adjusted OR = 2.06, 95% CI: 1.09–3.90, P = 0.027). Conclusion: cDGX was significantly associated with increased risks of all-cause mortality, CVD, medium-/long-term HF re-hospitalization, and new-onset AF in RHD patients with HF.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shenghui Zhang
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Deping Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
8
|
Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643615. [PMID: 34093960 PMCID: PMC8163549 DOI: 10.1155/2021/6643615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is an urgent problem with a great impact on health globally. However, its pathological mechanisms have not been fully elucidated. Hydroxysafflor yellow A (HSYA) has a protective effect against MI/RI. This study is aimed at further clarifying the relationship between HSYA cardioprotection and calcium overload as well as the underlying mechanisms. We verified the protective effect of HSYA on neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from hypoxia-reoxygenation (HR) injury. To explore the cardioprotective mechanism of HSYA, we employed calcium fluorescence, TUNEL assay, JC-1 staining, and western blotting. Finally, cardio-ECR and patch-clamp experiments were used to explain the regulation of L-type calcium channels (LTCC) in cardioprotection mediated by HSYA. The results showed that HSYA reduced the levels of myocardial enzymes and protected NPCMs from HR injury. HSYA also restored the contractile function of hiPSC-CMs and field potential signal abnormalities caused by HR and exerted a protective effect on cardiac function. Further, we demonstrated that HSYA protects cardiomyocytes from HR injury by decreasing mitochondrial membrane potential and inhibiting apoptosis and calcium overload. Patch-clamp results revealed that MI/RI caused a sharp increase in calcium currents, which was inhibited by pretreatment with HSYA. Furthermore, we found that HSYA restored contraction amplitude, beat rate, and field potential duration of hiPSC-CMs, which were disrupted by the LTCC agonist Bay-K8644. Patch-clamp experiments also showed that HSYA inhibits Bay-K8644-induced calcium current, with an effect similar to that of the LTCC inhibitor nisoldipine. Therefore, our data suggest that HSYA targets LTCC to inhibit calcium overload and apoptosis of cardiomyocytes, thereby exerting a cardioprotective effect and reducing MI/RI injury.
Collapse
|
9
|
Pashazadeh-Panahi P, Hasanzadeh M. Digoxin as a glycosylated steroid-like therapeutic drug: Recent advances in the clinical pharmacology and bioassays of pharmaceutical compounds. Biomed Pharmacother 2020; 123:109813. [DOI: 10.1016/j.biopha.2020.109813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
|