1
|
Chen Y, Bai X, Zhang Y, Zhao Y, Ma H, Yang Y, Wang M, Guo Y, Li X, Wu T, Zhang Y, Kong H, Zhao Y, Qu H. Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:12-22. [PMID: 37994799 DOI: 10.1080/21691401.2023.2276770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.
Collapse
Affiliation(s)
- Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huaihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03579-6. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
3
|
Khalil AM, Sabry OM, El-Askary HI, El Zalabani SM, Eltanany BM, Pont L, Benavente F, Mohamed AF, Fayek NM. Uncovering the therapeutic potential of green pea waste in breast cancer: a multi-target approach utilizing LC-MS/MS metabolomics, molecular networking, and network pharmacology. BMC Complement Med Ther 2024; 24:379. [PMID: 39482666 PMCID: PMC11526710 DOI: 10.1186/s12906-024-04669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND PISUM SATIVUM: (PS) is a universal legume plant utilized for both human and animal consumption, particularly its seeds, known as green peas. The processing of PS in food industries and households produces a significant amount of waste that needs to be valorized. METHODS In this study, the metabolite profiles of the 70% ethanolic extracts of PS wastes, namely peels (PSP) and a combination of leaves and stems (PSLS), were investigated by liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (LC-ESI-QTOF-MS/MS) followed by molecular networking. RESULTS Different classes of metabolites were identified, being flavonoids and their derivatives, along with phenolic acids, the most abundant categories. Additionally, a comprehensive network pharmacology strategy was applied to elucidate potentially active metabolites, key targets, and the pathways involved in cytotoxic activity against breast cancer. This cytotoxic activity was investigated in MCF-7 and MCF-10a cell lines. Results revealed that PSLS extract exhibited a potent cytotoxic activity with a good selectivity index (IC50 = 17.67 and selectivity index of 3.51), compared to the reference drug doxorubicin (IC50 = 2.69 µg/mL and selectivity index of 5.28). Whereas PSP extract appeared to be less potent and selective (IC50 = 32.92 µg/mL and selectivity index of 1.62). A similar performance was also observed for several polyphenolics isolated from the PSLS extract, including methyl cis p-coumarate, trans p-coumaric acid, and liquiritigenin/ 7-methyl liquiritigenin mixture. Methyl cis p-coumarate showed the most potent cytotoxic activity against MCF-7 cell line and the highest selectivity (IC50 = 1.18 µg/mL (6.91 µM) and selectivity index of 27.42). The network pharmacology study revealed that the isolated compounds could interact with several breast cancer-associated protein targets including carbonic anhydrases 1, 2, 4, 9, and 12, as well as aldo-keto reductase family 1 member B1, adenosine A3 receptor, protein tyrosine phosphatase non-receptor type 1, and estrogen receptor 2. CONCLUSION The uncovered therapeutic potential of PSLS and its metabolite constituents pave the way for an efficient and mindful PS waste valorization, calling for further in-vitro and in-vivo research.
Collapse
Affiliation(s)
- Asmaa M Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Omar M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, 4645241, Egypt
| | - Hesham I El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Soheir M El Zalabani
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, 08028, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, 08028, Spain
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sedr, 46612, Egypt
| | - Nesrin M Fayek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Jeong SH, Kim HH, Park MY, Bhosale PB, Abusaliya A, Hwang KH, Moon YG, Heo JD, Seong JK, Ahn M, Park KI, Won CK, Kim GS. Potential Anticancer Effects of Isoflavone Prunetin and Prunetin Glycoside on Apoptosis Mechanisms. Int J Mol Sci 2024; 25:11713. [PMID: 39519265 PMCID: PMC11545868 DOI: 10.3390/ijms252111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer is a deadly disease caused by cells that deviate from the normal differentiation and proliferation behaviors and continue to multiply. There is still no definitive cure, and many side effects occur even after treatment. However, apoptosis, one of the programs imprinted on cells, is becoming an important concept in controlling cancer. Flavonoids are polyphenolic compounds found in plants, are naturally bioactive compounds, have been studied for their anticancer effects, and have fewer side effects than chemical treatments. Isoflavones are phytoestrogens belonging to the flavonoid family, and this review discusses in depth the potential anticancer effects of prunetin, one of the many flavonoid families, via the apoptotic mechanism. In addition, a glycoside called prunetin glucoside has been investigated for its anticancer effects through apoptotic mechanisms. The primary intention of this review is to identify the effects of prunetin and its glycoside, prunetin glucoside, on cell death signaling pathways in various cancers to enhance the potential anticancer effects of these natural compounds.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Kwang Hyun Hwang
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Yeon Gyu Moon
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 35345, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Chung Kil Won
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| |
Collapse
|
5
|
Ma Q, Wang Y, Zhang W, Du Z, Tian Z, Li H. The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients 2024; 16:3417. [PMID: 39408382 PMCID: PMC11478625 DOI: 10.3390/nu16193417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
PURPOSE This study aimed to compare the effects of the phytoestrogens resveratrol (RES) and genistein (GEN) on the contractility of isolated uterine smooth muscle from rats, focusing on both spontaneous and stimulated contractions, and to investigate the underlying mechanisms. METHODS Uterine strips were suspended vertically in perfusion chambers containing Kreb's solution, various concentrations of RES and GEN were added to the ex vivo uterine strips, and contractions were measured before and after incubation with RES or GEN. RESULTS (1) Both RES and GEN inhibited K+-induced contractions in a dose-dependent manner; the β/β2-adrenoceptor antagonist propranolol (PRO), ICI118551, the ATP-dependent K+ channel blocker glibenclamide (HB-419) and the NO synthase inhibitor N-nitro-L-arginine (L-NNA) diminished the inhibitory effects of RES and GEN on K+-induced contractions. (2) RES and GEN also dose-dependently inhibited PGF2α-induced uterine contractions. (3) The inhibitory effects of RES and GEN were observed in spontaneous contractile activities as well; PRO, ICI118551, HB-419 and L-NNA attenuated the inhibitory effects of RES and GEN on the spontaneous contractions of isolated uterine muscle strips. (4) RES and GEN significantly decreased the cumulative concentration response of Ca2+ and shifted the Ca2+ cumulative concentration-response curves to the right in high-K+ Ca2+-free Kreb's solution. (5) RES and GEN markedly reduced the first phasic contraction induced by oxytocin, acetylcholine, and prostaglandin F2α but did not alter the second phasic contraction caused by CaCl2 in Ca2+-free Kreb's solution. CONCLUSIONS RES and GEN can directly inhibit both spontaneous and activated contractions of isolated uterine smooth muscle. The mechanisms underlying the inhibitory effects of RES and GEN likely involve β adrenergic receptor activation, reduced Ca2+ influx and release, the activation of ATP-dependent K+ channels and increased NO production.
Collapse
Affiliation(s)
- Qin Ma
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhongrui Du
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhifeng Tian
- Function Laboratory in College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
6
|
Seo H, Seo H, Lee SH, Park Y. Receptor mediated biological activities of phytoestrogens. Int J Biol Macromol 2024; 278:134320. [PMID: 39084415 DOI: 10.1016/j.ijbiomac.2024.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Phytoestrogens are plant-derived compounds that have chemical structures and functions similar to estrogen. Phytoestrogens act as ligand-inducible transcription factors involved in cellular growth by binding to estrogen receptors (ERs), specifically ER alpha (ERα) and beta (ERβ). Through this mechanism, phytoestrogens have a physiological function similar to that of the female hormone 17β-estradiol (E2), which can be useful in treating osteoporosis, cardiovascular disease, and cancer. Furthermore, phytoestrogens have been found to elicit various cellular responses depending on their affinity for ERs; in particular, they show a greater affinity with for ERβ. This study aimed to comprehensively analyze the mode of action of eight phytoestrogens, namely kaempferol, coumestrol, glycitein, apigenin, daidzein, genistein, equol, and resveratrol, by evaluating their estrogenic activity as ER ligands. Based on the bioluminescence resonance energy transfer (BRET)-based ER dimerization and transactivation assay results, all the phytoestrogens tested were identified as estrogen agonists by mediating ERα and ERβ dimerization. The specific binding and functions of ERα and ERβ were distinguished by differentiating between their dimerization activity. In addition, this study contributes to advancing our understanding of the overall mechanism of action involving both ERs.
Collapse
Affiliation(s)
- Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Goyang 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
7
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
8
|
Khaksari M, Pourali M, Rezaei Talabon S, Gholizadeh Navashenaq J, Bashiri H, Amiresmaili S. Protective effects of 17-β-estradiol on liver injury: The role of TLR4 signaling pathway and inflammatory response. Cytokine 2024; 181:156686. [PMID: 38991382 DOI: 10.1016/j.cyto.2024.156686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Liver injury, a major global health issue, stems from various causes such as alcohol consumption, nonalcoholic steatohepatitis, obesity, diabetes, metabolic syndrome, hepatitis, and certain medications. The liver's unique susceptibility to ischemia and hypoxia, coupled with the critical role of the gut-liver axis in inflammation, underscores the need for effective therapeutic interventions. The study highlights E2's interaction with estrogen receptors (ERs) and its modulation of the Toll-like receptor 4 (TLR4) signaling pathway as key mechanisms in mitigating liver injury. Activation of TLR4 leads to the release of pro-inflammatory cytokines and chemokines, exacerbating liver inflammation and injury. E2 down-regulates TLR4 expression, reduces oxidative stress, and inhibits pro-inflammatory cytokines, thereby protecting the liver. Both classic (ERα and ERβ) and non-classic [G protein-coupled estrogen receptor (GPER)] receptors are influenced by E2. ERα is particularly crucial for liver regeneration, preventing liver failure by promoting hepatocyte proliferation. Furthermore, E2 exerts anti-inflammatory, antioxidant, and anti-apoptotic effects by inhibiting cytokines such as IL-6, IL-1β, TNF-α, and IL-17, and by reducing lipid peroxidation and free radical damage. The article calls for further clinical research to validate these findings and to develop estrogen-based treatments for liver injuries. Overall, the research emphasizes the significant potential of E2 as a therapeutic agent for liver injuries. It advocates for extensive clinical studies to validate E2 hepatoprotective properties and develop effective estrogen-based treatments.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscince and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Ira
| | | |
Collapse
|
9
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
10
|
Sabale P, Sayyad N, Ali A, Sabale V, Kaleem M, Asar TO, Ali A, Mujtaba MA, Anwer MK. Design, synthesis, molecular docking and in vitro anticancer activities of 1-(4-(benzamido)phenyl)-3-arylurea derivatives. RSC Adv 2024; 14:23785-23795. [PMID: 39077323 PMCID: PMC11284930 DOI: 10.1039/d4ra02882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
In both premenopausal and postmenopausal women, oestrogens play a critical role in the development of breast cancer. Aromatase is an enzyme that catalyses the final step in the biosynthesis of estrogen and has emerged as a promising target for therapeutic intervention. This study aimed to design and evaluate novel 1-(4-(benzamido)phenyl)-3-arylurea derivatives as potential aromatase inhibitors. Through molecular docking, promising leads were identified and synthesized. Spectroscopic techniques confirmed their structural integrity. Cytotoxicity against various cancer cell lines was assessed using MTT assay. Docking investigations against the aromatase enzyme (3s7s) elucidated binding interactions and energies. Compound 6g, exhibiting a binding energy of -8.6 kcal mol-1 and interacting with ALA306 and THR310 residues, showed the most promising activity. It demonstrated GI50 values ranging from 14.46 μM, 13.97 μM, 11.35 μM, 11.58 μM, and 15.77 μM against A-498, NCI-H23, MDAMB-231, MCF-7, and A-549 respectively. Lastly, the physicochemical, and ADMET properties of the compound were predicted. These findings highlight the potential of 1-(4-(benzamido)phenyl)-3-arylureas as a new class of antitumor agents targeting aromatase. Their versatility and superior activity compared to standard chemotherapeutic agents, like doxorubicin, warrant further investigation for the development of broader-spectrum anticancer drugs.
Collapse
Affiliation(s)
- Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Nusrat Sayyad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University P.O. Box 173 Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
11
|
Mao T, Chen B, Wei W, Chen G, Liu Z, Wu L, Li X, Pathak JL, Li J. AutoDock and molecular dynamics-based therapeutic potential prediction of flavonoids for primary Sjögren's syndrome. Heliyon 2024; 10:e33860. [PMID: 39027572 PMCID: PMC11255588 DOI: 10.1016/j.heliyon.2024.e33860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a systemic autoimmune disease that leads to reduced saliva production, primarily affecting women due to estrogen deficiency. The estrogen receptor α (ERα) plays a crucial role in mediating the expression of the aquaporin 5 (AQP5) gene through the estrogen response element-dependent signaling pathway, making ERα a key drug target for pSS. Several flavonoids have been reported to have the potential to treat pSS. This study aimed to screen and compare flavonoids binding to ERα using AutoDock, providing a basis for treating pSS with flavonoids. The estrogenic potential of six representative flavonoids was examined in this study. Molecular docking revealed that the binding energy of all six flavonoids to ERα was less than -5.6 kcal/mol. Apigenin, naringenin, and daidzein were the top three flavonoids with even lower binding energies of -7.8, -8.09, and -8.59 kcal/mol, respectively. Similar to the positive control estradiol, apigenin, naringenin, and daidzein showed hydrogen bond interactions with GLU353, GLY521, and HIS524 at the active site. The results of luciferase reporter assays demonstrated that apigenin, naringenin, and daidzein significantly enhanced the transcription of estrogen receptor element (ERE) in the PGL3/AQP5 promoter. Furthermore, molecular dynamics simulations using GROMACS for a time scale of 100 ns revealed relatively stable binding of apigenin-ERα, naringenin-ERα, and daidzein-ERα. Mechanistically, homology modeling indicated that GLU353, GLY521, and HIS524 were the key residues of ERα exerting an estrogenic effect. The therapeutic effect of apigenin on dry mouth in pSS models was further validated. In conclusion, these results indicate the estrogenic and pSS therapeutic potential of apigenin, naringenin, and daidzein.
Collapse
Affiliation(s)
- Tianjiao Mao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Wei Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Guiping Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Zhuoyuan Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Lihong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510140, China
| | - Janak L. Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
12
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
13
|
Grudzińska M, Galanty A, Prochownik E, Kołodziejczyk A, Paśko P. Can Simulated Microgravity and Darkness Conditions Influence the Phytochemical Content and Bioactivity of the Sprouts?-A Preliminary Study on Selected Fabaceae Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1515. [PMID: 38891323 PMCID: PMC11174765 DOI: 10.3390/plants13111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Sprouts' consumption has become popular due to their wide availability, easy cultivation process, and proven biological activity. Moreover, stress factors, such as limited access to light or disturbed gravity during growth, may contribute to the increased activity and the synthesis of bioactive compounds. In this study, for the first time, the examination of the impact of darkness and simulated microgravity conditions on the white clover sprouts from the Fabaceae family was conducted. Among several species, used in the preliminary attempts, only white clover was satisfactory sprouting in the disturbed gravity conditions, and thus was chosen for further examination. A random positioning machine setup was used during the cultivation process to simulate microgravity conditions. Additionally, the sprouts were cultivated in total darkness. Simulated microgravity and/or darkness during the first few days of the sprouts' growth caused biomass reduction, the increased synthesis of bioactive compounds (isoflavones and phenolics), and changes in the level of abscisic acid and phenylalanine ammonia-lyase. Moreover, it increased the antioxidant properties of the sprouts, while the enhancement of their cytotoxic impact was observed only for androgen-dependent prostate cancer LNCaP cells. To conclude, the presented results are promising in searching for novel functional food candidates and further studies are necessary, directed at other plant families.
Collapse
Affiliation(s)
- Marta Grudzińska
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Cracow, Poland;
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Agata Kołodziejczyk
- Space Technology Centre, AGH University of Technology, 36 Czarnowiejska St., 30-054 Cracow, Poland;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
14
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
15
|
Sakao K, Hamamoto S, Urakawa D, He Z, Hou DX. Anticancer Activity and Molecular Mechanisms of Acetylated and Methylated Quercetin in Human Breast Cancer Cells. Molecules 2024; 29:2408. [PMID: 38792269 PMCID: PMC11124128 DOI: 10.3390/molecules29102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shihomi Hamamoto
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
16
|
Rumpa MM, Maier C. TRPV1-Dependent Antiproliferative Activity of Dioecious Maclura pomifera Extracts in Estrogen Receptor-Positive Breast Cancer Cell Lines Involves Multiple Apoptotic Pathways. Int J Mol Sci 2024; 25:5258. [PMID: 38791297 PMCID: PMC11120667 DOI: 10.3390/ijms25105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.
Collapse
Affiliation(s)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA;
| |
Collapse
|
17
|
Hu J, Mesnage R, Tuohy K, Heiss C, Rodriguez-Mateos A. (Poly)phenol-related gut metabotypes and human health: an update. Food Funct 2024; 15:2814-2835. [PMID: 38414364 DOI: 10.1039/d3fo04338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dietary (poly)phenols have received great interest due to their potential role in the prevention and management of non-communicable diseases. In recent years, a high inter-individual variability in the biological response to (poly)phenols has been demonstrated, which could be related to the high variability in (poly)phenol gut microbial metabolism existing within individuals. An interplay between (poly)phenols and the gut microbiota exists, with (poly)phenols being metabolised by the gut microbiota and their metabolites modulating gut microbiota diversity and composition. A number of (poly)phenol metabolising phenotypes or metabotypes have been proposed, however, potential metabotypes for most (poly)phenols have not been investigated, and the relationship between metabotypes and human health remains ambiguous. This review presents updated knowledge on the reciprocal interaction between (poly)phenols and the gut microbiome, associated gut metabotypes, and subsequent impact on human health.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Robin Mesnage
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Kieran Tuohy
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
18
|
Tienoue Fotso HM, Mbong Angie MA, Ntentie FR, Makamwe I, Edoun Ebouel FL, Kenjing Ndansack E, Julius Oben E. Aqueous Extract of Leaves and Flowers of Acmella caulirhiza Reduces the Proliferation of Cancer Cells by Underexpressing Some Genes and Activating Caspase-3. Biochem Res Int 2024; 2024:3293305. [PMID: 38371392 PMCID: PMC10874292 DOI: 10.1155/2024/3293305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
The increasing prevalence of cancers and the multiple side effects of cancer treatments have led researchers to constantly search for plants containing bioactive compounds with cell death properties. This work aimed at evaluating the antiproliferative effect of an Acmella caulirhiza extract. After evaluation of the in vitro antioxidant potential of the three extracts of Acmella caulirhiza (aqueous (AE-Ac), hydroethanolic (HEE-Ac), and ethanolic (EE-Ac)) through the scavenging of DPPH● and NO● radicals, the extract with the best antioxidant activity was selected for bioactive compound assessment and antiproliferative tests. Subsequently, the cytotoxic activity was evaluated on the viability of breast (MCF-7), brain (CT2A, SB-28, and GL-261), colon (MC-38), and skin (YUMM 1.7 and B16-F1) cancer lines using the MTT method. Then, the line where the extract was the most active was selected to evaluate the expression of certain genes involved in cancerogenesis by RT-PCR and the expression of cleaved caspase-3 involved in cell death mechanism by western blot. The AE-Ac showed the best scavenging activity with IC50s of 0.52 and 0.02 for DPPH● and NO●, respectively. This AE-Ac was found to contain alkaloids, flavonoids, and tannins and was more active on YUMM 1.7 cells (IC50 = 149.42 and 31.99 μg/mL for 24 and 48 h, respectively). Results also showed that AE-Ac downregulated the expression of inflammation (IL-1b (p = 0.017) and IL-6 (p = 0.028)), growth factors (PDGF (p = 0.039), IGF (p = 0.034), E2F1(p = 0.038), and E2F2(p = 0.016)), and antiapoptotic protein genes (Bcl-2 (p = 0.028) and Bcl-6 (p = 0.039)). The cleaved caspase-3 was positively modulated by the AE-Ac inducing thus cell death by apoptosis. AE-Ac showed inhibitory effects on the expression of genes involved in cancer progression making it a potential health intervention agent that can be exploited in cancer therapy protocols.
Collapse
Affiliation(s)
| | - Mary-Ann Mbong Angie
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Françoise Raïssa Ntentie
- Department of Biological Science, Higher Teachers' Training College, University of Yaounde 1, P.O. Box: 47, Yaounde, Cameroon
| | - Inelle Makamwe
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Ferdinand Lanvin Edoun Ebouel
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, MINRESI, P.O. Box: 13033, Yaounde, Cameroon
| | | | - Enyong Julius Oben
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Cameroon Nutrition and Dietetics Research Center, J&A Oben Foundation, P.O. Box: 8348, Yaounde, Cameroon
| |
Collapse
|
19
|
Wang D, Yang Y, Yang L, Yang H. Bibliometric analysis and visualization of endocrine therapy for breast cancer research in the last two decade. Front Endocrinol (Lausanne) 2023; 14:1287101. [PMID: 38116321 PMCID: PMC10728495 DOI: 10.3389/fendo.2023.1287101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Background Breast cancer endocrine therapy research has become a crucial domain in oncology since hormone receptor-positive breast cancers have been increasingly recognized, and targeted therapeutic interventions have been advancing over the past few years. This bibliometric analysis attempts to shed light on the trends, dynamics, and knowledge hotspots that have shaped the landscape of breast cancer endocrine therapy research between 2003 and 2022. Methods In this study, we comprehensively reviewed the scientific literature spanning the above-mentioned period, which included publications accessible through the database of the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI). Next, a systematic and data-driven analysis supported by sophisticated software tools was conducted, such that the core themes, prolific authors, influential journals, prominent countries, and critical citation patterns in the relevant research field can be clarified. Results A continuous and substantial expansion of breast cancer endocrine therapy research was revealed over the evaluated period. A total of 1,317 scholarly articles were examined. The results of the analysis suggested that research on endocrine therapy for breast cancer has laid a solid basis for the treatment of hormone receptor-positive breast cancer. From a geographical perspective, the US, the UK, and China emerged as the most active contributors, illustrating the global impact of this study. Furthermore, our analysis delineated prominent research topics that have dominated the discourse in the past two decades, including drug therapy, therapeutic efficacy, molecular biomarkers, and hormonal receptor interactions. Conclusion This comprehensive bibliometric analysis provides a panoramic view of the ever-evolving landscape of breast cancer endocrine therapy research. The findings highlight the trajectory of past developments while signifying an avenue of vast opportunities for future investigations and therapeutic advancements. As the field continues to burgeon, this analysis will provide valuable guidance for to researchers toward pertinent knowledge hotspots and emerging trends, which can expedite the discoveries in the realm of breast cancer endocrine therapy.
Collapse
Affiliation(s)
| | | | | | - Hongwei Yang
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
20
|
Ayeni KI, Jamnik T, Fareed Y, Flasch M, Braun D, Uhl M, Hartmann C, Warth B. The Austrian children's biomonitoring survey 2020 Part B: Mycotoxins, phytotoxins, phytoestrogens and food processing contaminants. Food Chem Toxicol 2023; 182:114173. [PMID: 37925015 DOI: 10.1016/j.fct.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
21
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
23
|
Lahtinen MH, Kynkäänniemi E, Jian C, Salonen A, Pajari AM, Mikkonen KS. Metabolic Fate of Lignin in Birch Glucuronoxylan Extracts as Dietary Fiber Studied in a Rat Model. Mol Nutr Food Res 2023; 67:e2300201. [PMID: 37650878 DOI: 10.1002/mnfr.202300201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Indexed: 09/01/2023]
Abstract
SCOPE While previously considered inert, recent studies suggest lignin metabolism with unknown metabolic fates is occurring in the gastrointestinal tract of several animal models. This study focuses on analyzing the potential metabolites of lignin. METHODS AND RESULTS The diets of rats include relatively pure birch glucuronoxylan (pureGX) with residual lignin or lignin-rich GX (GXpoly) in their diet. Nuclear magnetic spectroscopy of the lignin isolated from the GXpoly-fed rats fecal sample shows high alteration in chemical structure, whereas lignin-carbohydrate complexes (LCCs) are enriched in fecal samples from the pureGX group. Moreover, the increased syringyl-to-guaiacyl (S/G) ratio suggests that lignin G-units are predominantly metabolized based on pyrolysis gas chromatography-mass spectrometry (pyr-GC/MS). The presence of small phenolic metabolites identified in urine samples of the GXpoly group, for example, ferulic and sinapic acids, their sulfate and glucuronide derivatives, and 4-sulfobenzylalcohol, suggests that the small fragmented lignin metabolites in the large intestine enter the plasma, and are further processed in the liver. Finally, the relative abundances of polyphenol-degrading Enterorhabdus and Akkermansia in the gut microbiota are associated with lignin metabolism. CONCLUSION These findings give further evidence to lignin metabolism in the gut of nonruminants and provide insight to the potential microbes and metabolic routes.
Collapse
Affiliation(s)
- Maarit H Lahtinen
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, FI-00014, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, FI-00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, FI-00014, Finland
| |
Collapse
|
24
|
Filippone A, Rossi C, Rossi MM, Di Micco A, Maggiore C, Forcina L, Natale M, Costantini L, Merendino N, Di Leone A, Franceschini G, Masetti R, Magno S. Endocrine Disruptors in Food, Estrobolome and Breast Cancer. J Clin Med 2023; 12:jcm12093158. [PMID: 37176599 PMCID: PMC10178963 DOI: 10.3390/jcm12093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota is now recognized as one of the major players in human health and diseases, including cancer. Regarding breast cancer (BC), a clear link between microbiota and oncogenesis still needs to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called "estrobolome", influences sexual hormonal balance and, since the increased exposure to estrogens is associated with an increased risk, may impact on the onset, progression, and treatment of hormonal dependent cancers (which account for more than 70% of all BCs). The hormonal dependent BCs are also affected by environmental and dietary endocrine disruptors and phytoestrogens which interact with microbiota in a bidirectional way: on the one side disruptors can alter the composition and functions of the estrobolome, ad on the other the gut microbiota influences the metabolism of endocrine active food components. This review highlights the current evidence about the complex interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a new "oncobiotic" perspective.
Collapse
Affiliation(s)
- Alessio Filippone
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Maddalena Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Annalisa Di Micco
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Maggiore
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luana Forcina
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Natale
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Alba Di Leone
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Franceschini
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Masetti
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
25
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
27
|
Pareeth CM, Meera N, Silpa P, Thara KM, Raghavamenon AC, Babu TD. Analysis of anticancer potential of Kingiodendron pinnatum (DC.) Harms. CLINICAL PHYTOSCIENCE 2023. [DOI: 10.1186/s40816-023-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Abstract
Background
The plant Kingiodendron pinnatum (DC.) Harms, belonging to the family Fabaceae is endemic to the Western Ghats of India and is commonly used for various ailments, especially by the tribes. K. pinnatum is occasionally used as a substitute for Saraca asoca in Asokarishta, a well-known uterine tonic in Ayurveda. Recent studies revealed a pharmacological similarity between the plants. S. asoca is reported to have anti-cancer properties, but there are no reports on K. pinnatum except for antioxidant and antimicrobial activities. Therefore, the study is aimed to investigate the anticancer potential of the plant.
Methods
Cytotoxicity of methanolic bark extract of the plant was analysed on different cancer cell lines by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Dalton's lymphoma ascites (DLA) cell-induced solid and Ehrlich ascites carcinoma (EAC) cell-induced ascites tumour models in mice were used to study the antitumor potential. Phytochemical screening of the extract was also performed.
Results
The extract was found cytotoxic to DLA, EAC, HCT15, MDA-MB-231, T47D and PC3 with inhibitory concentration (IC50) values of 50.09, 74.74, 67.02, 119.22, 149.04 and 194.5 μg/mL, respectively. In the solid tumour model, a significant (P < 0.001) reduction in tumour weight of 0.7 ± 0.15 g was observed in 500 mg/kg b.wt. extract treated group compared to the control group (3.6 ± 0.24 g) by oral administration for 30 days. In the ascites tumour model, a high survival rate of 28.2 ± 8.72 days (P < 0.01) was found by the extract treatment compared to the control animals. Phytochemicals like alkaloids, flavonoids, phenols, phytosterols, saponins, tannins, steroids and terpenoids were detected in the extract.
Conclusion
Results obtained by the cytotoxic and anti-tumour studies revealed the anticancer potential of K. pinnatum. The plant exhibits more cytotoxicity towards cancer cell lines of the reproductive system such as the breast and prostate.
Collapse
|
28
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
29
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
30
|
Nguyen QN, Lee SR, Kim B, Hong JH, Jang YS, Lee DE, Pang C, Kang KS, Kim KH. Estrogenic Activity of 4-Hydroxy-Benzoic Acid from Acer tegmentosum via Estrogen Receptor α-Dependent Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:3387. [PMID: 36501426 PMCID: PMC9740217 DOI: 10.3390/plants11233387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Acer tegmentosum, a deciduous tree belonging to Aceraceae, has been used in traditional oriental medicine for treating hepatic disorders, such as hepatitis, cirrhosis, and liver cancer. We evaluated the estrogen-like effects of A. tegmentosum using an estrogen receptor (ER)-positive breast cancer cell line, namely MCF-7, to identify potential phytoestrogens and found that an aqueous extract of A. tegmentosum promoted cell proliferation in MCF-7 cells. Five phenolic compounds (1-5) were separated and identified from the active fraction using bioassay-guided fractionation of crude A. tegmentosum extract and phytochemical analysis. The chemical structures of the compounds were characterized as vanillic acid (1), 4-hydroxy-benzoic acid (2), syringic acid (3), isoscopoletin (4), and (E)-ferulic acid (5) based on the analysis of their nuclear magnetic resonance spectra and liquid chromatography-mass spectrometry data. All five compounds were evaluated using an E-screen assay for their estrogen-like effects on MCF-7 cells. Among the tested compounds, only 4-hydroxy-benzoic acid (2) promoted the proliferation of MCF-7 cells, which was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of 4-hydroxy-benzoic acid (2) was evaluated via western blotting analysis to determine the expression levels of extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), serine/threonine kinase (AKT), and ERα. Our results demonstrated that 4-hydroxy-benzoic acid (2) induced the increase in the protein expression levels of p-ERK, p-AKT, p-PI3K, and p-Erα, concentration dependently. Collectively, these experimental results suggest that 4-hydroxy-benzoic acid (2) is responsible for the estrogen-like effects of A. tegmentosum and may potentially aid in the control of estrogenic effects during menopause.
Collapse
Affiliation(s)
- Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baolo Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022; 10:1606. [PMID: 36014024 PMCID: PMC9416513 DOI: 10.3390/microorganisms10081606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the β-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
Affiliation(s)
- Fernanda Guilherme do Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Maria Giovana Binder Pagnoncelli
- Bioprocess Engineering and Biotechnology Department, Federal University of Technology-Paraná (UTFPR), Curitiba 80230-900, PR, Brazil
| | | | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| |
Collapse
|
32
|
Anticancer activity of herbal formula Jisilhaebaekgyeji-Tang against human breast cancer cells and its mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Investigation of some diethyl (4-(dimethylamino)-2,5-dihydro-2,5-dioxo-1-phenyl-1H-pyrrol-3-yl)(hydroxy)methylphosphonate derivatives for In silico pharmacokinetic profile and In vitro anticancer activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Galanty A, Niepsuj M, Grudzińska M, Zagrodzki P, Podolak I, Paśko P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070806. [PMID: 35890104 PMCID: PMC9319781 DOI: 10.3390/ph15070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Despite a significant amount of research, the relationship between a diet rich in isoflavones and breast and prostate cancer risk is still ambiguous. The purpose of the current study was to pre-select the potential candidate for functional foods among red, white, crimson, and Persian clover sprouts, cultured for different periods of time (up to 10 days), with respect to the isoflavone content (determined by HPLC-UV-VIS), and to verify their impact on hormone-dependent cancers in vitro. The red clover sprouts were the richest in isoflavones (up to 426.2 mg/100 g dw), whereas the lowest content was observed for the crimson clover. Each species produced isoflavones in different patterns, which refer to the germination time. Hormone-insensitive MDA-MB-231 breast cancer cells were more resistant to the tested extracts than estrogen-dependent MCF7 breast cancer cells. Regarding prostate cancer, androgen-dependent LNCap cells were most susceptible to the tested sprouts, followed by androgen-insensitive, high metastatic PC3, and low metastatic DU145 cells. The observed cytotoxic impact of the tested sprouts is not associated with isoflavone content, as confirmed by chemometric analysis. Furthermore, the sprouts tested revealed a high antioxidant potential, and were characterized by high safety for normal breast and prostate cells.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
- Correspondence:
| | - Monika Niepsuj
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| |
Collapse
|
35
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
36
|
Wang Y, Shou X, Fan Z, Cui J, Xue D, Wu Y. A Systematic Review and Meta-Analysis of Phytoestrogen Protects Against Myocardial Ischemia/Reperfusion Injury: Pre-Clinical Evidence From Small Animal Studies. Front Pharmacol 2022; 13:847748. [PMID: 35668938 PMCID: PMC9166621 DOI: 10.3389/fphar.2022.847748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Phytoestrogens are a class of natural compounds that have structural similarities to estrogens. They have been identified to confer potent cardioprotective effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms. Methods: A systematic search was conducted to identify PEs that have been validated in animal studies or clinical studies as effective against MIRI. Then, we collected studies that met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE's RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software. Results: The search yielded 18 phytoestrogens effective against heart disease. They are genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin, rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total of 20 studies from 17 articles with a total of 355 animals were included in this meta-analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI animals compared with the control group (p < 0.001). PE treatment significantly reduced the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001). Conclusion: Preclinical evidence suggests that PE can be multi-targeted for cardioprotective effects in MIRI. More large animal studies and clinical research are still needed in the future to further confirm its role in MIRI.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xintian Shou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjing Fan
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Donghua Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
38
|
Flaxseed Ethanol Extracts’ Antitumor, Antioxidant, and Anti-Inflammatory Potential. Antioxidants (Basel) 2022; 11:antiox11050892. [PMID: 35624757 PMCID: PMC9137875 DOI: 10.3390/antiox11050892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.
Collapse
|
39
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
40
|
Aboushanab SA, Shevyrin VA, Slesarev GP, Melekhin VV, Shcheglova AV, Makeev OG, Kovaleva EG, Kim KH. Antioxidant and Cytotoxic Activities of Kudzu Roots and Soy Molasses against Pediatric Tumors and Phytochemical Analysis of Isoflavones Using HPLC-DAD-ESI-HRMS. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060741. [PMID: 35336625 PMCID: PMC8955742 DOI: 10.3390/plants11060741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Pediatric solid tumors (PSTs) are life-threatening and can lead to high morbidity and mortality rates in children. Developing novel remedies to treat these tumors, such as glioblastoma multiforme and sarcomas, such as osteosarcoma, and rhabdomyosarcoma, is challenging, despite immense attempts with chemotherapeutic or radiotherapeutic interventions. Soy (Glycine max) and kudzu roots (KR) (Pueraria spp.) are well-known phytoestrogenic botanical sources that contain high amounts of naturally occurring isoflavones. In the present study, we investigated the antioxidant and cytotoxic effects of the extracts of KR and soy molasses (SM) against PSTs. The green extraction of isoflavones from KR and SM was performed using natural deep eutectic solvents. The extracts were subsequently analyzed by high-performance liquid chromatography (HPLC)-diode array detector (DAD) coupled with high-resolution (HR) mass spectrometry (MS), which identified 10 isoflavones in KR extracts and 3 isoflavones in the SM extracts. Antioxidant and cytotoxic activities of KR and SM extracts were assessed against glioblastoma multiforme (A-172), osteosarcoma (HOS), and rhabdomyosarcoma (Rd) cancer cell lines. The KR and SM extracts showed satisfactory cytotoxic effects (IC50) against the cancer cell lines tested, particularly against Rd cancer cell lines, in a dose-dependent manner. Antioxidant activity was found to be significantly (p ≤ 0.05) higher in KR than in SM, which was consistent with the results of the cytotoxic activity observed with KR and SM extracts against glioblastoma and osteosarcoma cells. The total flavonoid content and antioxidant activities of the extracts were remarkably attributed to the isoflavone content in the KR and SM extracts. This study provides experimental evidence that HPLC-ESI-HRMS is a suitable analytical approach to identify isoflavones that exhibit potent antioxidant and anticancer potential against tumor cells, and that KR and SM, containing many isoflavones, can be a potential alternative for health care in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Grigory P Slesarev
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Vsevolod V Melekhin
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
- Department of Gene and Cell Therapy, Institute for Medical Cell Technologies, Karla Marksa 22a, 620026 Yekaterinburg, Russia
| | - Anna V Shcheglova
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
| | - Oleg G Makeev
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
- Department of Gene and Cell Therapy, Institute for Medical Cell Technologies, Karla Marksa 22a, 620026 Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
41
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
42
|
The role of soy and soy isoflavones on women's fertility and related outcomes: an update. J Nutr Sci 2022; 11:e17. [PMID: 35320928 PMCID: PMC8922143 DOI: 10.1017/jns.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Soy is a key food in human nutrition. It is widely used in eastern traditional cuisine and it has recently diffused among self-conscious and vegetarian diets. The success of soy mainly depends on versatility and supposed healthy properties of soy foods and soy components. Meanwhile, the possible influence on endocrine system, in particular by isoflavones, raised concerns among some researchers. The present paper aims to conduct a review of available data on the effect of soy, soy foods and soy components on women's fertility and related outcomes. Eleven interventional studies, eleven observational studies and one meta-analysis have been selected from the results of queries. A weak, not clinically relevant effect has been highlighted on cycle length and hormonal status. However, a suggestive positive influence has been shown among women with fertility issues and during assisted reproductive technologies. Overall, soy and soy components consumption do not seem to perturb healthy women's fertility and can have a favourable effect among subjects seeking pregnancy. However, because of the paucity of studies exploring the impact of soy intake on women's fertility, as well as the limited population sample size, the frequently incomplete specimens’ collection to investigate all cycle phases and the insufficient characterisation of participants, the evidence is suggestive and it needs further in-depth research taking into account all these aspects.
Collapse
|
43
|
Vini R, Azeez JM, Remadevi V, Susmi TR, Ayswarya RS, Sujatha AS, Muraleedharan P, Lathika LM, Sreeharshan S. Urolithins: The Colon Microbiota Metabolites as Endocrine Modulators: Prospects and Perspectives. Front Nutr 2022; 8:800990. [PMID: 35187021 PMCID: PMC8849129 DOI: 10.3389/fnut.2021.800990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) have been used in hormone related disorders, and their role in clinical medicine is evolving. Tamoxifen and raloxifen are the most commonly used synthetic SERMs, and their long-term use are known to create side effects. Hence, efforts have been directed to identify molecules which could retain the beneficial effects of estrogen, at the same time produce minimal side effects. Urolithins, the products of colon microbiota from ellagitannin rich foodstuff, have immense health benefits and have been demonstrated to bind to estrogen receptors. This class of compounds holds promise as therapeutic and nutritional supplement in cardiovascular disorders, osteoporosis, muscle health, neurological disorders, and cancers of breast, endometrium, and prostate, or, in essence, most of the hormone/endocrine-dependent diseases. One of our findings from the past decade of research on SERMs and estrogen modulators, showed that pomegranate, one of the indirect but major sources of urolithins, can act as SERM. The prospect of urolithins to act as agonist, antagonist, or SERM will depend on its structure; the estrogen receptor conformational change, availability and abundance of co-activators/co-repressors in the target tissues, and also the presence of other estrogen receptor ligands. Given that, urolithins need to be carefully studied for its SERM activity considering the pleotropic action of estrogen receptors and its numerous roles in physiological systems. In this review, we unveil the possibility of urolithins as a potent SERM, which we are currently investigating, in the hormone dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Juberiya M. Azeez
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T. R. Susmi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R. S. Ayswarya
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Lakshmi Mohan Lathika
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: Sreeja Sreeharshan
| |
Collapse
|
44
|
Flasch M, Bueschl C, Del Favero G, Adam G, Schuhmacher R, Marko D, Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. ENVIRONMENT INTERNATIONAL 2022; 158:106940. [PMID: 34673318 DOI: 10.1016/j.envint.2021.106940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure to xenoestrogens, i.e., chemicals that imitate the hormone 17β-estradiol, has the potential to influence hormone homeostasis and action. Detailed knowledge of xenobiotic biotransformation processes in cell models is key when transferring knowledge learned from in vitro models to in vivo relevance. This study elucidated the metabolism of two naturally-occurring phyto- and mycoestrogens; namely genistein and zearalenone, in an estrogen receptor positive breast cancer cell line (MCF-7) with the aid of stable isotope-assisted metabolomics and the bioinformatic tool MetExtract II. Metabolism was studied in a time course experiment after 2 h, 6 h and 24 h incubation. Twelve and six biotransformation products of zearalenone and genistein were detected, respectively, clearly demonstrating the abundant xenobiotic biotransformation capability of the cells. Zearalenone underwent extensive phase-I metabolism resulting in α-zearalenol (α-ZEL), a molecule known to possess a significantly higher estrogenicity, and several phase-II metabolites (sulfo- and glycoconjugates) of the native compound and the major phase I metabolite α-ZEL. Moreover, potential adducts of zearalenone with a vitamin and several hydroxylated metabolites were annotated. Genistein metabolism resulted in sulfation, combined sulfation and hydroxylation, acetylation, glucuronidation and unexpectedly adduct formation with pentose- and hexose sugars. Kinetics of metabolite formation and subsequent excretion into the extracellular medium revealed a time-dependent increase in most biotransformation products. The untargeted elucidation of biotransformation products formed during cell culture experiments enables an improved and more meaningful interpretation of toxicological assays and has the potential to identify unexpected or unknown metabolites.
Collapse
Affiliation(s)
- Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria.
| |
Collapse
|
45
|
Lee D, Ko Y, Pang C, Ko YJ, Choi YK, Kim KH, Kang KS. Estrogenic Activity of Mycoestrogen (3 β,5 α,22 E)-Ergost-22-en-3-ol via Estrogen Receptor α-Dependent Signaling Pathways in MCF-7 Cells. Molecules 2021; 27:36. [PMID: 35011267 PMCID: PMC8746416 DOI: 10.3390/molecules27010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/27/2023] Open
Abstract
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (Y.-K.C.)
| | - Yuri Ko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Korea;
| | - You-Kyoung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (Y.-K.C.)
| | - Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (Y.-K.C.)
| |
Collapse
|
46
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
47
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
48
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
49
|
Köksal Karayildirim Ç, Nalbantsoy A, Karabay Yavaşoğlu NÜ. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep 2021; 48:7251-7259. [PMID: 34599704 DOI: 10.1007/s11033-021-06719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Urinary bladder cancer (UBC) is considered one of the most prevalent malignant tumors worldwide. Complementary and integrative approaches for the treatment of bladder cancer, such as the intake of isoflavonoid phytoestrogens, are of increasing interest due to the risk of mortality and long-term morbidity associated with surgical procedures. The biological effects of prunetin, one of the less-studied phytoestrogens, have not yet been examined in this respect. Therefore, this study aimed to explore the efficacy of prunetin on UBC cells (RT-4). METHODS AND RESULTS: The cytotoxicity and nitric oxide synthase activities of prunetin were determined in cell cultures. The expression of apoptosis-related genes was determined with RT-PCR. Cell cycle assays were performed using a flow cytometer and cellular apoptotic rate was measured. The results suggested that prunetin has cytotoxic effects at 21.11 µg/mL on RT-4 cells. Flow cytometry analysis showed that prunetin induced apoptosis and arrested th cell cycle in the G0/G1 phase. Prunetin exposure was associated with increases in CASP3 and TNF-α gene expression in RT-4 cells at doses of 21.11 and 42.22 µg/mL, respectively. Strong nitric oxide inhibition was observed at IC50 of 5.18 µg/mL under macrophage mediated inflammatory circumstances. CONCLUSIONS Prunetin possesses anti-cancer properties and may be a candidate compound for the prevention of UBC. This is the first study that evaluated prunetin for its in vitro antitumor activities, clarified its possible apoptotic molecular mechanism and provided novel insights into its anti-inflammatory nature and effects on the expression of related key genes.
Collapse
Affiliation(s)
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | |
Collapse
|
50
|
Kui L, Kong Q, Yang X, Pan Y, Xu Z, Wang S, Chen J, Wei K, Zhou X, Yang X, Wu T, Mastan A, Liu Y, Miao J. High-Throughput In Vitro Gene Expression Profile to Screen of Natural Herbals for Breast Cancer Treatment. Front Oncol 2021; 11:684351. [PMID: 34490085 PMCID: PMC8418118 DOI: 10.3389/fonc.2021.684351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL−17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yunbing Pan
- Nowbio Biotechnology Company, Kunming, China
| | - Zetan Xu
- Nowbio Biotechnology Company, Kunming, China
| | | | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiaolei Zhou
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tingqin Wu
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anthati Mastan
- Research Center, Microbial Technology Laboratory, Council of Scientific & Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants, Bangalore, India
| | - Yao Liu
- Baoji High-tech Hospital , Baoji, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|