1
|
Bouabdallah S, Ibrahim MH, Brinza I, Boiangiu RS, Honceriu I, Amin A, Ben-Attia M, Hritcu L. Anxiolytic and Antidepressant Effects of Tribulus terrestris Ethanolic Extract in Scopolamine-Induced Amnesia in Zebrafish: Supported by Molecular Docking Investigation Targeting Monoamine Oxidase A. Pharmaceuticals (Basel) 2024; 17:1208. [PMID: 39338370 PMCID: PMC11434784 DOI: 10.3390/ph17091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Plants of the genus Tribulus have been used in folk medicine for wound healing, alleviating liver, stomach, and rheumatism pains, and as cognitive enhancers, sedatives, antiseptics, tonics, and stimulants. The present work aimed to evaluate whether Tribulus terrestris (Tt) administered for 15 days attenuated cognitive deficits and exhibited anxiolytic and antidepressant profiles in scopolamine-induced amnesia in zebrafish. Animals were randomly divided into six groups (eight animals per group): (1)-(3) Tt treatment groups (1, 3 and 6 mg/L), (4) control, (5) scopolamine (SCOP, 0.7 mg/kg), and (6) galantamine (Gal, 1 mg/L). Exposure to SCOP (100 µM) resulted in anxiety in zebrafish, as assessed by the novel tank diving test (NTT) and novel approach test (NAT). When zebrafish were given SCOP and simultaneously given Tt (1, 3, and 6 mg/L once daily for 10 days), the deficits were averted. Molecular interactions of chemical compounds from the Tt fractions with the monoamine oxidase A (MAO-A) were investigated via molecular docking experiments. Using behavioral experiments, we showed that administration of Tt induces significant anxiolytic-antidepressant-like effects in SCOP-treated zebrafish. Our result indicated that flavonoids of Tt, namely kaempferol, quercetin, luteolin, apigetrin, and epigallocatechin, could act as promising phytopharmaceuticals for improving anxiety-related disorders.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Environmental Biomonitoring Laboratory, Bizerte Faculty of Sciences, Carthage University, Zarzouna 7021, Tunisia
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azha University, Cairo 11884, Egypt
| | - Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mossadok Ben-Attia
- Environmental Biomonitoring Laboratory, Bizerte Faculty of Sciences, Carthage University, Zarzouna 7021, Tunisia
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| |
Collapse
|
2
|
Batista FLA, de Araújo SMB, de Sousa DB, Sobrinho FBC, de Lima Silva MG, de Oliveira MRC, da Costa RHS, Rodrigues LB, Bezerra FS, de Azevedo DV, Vieira-Neto AE, Magalhães FEA, de Menezes IRA. Anticonvulsant and anxiolytic-like potential of the essential oil from the Ocimum basilicum Linn leaves and its major constituent estragole on adult zebrafish (Danio rerio). Neurochem Int 2024; 178:105796. [PMID: 38936553 DOI: 10.1016/j.neuint.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.
Collapse
Affiliation(s)
- Francisco Lucas A Batista
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil; Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Sandra Maria B de Araújo
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Daniela Braga de Sousa
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Francisco Bastos C Sobrinho
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Maria Rayane C de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Roger Henrique S da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Lindaiane Bezerra Rodrigues
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Franciglauber Silva Bezerra
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Djane Ventura de Azevedo
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | | | - Francisco Ernani A Magalhães
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil.
| |
Collapse
|
3
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Freitas da Silva AE, San De Oliveira Brito L, Silva J, Sydney Henrique da Silva F, Bezerra AS, Kuerislene Amâncio Ferreira M, Machado Marinho M, Silva Marinho G, Deusdênia Loiola Pessoa O, Goberlânio De Barros Silva P, Noronha Coelho-de-Souza A, Florindo Guedes I, Ferreira de Castro Gomes A, Eire Silva Alencar De Menezes J, Silva Santos H. Tropane Alkaloid Isolated from Erythroxylum bezerrae Exhibits Neuropharmacological Potential in an Adult Zebrafish (Danio rerio) Model. Chem Biodivers 2024; 21:e202400786. [PMID: 38777789 DOI: 10.1002/cbdv.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.
Collapse
Affiliation(s)
| | - Jéssica Bezerra Maciel
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Arnaldo S Bezerra
- Programa de PósGraduação em Ciências Fisiológicas, Universidade Estadual do Ceará
| | | | - Marcia Machado Marinho
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| | - Gabrielle Silva Marinho
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Hélcio Silva Santos
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
4
|
Alamry KA, Hussein MA, Khan A, Asiri AM. Anticoagulation activity of sulfated carboxymethyl cellulose/ Azadirachta indica leaf powder-based bio-composite. RSC Adv 2024; 14:22017-22027. [PMID: 39006770 PMCID: PMC11240138 DOI: 10.1039/d4ra02893g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Polymeric bio-composites synthesized via a green approach using natural herbs have fascinating anticoagulant activity due to their eco-friendly and non-toxic behavior towards various physical and chemical actions. Herein, we introduce a simple and eco-friendly approach for the fabrication of a new hybrid type of bio-composite based on sulfated carboxymethyl cellulose (S-CMC) and Azadirachta indica leaf powder (S-CMC/NLP). First, a non-toxic sulfating agent called N(SO3Na)3 was used to modify carboxymethyl cellulose into S-CMC. With an ion exchange capacity of 0.25 meq. g-1, the level of sulfation (%) of S-CMC (modified polysaccharide) was measured to be 12.01%. Three types of S-CMC/NLP bio-composites were developed by varying the concentration of NLP. FE-SEM, EDX, and XRD were used to characterize the structural features of S-CMC/NLP bio-composites. FTIR spectroscopy indicated that the S-CMC/NLP bio-composite possesses COO-, -OH and SO3- groups, suggesting the structural similarity to heparin. In addition, the anticoagulant effect of the S-CMC/NLP bio-composite was investigated using PT and APTT assays. The APTT investigation confirmed that following the intrinsic pathway of the coagulation system, 2-NLP/S-CMC bio-composite dose-dependently (0.045-0.28 mg mL-1) prolonged the time of blood coagulation compared to control (pure plasma). The S-CMC/NLP bio-composite showed its potential as a new, safe, and effective candidate for anticoagulant activity.
Collapse
Affiliation(s)
- Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Faculty of Science, Department of Chemistry, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ajahar Khan
- Faculty of Science, Department of Chemistry, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea
| | - Abdullah M Asiri
- Faculty of Science, Department of Chemistry, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
5
|
Marques LDS, Rocha YMD, Nascimento GAD, Santos SAAR, Vieira NCG, Moura LFWG, Alves DR, Silva WMBD, de Morais SM, de Oliveira KA, da Silva LMR, Sousa KKOD, Vieira-Neto AE, Coutinho HDM, Campos AR, Magalhães FEA. Potential of the Blue Calm® food supplement in the treatment of alcohol withdrawal-induced anxiety in adult zebrafish (Danio rerio). Neurochem Int 2024; 175:105706. [PMID: 38423391 DOI: 10.1016/j.neuint.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Alcohol use disorder (AUD) is characterized by a set of behavioral, cognitive, nutritional, and physiological phenomena derived from the uncontrolled use of alcoholic beverages. There are cases in which AUD is associated with anxiety disorder, and when untreated, it requires careful pharmacotherapy. Blue Calm® (BC) is a food supplement indicated to aid restorative sleep, which has traces of medicinal plant extracts, as well as myo-inositol, magnesium bisglycinate, taurine, and L-tryptophan as its main chemical constituents. In this context, this study aimed to evaluate the potential of the BC in the treatment alcohol withdrawal-induced anxiety in adult zebrafish (aZF). Initially, BC was submitted to antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical. Subsequently, the aZF (n = 6/group) were treated with BC (0.1 or 1 or 10 mg/mL; 20 μL; p.o.), and the sedative effect and acute toxicity (96 h) were evaluated. Then, the anxiolytic-like effect and the possible GABAergic mechanism were analyzed through the Light & Dark Test. Finally, BC action was evaluated for treating alcohol withdrawal-induced anxiety in aZF. Molecular docking was performed to evaluate the interaction of the major chemical constituents of BC with the GABAA receptor. BC showed antioxidant potential, a sedative effect, was not toxic, and all doses of BC had an anxiolytic-like effect and showed potential for the treatment of alcohol withdrawal-induced anxiety in aZF. In addition to the anxiolytic action, the main chemical constituents of BC were confirmed in the molecular docking, thus suggesting that BC is an anxiolytic that modulates the GABAergic system and has pharmacological potential for the treatment of alcohol withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Luzia Débora S Marques
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Yatagan M da Rocha
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Gabriela A do Nascimento
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Sacha Aubrey A R Santos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Natália Chaves G Vieira
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Luiz Francisco Wemmenson G Moura
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Daniela R Alves
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil
| | - Wildson Max B da Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil
| | - Selene Maia de Morais
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil.
| | - Keciany A de Oliveira
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Larissa Morais R da Silva
- Universidade Federal do Ceará, Programa de Pós-Graduação em Ciências e Tecnologia de Alimentos (PPGCTA), Laboratório de Microbiologia de Alimentos (LMA), Campos do Pici, CEP 60.356.000, Fortaleza, Ceará, Brazil.
| | - Kalina Kelma O de Sousa
- Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, CEP 60.660-000, Tauá, Ceará, Brazil
| | - Antonio Eufrásio Vieira-Neto
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Universidade Regional do Cariri - URCA, Programa de Pós-Graduação em Química Biológica (PPGQB), Laboratório de Microbiologia e Biologia Molecular (LMBM), CEP 63105-000, Crato, Ceará, Brazil.
| | - Adriana Rolim Campos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil.
| | - Francisco Ernani Alves Magalhães
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil; Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil; Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, CEP 60.660-000, Tauá, Ceará, Brazil.
| |
Collapse
|
6
|
Audira G, Huang JC, Chen KHC, Kurnia KA, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD, Yen CY. A comprehensive painkillers screening by assessing zebrafish behaviors after caudal fin amputation. Biomed Pharmacother 2023; 168:115641. [PMID: 37806085 DOI: 10.1016/j.biopha.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Cheng-Yo Yen
- Department of Orthopedics, E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, No.1, E-Da Road, Yan-Chau District, 824, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Claro RO, Rivero-Wendt CLG, Miranda-Vilela AL, Grisolia CK, Facco GG, Moreira DDL, Matias R, Guilhermino JDF. Toxicological effects of aqueous extract of Genipa americana L. leaves on adult zebrafish (Danio rerio): Chemical profile, histopathological effects and lack of genotoxicity. Toxicon 2023; 235:107305. [PMID: 37839738 DOI: 10.1016/j.toxicon.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Genipa americana is a native plant of Brazil with potential applications in folk medicine. Whereas most of the phytochemical and pharmacological studies on this plant have focused on its fruits, the crude extracts of its leaves contain chemical metabolites that may have toxicity to organisms, which have yet to be investigated. This study aimed to determine the main groups of secondary metabolites in the aqueous extract of the leaves of G. americana by phytochemistry and qualitative HPLC, and to evaluate the possible toxicological effects and histopathological changes caused by this extract in zebrafish (Danio rerio) adults, through micronucleus test, nuclear abnormalities and histopathological analyses of gills and liver. While three metabolites of high intensity (phenolic compounds, flavonoids and triterpenes) were found in the phytochemical evaluation, the HPLC showed results compatible with flavonoids and iridoids, all belonging to common classes for this species and the Rubiaceae family. The acute toxicity test did not induce mortality or genotoxicity in zebrafish, but after exposure for 96 h, it was possible to observe injuries to the fish gill tissue, such as lamellar fusion, vasodilation and telangiectasia; in the liver, necrosis was visualized at 40 mg/L, and at higher concentrations (80 and 100 mg/L) induced sinusoidal widening was identified. In conclusion, the results demonstrated the toxic potential of this plant for aquatic species.
Collapse
Affiliation(s)
- Raquel Oliveira Claro
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Carla Letícia Gediel Rivero-Wendt
- Graduate Program in Animal Biology, Federal University of Mato Grosso do Sul. Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília. Campus Universitário Darcy Ribeiro, Bloco E, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil.
| | - Gilberto Golçalves Facco
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Davyson de Lima Moreira
- Natural Products Department, Far-Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil.
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Jislaine de Fátima Guilhermino
- Natural Products Department, Far-Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
9
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
10
|
Mongkolpobsin K, Sillapachaiyaporn C, Nilkhet S, Tencomnao T, Baek SJ. Stigmasterol isolated from Azadirachta indica flowers attenuated glutamate-induced neurotoxicity via downregulation of the Cdk5/p35/p25 signaling pathway in the HT-22 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154728. [PMID: 36898255 DOI: 10.1016/j.phymed.2023.154728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Kuljira Mongkolpobsin
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
11
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
12
|
Ishaq R, Chand N, Khan RU, Saeed M, Laudadio V, Tufarelli V. Methanolic extract of neem ( Azadirachta indica) leaves mitigates experimentally induced coccidiosis challenge in Japanese quails. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Rabia Ishaq
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Naila Chand
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Saeed
- Department of Poultry Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Vito Laudadio
- DETO – Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, Valenzano, Italy
| | - Vincenzo Tufarelli
- DETO – Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, Valenzano, Italy
| |
Collapse
|
13
|
Rebouças EDL, da Silva AW, Rodrigues MC, Ferreira MKA, Mendes FRS, Marinho MM, Marinho EM, Pereira LR, Araújo JIFD, da Silva JYG, Moura LFWG, Magalhaes FEA, Salles Trevisan MT, Dos Santos HS, Marinho ES, Guedes MIF. Antinociceptive, anti-inflammatory and hypoglycemic activities of the ethanolic Turnera subulata Sm. flower extract in adult zebrafish ( Danio rerio). J Biomol Struct Dyn 2022; 40:13062-13074. [PMID: 34629028 DOI: 10.1080/07391102.2021.1981449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Turnera subulata Sm. belongs to the family Turneraceae and is found in Brazil. The present study evaluated the antinociceptive, anti-inflammatory, and hypoglycemic potential of T. subulata flower extract (EtFloTsu) in zebrafish (Danio rerio). The total phenol and flavonoid contents of EtFloTsu were determined and identified using the Folin Ciocalteu reagent and aluminum chloride (AlCl3), respectively. The constituents of the extract were identified by HPLC-DAD, and the in vitro antioxidant activity (DPPH) was determined, toxicity in brine shrimp, and acute toxicity of 96 h in adult zebrafish. In addition, adult zebrafish (n = 6/fish) were treated orally with EtFloTsu (4, 20, or 40 mg/kg; vo) and subjected to formalin-induced nociception tests (with its possible mechanism of action with camphor), carrageenan-induced inflammation, and D-glucose-induced hyperglycemia (111 mM). Oxidative stress in the liver and brain tissues was assessed. EtFloTsu showed high levels of phenolic and flavonoid compounds with antioxidant activity. The phytochemicals chlorogenic acid, luteolin-7-o-glucoside, vitexin, and apigenin-7-o-glucoside were also identified in EtFloTsu. The synergism between these constituents was possibly responsible for the antinociceptive (via TRPA1), anti-inflammatory, and hypoglycemic effects of EtFloTsu in adult zebrafish, without causing toxicity in animals. Therefore, T. subulata flowers have therapeutic agents that could treat pain, inflammation, diabetes, and related complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emanuela de Lima Rebouças
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Antonio Wlisses da Silva
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Marnielle Coutinho Rodrigues
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Rogênio Silva Mendes
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Emanuelle Machado Marinho
- Group of Theoretical Chemistry - GQT, Pici Campus, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Ramos Pereira
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ismael Feitosa de Araújo
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ytalo Gomes da Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisco Ernani Alves Magalhaes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Group of Theoretical Chemistry and Electrochemical - GQTE, FAFIDAM Campus, State University of Ceará, Iguatu, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
14
|
de Souza AA, Ortíz BLS, Borges SF, Pinto AVP, Ramos RDS, Pena IC, Rocha Koga RDC, Batista CE, de Souza GC, Ferreira AM, Duvoisin Junior S, Tavares Carvalho JC. Acute Toxicity and Anti-Inflammatory Activity of Trattinnickia rhoifolia Willd (Sucuruba) Using the Zebrafish Model. Molecules 2022; 27:7741. [PMID: 36431841 PMCID: PMC9699319 DOI: 10.3390/molecules27227741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
The species Trattinnickia rhoifolia Willd, (T. rhoifolia), which belongs to the Burseraceae family, is widely used in ethnopharmacological cultural practices by traditional Amazonian people for anti-inflammatory purposes, sometimes as their only therapeutic resource. Although it is used in teas, infusions, macerations and in food, the species is still unexplored in regard to its pharmacophoric potential and chemical profile. Therefore, the aim of this study was to conduct a phytochemical characterization of the hydroethanolic extract of T. rhoifolia leaves (HELTr) and to evaluate the acute toxicity and anti-inflammatory activity of this species using zebrafish (Danio rerio). The extract was analyzed by gas chromatography−mass spectrometry (GC-MS). The evaluation of the acute toxicity of the HELTr in adult zebrafish was determined using the limit test (2000 mg/kg), with behavioral and histopathological evaluations, in addition to the analysis of the anti-inflammatory potential of HELTr in carrageenan-induced abdominal edema, followed by the use of the computational method of molecular docking. The phytochemical profile of the species is chemically diverse, suggesting the presence of the fatty acids, ester, alcohol and benzoic acid classes, including propanoic acid, ethyl ester and hexadecanoic acid. In the studies of zebrafish performed according to the index of histopathological changes (IHC), the HELTr did not demonstrate toxicity in the behavioral and histopathological assessments, since the vital organs remained unchanged. Carrageenan-induced abdominal edema was significantly reduced at all HELTr doses (100, 200 and 500 mg/kg) in relation to the negative control, dimethyl sulfoxide (DMSO), while the 200 mg/kg dose showed significant anti-inflammatory activity in relation to the positive control (indomethacin). With these activities being confirmed by molecular docking studies, they showed a good profile for the inhibition of the enzyme Cyclooxygenase-2 (COX-2), as the interactions established at the sites of the receptors used in the docking study were similar to the controls (RCX, IMN and CEL). Therefore, the HELTr has an acceptable degree of safety for acute toxicity, defined in the analysis of behavioral changes, mortality and histopathology, with a significant anti-inflammatory action in zebrafish at all doses, which demonstrates the high pharmacophoric potential of the species. These results may direct future applications and drug development but still require further elucidation.
Collapse
Affiliation(s)
- Agerdânio Andrade de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Indigenous Intercultural Licensing Course, Binational Campus, Federal University of Amapá, Rodovia BR 156, No. 3051, Universidade, Oiapoque CEP 68980-000, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Brenda Lorena Sánchez Ortíz
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Swanny Ferreira Borges
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Andria Vanessa Pena Pinto
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Ryan da Silva Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá CEP 68903-419, Amapá, Brazil
| | - Igor Colares Pena
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá CEP 68902-280, Amapá, Brazil
| | - Rosemary de Carvalho Rocha Koga
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Carla Estefani Batista
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - Gisele Custódio de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Adriana Maciel Ferreira
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Sergio Duvoisin Junior
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - José Carlos Tavares Carvalho
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
- University Hospital of the Federal University of Amapá, R. do Estádio Zerão, Macapá CEP 68902-336, Amapá, Brazil
| |
Collapse
|
15
|
Xavier MR, Freitas TS, Pereira RLS, Marinho EM, Bandeira PN, de Sousa AP, Oliveira LS, Bezerra LL, Neto JBA, Silva MMC, Cruz BG, Rocha JE, Barbosa CRS, da Silva AW, de Menezes JESA, Coutinho HDM, Marinho MM, Marinho ES, Dos Santos HS, Teixeira AMR. Anti-inflammatory effect, antibiotic potentiating activity against multidrug-resistant strains of Escherichia coli and Staphylococcus aureus, and evaluation of antibiotic resistance mechanisms by the ibuprofen derivative methyl 2-(-4-isobutylphenyl)propanoate. Microb Pathog 2022; 170:105697. [PMID: 35926804 DOI: 10.1016/j.micpath.2022.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
The prevalence of multidrug-resistant (MDR) bacteria and the limited efficacy of current available antibiotics cause every year approximately 700 000 deaths per year. This study aimed to evaluate the anti-inflammatory effect and antibacterial potential of the ibuprofen derivative Methyl 2-(-4-isobutylphenyl)propanoate (MET-IBU). The molecular structure of MET-IBU was confirmed by Nuclear Magnetic Resonance (NMR) and, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy. Our in vivo study using adult zebrafish model demonstrated that the ibuprofen derivative MET-IBU also possesses anti-inflammatory effect, and in vitro antibacterial activity assays showed that in the association of ampicillin, norfloxacin, and gentamicin with MET-IBU occurred reduction in the minimum inhibitory concentration (MIC) for MDR bacterial strains of Escherichia coli 06 and Staphylococcus aureus 10, indicating a potentiating in the growth inhibition of these pathogenic bacteria. Regarding the strain of Staphylococcus aureus K2068 (overexpressing mepA gene), a potentiation of ethidium bromide was found in the association with MET-IBU, indicating the action of this compound on the efflux pump mechanism present in this strains. This result corroborates the molecular docking study that indicated a high affinity of the MET-IBU with the MepA efflux pump. It was also noticed an antibiotic potentiating activity in the association MET-IBU with norfloxacin against strains of Staphylococcus aureus 1199B (overexpressing norA gene) when compared to the norfloxacin control. This enhanced antibiotic effect of MET-IBU is associated with a second resistance mechanism, which is due to the modification in the topoisomerase enzyme. These results bring attention to the ibuprofen derivative MET-IBU as possible candidate for the development of new options for the treatment of bacterial infections with protective anti-inflammatory action.
Collapse
Affiliation(s)
- Maria R Xavier
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Thiago S Freitas
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emanuelle M Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paulo N Bandeira
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Amanda P de Sousa
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Larissa S Oliveira
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Lucas Lima Bezerra
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - José B A Neto
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Maria M C Silva
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Beatriz G Cruz
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaína E Rocha
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Cristina R S Barbosa
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Antonio W da Silva
- Graduate Program in Biotechnology of the Northeast Network of Biotechnology, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil
| | - Jane E S A de Menezes
- Graduate Program in Natural Science, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil
| | - Henrique D M Coutinho
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Márcia M Marinho
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Hélcio S Dos Santos
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil; Graduate Program in Biotechnology of the Northeast Network of Biotechnology, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil; Graduate Program in Natural Science, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil
| | - Alexandre M R Teixeira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Graduate Program in Biotechnology of the Northeast Network of Biotechnology, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil; Graduate Program in Natural Science, State University of Ceará, Campus Itaperi, Fortaleza, CE, Brazil.
| |
Collapse
|
16
|
Iman M, Taheri M, Bahari Z. The anti-cancer properties of neem ( Azadirachta indica) through its antioxidant activity in the liver: its pharmaceutics and toxic dosage forms. A literature review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:203-211. [PMID: 33964199 DOI: 10.1515/jcim-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The neem (Azadirachta indica) have been used in herbal medicine for the treatment of multiple diseases, particularly cancer. The mechanism of anti-cancer properties of neem are far from clear. However, it is well accepted that anti-cancer effects of neem is mediated via its hepatic anti-oxidant activity. In the present review, we are going to classify in vitro and in vivo studies about anti-cancer activity of neem via its hepatic anti-oxidant activity. We also summarize its active ingredients and some therapeutic and toxic dosage forms. METHODS A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, as well as Google Scholar pre-print database using all available MeSH terms for neem, A. indica, anti-cancer, anti-tumor, carcinogen, liver, antioxidant activity, neem ingredients, and glutathione. Electronic database searches combined and duplicates were removed. RESULTS The neem plant have been used in herbal medicine for the treatment of various diseases, particularly cancer. The mechanisms of anti-cancer effects of neem are far from clear. Cancerous cells growth can induce imbalance the oxidant and anti-oxidant activity in various organs particularly in the liver. Therefore, it seems that neem have anti-cancer effects via restore of the antioxidant disturbances close to the control ones in the liver. Additionally, administration of neem extract can induce oncostatic potential via several mechanism including; suppression of the NF-κβ pathway, increased expression of tumor suppressor (such as p53 and pTEN), decreased expression of oncogenes (such as c-Myc), and increased apoptosis in cancerous cells. The median lethal dose (LD50) value for extracts of neem was higher than 2,500 mg/kg. CONCLUSIONS It is suggested that neem plays pivotal role in the prevention and treatment of cancer via its hepatic antioxidant activity. Indeed, application of neem extract can decreased tumor growth via restore of the antioxidant disturbances close to the control ones in the liver.
Collapse
Affiliation(s)
- Maryam Iman
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Taheri
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Alves AWDS, Sousa BL, Moura LFWG, Rebouças EDL, Coutinho MR, Silva AW, Chaves RP, Carneiro RF, Bezerra EHS, Guedes MIF, Florean EOPT, Nagano CS, Sampaio AH, Rocha BAM. Codium isthmocladum lectin 1 (CiL-1): Interaction with N-glycans explains antinociceptive and anti-inflammatory activities in adult zebrafish (Danio rerio). Int J Biol Macromol 2022; 208:1082-1089. [PMID: 35378162 DOI: 10.1016/j.ijbiomac.2022.03.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Inflammation and oxidative stress are processes associated with different human diseases. They are treated using drugs that have several side effects. Seaweed are sources of potentially relevant natural compounds for use as treatment of these disorders. Lectins are able to reversibly interact with complex carbohydrates and modulate cell membrane glycosylated receptors through this interaction. This study aimed to determine the antinociceptive and anti-inflammatory potential of CiL-1 in adult zebrafish by modulation of TRPA1 through lectin-glycan binding. Possible neuromodulation by TRPA1 channel was also evaluated by camphor pretreatment. CiL-1 was efficacious at all tested doses, revealing anti-nociceptive and anti-inflammatory effects in adult zebrafish. This galactose-binding lectin was also able to reduce the content of ROS in brain and liver. In silico analyses showed CiL-1 interactions with both ligands tested. LacNac2 presents the most favorable binding energy with the protein. The interaction occurs at 4 subsites as an extended conformation at the site. LacNac2-Sia had a less favorable curved-shape interaction energy. Based on the predictions made for the oligosaccharides, a tetra-antenate putative glycan was schematically constructed, illustrating an interaction between TRPA1 N-glycan and CiL-1. This binding seems to be related to CiL-1 anti-inflammatory activity as result of receptor modulation.
Collapse
Affiliation(s)
- Antônio Willame da Silva Alves
- Laboratório de Biocristalografia - LABIC, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici s/n, bloco 907, Av. Mister Hull, Fortaleza, Ceará 60440-970, Brazil
| | - Bruno Lopes Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, Ceará 62930-000, Brazil
| | - Luiz Francisco Wemmenson Gonçalves Moura
- Laboratório de Biotecnologia e Biologia Molecular - LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Emanuela de Lima Rebouças
- Laboratório de Biotecnologia e Biologia Molecular - LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Marnielle Rodrigues Coutinho
- Laboratório de Biotecnologia e Biologia Molecular - LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Antônio Wlisses Silva
- Laboratório de Biotecnologia e Biologia Molecular - LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Renata Pinheiro Chaves
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Rômulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Eduardo Henrique Salviano Bezerra
- Laboratório de Biocristalografia - LABIC, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici s/n, bloco 907, Av. Mister Hull, Fortaleza, Ceará 60440-970, Brazil; Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro, Cidade Universitária, Campinas, São Paulo, Brazil
| | - Maria Izabel Florindo Guedes
- Laboratório de Biotecnologia e Biologia Molecular - LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | | | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Bruno Anderson Matias Rocha
- Laboratório de Biocristalografia - LABIC, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici s/n, bloco 907, Av. Mister Hull, Fortaleza, Ceará 60440-970, Brazil.
| |
Collapse
|
18
|
Boiangiu RS, Bagci E, Dumitru G, Hritcu L, Todirascu-Ciornea E. Angelica purpurascens (Avé-Lall.) Gilli. Essential Oil Improved Brain Function via Cholinergic Modulation and Antioxidant Effects in the Scopolamine-Induced Zebrafish ( Danio rerio) Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:1096. [PMID: 35448824 PMCID: PMC9030736 DOI: 10.3390/plants11081096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Angelica purpurascens (Avé-Lall.) Gilli. is a medicinal plant that displays antioxidant, anticholinesterase, and neuroprotective properties. The effect of A. purpurascens essential oil (APO) on memory impairments and brain oxidative stress in zebrafish (Danio rerio) treated with scopolamine (Sco), as well as the underlying mechanism involved, were investigated in this study. Exposure to Sco (100 μM) resulted in anxiety in zebrafish, as assessed by the novel tank diving test (NTT), whereas spatial memory and novelty response dysfunctions, as evidenced by the Y-maze test and novel object recognition test (NOR), were noticed. When zebrafish were given Sco and simultaneously given APO (25 and 150 μL/L, once daily for 13 days), the deficits were averted. An increase in brain antioxidant enzymes, a reduction of lipid peroxidation, and protein oxidation were linked to this impact. Furthermore, acetylcholinesterase (AChE) activity was significantly reduced in the brains of APO-treated zebrafish. The main detected components in the APO composition were β-phellandrene (33.80%), sabinene (6.80%), α-pinene (5.30%), germacrene-D (4.50%), α-phellandrene (4.20%), and p-cymene (3.80%) based on gas chromatography-mass spectrometry (GC-MS) investigations. Our findings show that APO's beneficial effect in a zebrafish model of Sco-induced memory impairment is mediated through multiple mechanisms, including the restoration of cholinergic system function and the improvement of the brain antioxidant state. As a result, APO could be employed as a potential source of bioactive molecules with useful biological properties and medicinal uses.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Eyup Bagci
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey;
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| |
Collapse
|
19
|
Akhtar MA. Anti-Inflammatory Medicinal Plants of Bangladesh—A Pharmacological Evaluation. Front Pharmacol 2022; 13:809324. [PMID: 35401207 PMCID: PMC8987533 DOI: 10.3389/fphar.2022.809324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are considered major threats to human health worldwide. In Bangladesh, a number of medicinal plants have been used in traditional medicine from time immemorial in the treatment of diverse diseases, including inflammatory disorders. This assignment aims at providing the status of the medicinal plants of Bangladesh which are traditionally used in the management of inflammatory disorders and are investigated for their anti-inflammatory prospects using different preclinical studies and future research directions. The information of medicinal plants assembled in this review was obtained from a literature search of electronic databases such as Google Scholar, PubMed, Scopus, Web of Science and ScienceDirect up to December, 2020 from publications on plants investigated for their anti-inflammatory activities, in which the place of plant sample collection was identified as Bangladesh. Keywords for primary searches were “anti-inflammatory,” “Bangladeshi,” and “medicinal plants.” Criteria followed to include plant species were plants that showed significant anti-inflammatory activities in 1) two or more sets of experiments in a single report, 2) same or different sets of experiments in two or more reports, and, 3) plants which are traditionally used in the treatment of inflammation and inflammatory disorders. In this study, 48 species of medicinal plants have been reviewed which have been used in traditional healing practices to manage inflammatory disorders in Bangladesh. The mechanistic pathways of the in vivo and in vitro study models used for the evaluation of anti-inflammatory properties of plant samples have been discussed. Selected plants were described in further detail for their habitat, anti-inflammatory studies conducted in countries other than Bangladesh, and anti-inflammatory active constituents isolated from these plants if any. Medicinal plants of Bangladesh have immense significance for anti-inflammatory activity and have potential to contribute toward the discovery and development of novel therapeutic approaches to combat diseases associated with inflammation. However, the plants reviewed in this article had chiefly undergone preliminary screening and require substantial investigations including identification of active molecules, understanding the mechanism of action, and evaluation for safety and efficacy to be followed by the formulation of safe and effective drug products.
Collapse
|
20
|
Sharma M, Gupta P, Garabadu D. Bacopa monnieri attenuates glutamate-induced nociception and brain mitochondrial toxicity in Zebrafish. Metab Brain Dis 2022; 37:383-396. [PMID: 34817757 DOI: 10.1007/s11011-021-00874-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Bacopa monnieri L. (BM; Family: Scrophulariaceae), commonly known as Brahmi, is traditionally used as a nootropic agent. BM also exhibits significant analgesic activity in experimental models of pain. However, the effect of Bacopa monnieri against glutamate-induced nociception in zebrafish is yet to be explored in experimental condition. Therefore, the present study was designed to evaluate the effect of BM against glutamate-induced nociception and brain mitochondrial toxicity in adult zebrafish (Danio rerio). BM at 0.625, 1.25 and 2.5 mg/ml was administered to adult zebrafish and after half an hour glutamate was injected through i.m. route of administration. Indomethacin was used as standard drug. After behavioral analysis, the fish were euthanized and the brain was isolated and stored for further biochemical analysis. BM (1.25 and 2.5 mg/ml) and indomethacin significantly attenuated the glutamate-induced increase in number of line crossing compared to control group animals. Additionally, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate induced increase in cytosolic calcium level. Further, there was a substantial improvement in mitochondrial function, integrity and bioenergetics in term of respiratory control rate and ADP/O in zebrafish brain. Moreover, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate-induced mitochondria-dependent apoptosis in zebrafish brain. Therefore, BM could be a potential alternative drug candidate in the management of pain.
Collapse
Affiliation(s)
- Mahima Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
- Drug Standardization Unit, DDPR Central Research Institute for Homoeopathy, Uttar Pradesh, Noida, India
| | - Pankaj Gupta
- Drug Standardization Unit, DDPR Central Research Institute for Homoeopathy, Uttar Pradesh, Noida, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India.
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
21
|
Sharma M, Gupta PK, Gupta P, Garabadu D. Antinociceptive activity of standardized extract of Bacopa monnieri in different pain models of zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114546. [PMID: 34418512 DOI: 10.1016/j.jep.2021.114546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacopa monnieri L. (Scrophulariaceae) is commonly known as Brahmi and traditionally used as a neuroprotective herbal medicine. Recently, Bacopa monnieri exhibited significant therapeutic activity against animal model of neuropathic pain. However, the therapeutic potential of methanolic extract of Bacopa monnieri in experimental animal model is yet to establish. AIM OF THE STUDY The present study was designed to evaluate the anti-nociceptive potential of standardized methanolic extract of Bacopa monnieri in experimental adult zebrafish (Danio rerio) model of pain. MATERIALS AND METHODS The methanolic extract of Bacopa monnieri (BME) was standardized to bacoside-A using chromatographic method. Subsequently, BME (0.75, 1.25 and 5.0 mg/ml) was evaluated for anti-nociceptive activity using adult zebrafish model. RESULTS Standardized BME showed antioxidant effect through radical quenching activity in in vitro study. BME at 1.25 mg/ml significantly decreased the nociceptive effect induced by different noxious agents like acetic acid where as BME at 2.5 mg/ml exhibited significant antinociceptive activity against glutamate, formalin, capsaicin, cinnamaldehyde when compared to control and sham group animals. CONCLUSION BME exerted antinociceptive activity in adult zebrafish. It could be presumed that BME may involve glutamatergic receptor, ASIC and TRP channel activity in its anti-nociceptive effect. BME could be considered as a potential therapeutic option in the management of pain.
Collapse
Affiliation(s)
- Mahima Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India; Drug Standardisation Unit, DDPR Central Research Institute for Homoeopathy, Noida, Uttar Pradesh, India
| | | | - Pankaj Gupta
- Drug Standardisation Unit, DDPR Central Research Institute for Homoeopathy, Noida, Uttar Pradesh, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India; Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
22
|
Silva MGDV, Lima DRD, Monteiro JA, Magalhães FEA. Anxiolytic-like effect of chrysophanol from Senna cana stem in adult zebrafish ( Danio rerio). Nat Prod Res 2021; 36:4426-4430. [PMID: 34547943 DOI: 10.1080/14786419.2021.1980788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the anxiolytic-like effect of chrysophanol (CHRY), isolated from hexane extract of Senna cana stem and its possible mechanism of action. CHRY was obtained through chromatographic treatments and its identity was confirmed by uni and bidimensional RMN1H and RMN13C. Adult zebrafish (n = 6/group) were treated (with CHRY (4.0 or 12.0 or 40.0 mg/Kg; 20 µL; intraperitoneally) and submitted to acute toxicity and open field tests. Subsequently, other groups (n = 6/each) received CHRY for the analysis of its effect on the Light & Dark Test. The participation of the GABAergic system was also assessed using the diazepam (GABAA receptor agonist) and flumazenil (GABAA receptor antagonist). CHRY was considered non-toxic, it did not reduce the locomotor activity, and showed an anxiolytic-like effect. This effect was reduced by pre-treatment with flumazenil. The results suggest that CHRY is an anxiolytic-like agent mediated via the GABAergic system.
Collapse
Affiliation(s)
| | - Daniele Rodrigues de Lima
- Laboratory of Natural Products and Medicinal Chemistry (LPNMed), Federal University of Ceará, Fortaleza-Ceará, Brazil
| | - Jackelyne Alves Monteiro
- Laboratory of Natural Products and Medicinal Chemistry (LPNMed), Federal University of Ceará, Fortaleza-Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB) Department of Chemistry, State University of Ceará, Tauá-Ceará, Brazil
| |
Collapse
|
23
|
Mohammed LS, Sallam EA, El basuni SS, Eldiarby AS, Soliman MM, Aboelenin SM, Shehata SF. Ameliorative Effect of Neem Leaf and Pomegranate Peel Extracts in Coccidial Infections in New Zealand and V-Line Rabbits: Performance, Intestinal Health, Oocyst Shedding, Carcass Traits, and Effect on Economic Measures. Animals (Basel) 2021; 11:ani11082441. [PMID: 34438898 PMCID: PMC8388781 DOI: 10.3390/ani11082441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
Healthy, weaned, coccidial-free male rabbits from two breeds (New Zealand white (NZ) and V-line (VL)) were divided into 10 equal groups (5 groups each for NZ and VL) (3 replicates/group, 6 rabbits/replicate, 18 rabbits/group). All rabbits were inoculated with 5 × 104 Eimeria spp. oocysts (E. intestinalis (67%), E. magna (22%), and E. media (11%)) except for the rabbits in the first group (G1), which were inoculated with a sterile solution and served as a negative control. The remaining four groups were treated as follows: G2, no treatment/positive control, G3, treated with neem leaf extract, G4, treated with pomegranate peel extract (PPE), and G5, treated with a combination of neem leaf extract and PPE. For both breeds, our results showed that the use of neem leaf and/or pomegranate peel extract resulted in improved growth performance, with a significant improvement in relative feed conversion ratio (FCR) compared to the positive control groups, which recorded the worst values, as well as a significant (p ≤ 0.05) reduction in mean oocyst count compared to the positive control groups. We also observed downregulation of mRNA levels of IL-1βα, IL6, and TNF-α in the herbal treatment groups compared with the mRNA levels of these genes in the positive control groups. Herbal treatment with neem leaf and/or pomegranate peel extracts had positive effects on the NZ and VL rabbits experimentally infected with mixed Eimeria species, as evidenced by their healthy appearance, good appetite, no mortalities, an anticoccidial index > 120, and a significantly higher total return and net profit when compared to the positive control groups of both breeds. In NZ rabbits, the treatment with neem leaf extract alone (G3) or in combination with PPE (G5) recorded the most efficient economic anticoccidial activity.
Collapse
Affiliation(s)
- Liza S. Mohammed
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
- Correspondence:
| | - Eman A. Sallam
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Sawsan S. El basuni
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Amany S. Eldiarby
- Parasitology Department, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salama Mostafa Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Seham F. Shehata
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| |
Collapse
|
24
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Petersen EV, Rosemberg DB, Kalueff AV. Exploring CNS effects of American traditional medicines using zebrafish models. Curr Neuropharmacol 2021; 20:550-559. [PMID: 34254921 DOI: 10.2174/1570159x19666210712153329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Although American traditional medicine (ATM) has been practiced for millennia, its complex multi-target mechanisms of therapeutic action remain poorly understood. Animal models are widely used to elucidate the therapeutic effects of various ATMs, including their modulation of brain and behavior. Complementing rodent models, the zebrafish (Danio rerio) is a promising novel organism in translational neuroscience and neuropharmacology research. Here, we emphasize the growing value of zebrafish for testing neurotropic effects of ATMs and outline future directions of research in this field. We also demonstrate the developing utility of zebrafish as complementary models for probing CNS mechanisms of ATM action and their potential to treat brain disorders.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Fabiano Costa
- Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil
| | - Ana C V V Giacomini
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | | | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | | |
Collapse
|
25
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
26
|
Capatina L, Todirascu-Ciornea E, Napoli EM, Ruberto G, Hritcu L, Dumitru G. Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems. Antioxidants (Basel) 2020; 9:antiox9111083. [PMID: 33158153 PMCID: PMC7694219 DOI: 10.3390/antiox9111083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Thymus vulgaris L. is an aromatic herb used for medicinal purposes such as antimicrobial, spasmolytic, antioxidant, anti-inflammatory, antinociceptive, antitumor, and may have beneficial effects in the treatment of Alzheimer’s disease. The present study aimed to investigate whether Thymus vulgaris L. essential oil enhances cognitive function via the action on cholinergic neurons using scopolamine (Sco)-induced zebrafish (Danio rerio) model of memory impairments. Thymus vulgaris L. essential oil (TEO, 25, 150, and 300 µL/L) was administered by immersion to zebrafish once daily for 13 days, whereas memory impairment was induced by Sco (100 μM), a muscarinic receptor antagonist, delivered 30 min before behavioral tests. Spatial memory was assessed using the Y-maze test and novel object recognition test (NOR). Anxiety and depression were measured in the novel tank diving test (NTT). Gas Chromatograph-Mass Spectrometry (GC-MS) analysis was used to study the phytochemical composition of TEO. Acetylcholinesterase (AChE) activity and oxidative stress response in the brain of zebrafish were determined. TEO ameliorated Sco-induced increasing of AChE activity, amnesia, anxiety, and reduced the brain antioxidant capacity. These results suggest that TEO may have preventive and/or therapeutic potentials in the management of memory deficits and brain oxidative stress in zebrafish with amnesia.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
- Correspondence: ; Tel.: +40-232-201-666
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| |
Collapse
|
27
|
|
28
|
Islas JF, Acosta E, G-Buentello Z, Delgado-Gallegos JL, Moreno-Treviño MG, Escalante B, Moreno-Cuevas JE. An overview of Neem (Azadirachta indica) and its potential impact on health. J Funct Foods 2020; 74:104171. [DOI: https:/doi.org/10.1016/j.jff.2020.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
29
|
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. PLANTS 2020; 9:plants9101345. [PMID: 33053800 PMCID: PMC7601530 DOI: 10.3390/plants9101345] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.
Collapse
|
30
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
31
|
Silva FCO, de Menezes JESA, Ferreira MKA, da Silva AW, Holanda CLA, Dos Reis Lima J, Campos AR, Evaristo FFV, Teixeira EH, Magalhães FEA, Bandeira PN, Dos Santos HS. Antinociceptive activity of 3β-6β-16β-trihydroxylup-20 (29)-ene triterpene isolated from Combretum leprosum leaves in adult zebrafish (Danio rerio). Biochem Biophys Res Commun 2020; 533:362-367. [PMID: 32962857 DOI: 10.1016/j.bbrc.2020.07.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Drugs used to treat pain are associated with adverse effects, increasing the search for new drugs as an alternative treatment for pain. Therefore, we evaluated the antinociceptive behavior and possible neuromodulation mechanisms of triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene (CLF-1) isolated from Combretum leprosum leaves in zebrafish. Zebrafish (n = 6/group) were pretreated with CLF-1 (0.1 or 0.3 or 1.0 mg/mL; i.p.) and underwent nociception behavior tests. The antinociceptive effect of CFL-1 was tested for modulation by opioid (naloxone), nitrergic (L-NAME), nitric oxide and guanylate cyclase synthesis inhibitor (methylene blue), NMDA (Ketamine), TRPV1 (ruthenium red), TRPA1 (camphor), or ASIC (amiloride) antagonists. The corneal antinociceptive effect of CFL-1 was tested for modulation by TRPV1 (capsazepine). The effect of CFL-1 on zebrafish locomotor behavior was evaluated with the open field test. The acute toxicity study was conducted. CLF-1 reduced nociceptive behavior and corneal in zebrafish without mortalities and without altering the animals' locomotion. Thus, CFL-1 presenting pharmacological potential for the treatment of acute pain and corneal pain, and this effect is modulated by the opioids, nitrergic system, NMDA receptors and TRP and ASIC channels.
Collapse
Affiliation(s)
- Francisca Crislândia Oliveira Silva
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Jane Eire Silva Alencar de Menezes
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Antonio Wlisses da Silva
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Carlos Leone Alves Holanda
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Joyce Dos Reis Lima
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil
| | - Adriana Rolim Campos
- Universidade de Fortaleza, Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará, Brazil
| | | | - Edson Holanda Teixeira
- Universidade Federal do Ceará, Departamento de Patologia e Medicina Legal, Laboratório Integrado de Biomoléculas (LIBS), Fortaleza, Ceará, Brasil
| | - Francisco Ernani Alves Magalhães
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil; Universidade de Fortaleza, Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará, Brazil; Universidade Estadual do Ceará, Departamento de Química, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia, Tauá, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Universidade Estadual Vale do Acaraú, Curso de Química, Sobral, Ceará, Brazil; Universidade Regional do Cariri, Departamento de Química Biológica, Crato, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Laboratório de Química de Produtos Naturais, Fortaleza, Ceará, Brazil; Universidade Estadual Vale do Acaraú, Curso de Química, Sobral, Ceará, Brazil; Universidade Regional do Cariri, Departamento de Química Biológica, Crato, Ceará, Brazil.
| |
Collapse
|
32
|
Lammel C, Zwirchmayr J, Seigner J, Rollinger JM, de Martin R. Peucedanum ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells through Interference with NF-κB Signaling. Biomolecules 2020; 10:E1215. [PMID: 32825714 PMCID: PMC7563923 DOI: 10.3390/biom10091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Twenty natural remedies traditionally used against different inflammatory diseases were probed for their potential to suppress the expression of the inflammatory markers E-selectin and VCAM-1 in a model system of IL-1 stimulated human umbilical vein endothelial cells (HUVEC). One third of the tested extracts showed in vitro inhibitory effects comparable to the positive control oxozeaenol, an inhibitor of TAK1. Among them, the extract derived from the roots and rhizomes of Peucedanum ostruthium (i.e., Radix Imperatoriae), also known as masterwort, showed a pronounced and dose-dependent inhibitory effect. Reporter gene analysis demonstrated that inhibition takes place on the transcriptional level and involves the transcription factor NF-κB. A more detailed analysis revealed that the P. ostruthium extract (PO) affected the phosphorylation, degradation, and resynthesis of IκBα, the activation of IKKs, and the nuclear translocation of the NF-κB subunit RelA. Strikingly, early effects on this pathway were less affected as compared to later ones, suggesting that PO may act on mechanism(s) that are downstream of nuclear translocation. As the majority of cognate NF-κB inhibitors affect upstream events such as IKK2, these findings could indicate the existence of targetable signaling events at later stages of NF-κB activation.
Collapse
Affiliation(s)
- Christoph Lammel
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Julia Zwirchmayr
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Jaqueline Seigner
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| |
Collapse
|
33
|
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. Ameliorative Effects of Rhoifolin in Scopolamine-Induced Amnesic Zebrafish ( Danio rerio) Model. Antioxidants (Basel) 2020; 9:antiox9070580. [PMID: 32635149 PMCID: PMC7401873 DOI: 10.3390/antiox9070580] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Rhoifolin (Rho) exerts many biological activities such as anticancer, antidiabetic, hepatoprotective, antirheumatic, antibacterial, and antiviral properties. The neuroprotective action of this compound has not been studied. The goal of this study was to investigate the improvement impact of Rho on scopolamine (Sco)-induced zebrafish anxiety, amnesia, and brain oxidative stress and to elucidate the underlying mechanisms involved. Zebrafish were treated with Rho (1, 3, and 5 μg/L) for nine consecutive days and were subsequently subjected to Sco (100 μM) 30 min before behavioral tests (novel tank diving test, Y-maze, and novel object recognition tests). Rho was isolated from Chorisia crispiflora (Malvaceae) leaves and identified by different spectroscopic techniques. To further assess the possible mechanisms of Rho in enhancing the memory capacities in zebrafish, the in vivo antioxidant status and acetylcholinesterase (AChE) activity was also evaluated. Rho from Chorisia crispiflora leaves was identified. Rho could alleviate anxiety, memory deficits, and brain oxidative stress in Sco-treated zebrafish and could regulate the cholinergic function by inhibiting the AChE activity. Our results demonstrated that Rho could be a promising candidate compound against anxiety and amnesia by restoring the cholinergic activity and the amelioration of brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | | | - Mohamed A. El-Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| |
Collapse
|
34
|
Abidar S, Boiangiu RS, Dumitru G, Todirascu-Ciornea E, Amakran A, Cioanca O, Hritcu L, Nhiri M. The Aqueous Extract from Ceratonia siliqua Leaves Protects Against 6-hydroxydopamine in Zebrafish: Understanding the Underlying Mechanism. Antioxidants (Basel) 2020; 9:antiox9040304. [PMID: 32276477 PMCID: PMC7222174 DOI: 10.3390/antiox9040304] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ceratonia siliqua L. is a Mediterranean medicinal plant traditionally cultivated for its ethnopharmacological benefits, such as antidiarrheal, antidiabetic, enhance acetylcholine, antioxidant, antiatherosclerotic, and for its possible anti-neurodegenerative potential. The aim of the present study was to evaluate the chemical composition, as well as the cognitive-enhancing, anxiolytic, and antioxidant activities of the aqueous extract from C. siliqua (CsAE) leaves against 6-hydroxydopamine (6-OHDA) zebrafish Parkinson’s disease (PD) model. CsAE (0.1, 0.3, and 1 mg/L) was administered by immersion to zebrafish (Danio rerio) for eight consecutive days and one hour before each behavioral test of each day, while 6-OHDA (250 µM) treatment was supplied one day before the novel tank diving test (NTT). Qualitative and quantitative analyses were performed by the ultra-high-performance liquid chromatography (UHPLC) analysis. The memory performance was evaluated through the NTT and Y-maze tests. Additionally, the in vitro and in vivo antioxidant status and acetylcholinesterase (AChE) activity was also assessed. Our finds demonstrated that CsAE presented positive antioxidant and anti-AChE activities, which contributed to the improvement of cognitive function in the 6-OHDA zebrafish PD model.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Lucian Hritcu
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| |
Collapse
|
35
|
Montiel-Ruiz RM, Córdova-de la Cruz M, González-Cortázar M, Zamilpa A, Gómez-Rivera A, López-Rodríguez R, Lobato-García CE, Blé-González EA. Antinociceptive Effect of Hinokinin and Kaurenoic Acid Isolated from Aristolochia odoratissima L. Molecules 2020; 25:molecules25061454. [PMID: 32213823 PMCID: PMC7145305 DOI: 10.3390/molecules25061454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/21/2022] Open
Abstract
Aristolochia odoratissima L. is employed for the treatment of pain and as an antidote against the poison of venomous animals in traditional medicine. However, reports have not been found, to our knowledge, about the evaluation of the antinociceptive activity of extracts nor about the presence of compounds associated with this activity. Thus, the purpose of this work was to evaluate the antinociceptive activity of extracts and compounds isolated from the stems of Artistolochia odoratissima L. The extracts were obtained with solvents of increasing polarity and the compounds were isolated and characterized by column chromatography, HPLC, and NMR. The antinociceptive activity was carried out by the formalin test in mice. Ethyl acetate (AoEA) and methanolic (AoM) extracts decreased the paw licking in both phases of the formalin test. The isolated compounds (kaurenoic acid and hinokinin) from AoEA showed the highest antinociceptive activity in both phases of the formalin test. These results confirmed the analgesic effect of this specie described in traditional medicine and provided a base for a novel analgesic agent. They also allowed an approach for the development of standardized plant extracts with isolated metabolites.
Collapse
Affiliation(s)
- Rosa Mariana Montiel-Ruiz
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico; (R.M.M.-R.); (A.Z.)
| | - Marcos Córdova-de la Cruz
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico; (M.C.-d.l.C.); (A.G.-R.); (R.L.-R.); (C.E.L.-G.)
| | - Manasés González-Cortázar
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico; (R.M.M.-R.); (A.Z.)
- Correspondence: (M.G.-C.); (E.A.B.-G.); Tel.: +52-993-358-1500 (ext. 4711) (E.A.B.-G.)
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico; (R.M.M.-R.); (A.Z.)
| | - Abraham Gómez-Rivera
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico; (M.C.-d.l.C.); (A.G.-R.); (R.L.-R.); (C.E.L.-G.)
| | - Ricardo López-Rodríguez
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico; (M.C.-d.l.C.); (A.G.-R.); (R.L.-R.); (C.E.L.-G.)
| | - Carlos Ernesto Lobato-García
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico; (M.C.-d.l.C.); (A.G.-R.); (R.L.-R.); (C.E.L.-G.)
| | - Ever A. Blé-González
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico; (M.C.-d.l.C.); (A.G.-R.); (R.L.-R.); (C.E.L.-G.)
- Correspondence: (M.G.-C.); (E.A.B.-G.); Tel.: +52-993-358-1500 (ext. 4711) (E.A.B.-G.)
| |
Collapse
|
36
|
Lima MDCL, de Araújo JIF, Gonçalves Mota C, Magalhães FEA, Campos AR, da Silva PT, Rodrigues THS, Matos MGC, de Sousa KC, de Sousa MB, Saker-Sampaio S, Pereira AL, Teixeira EH, Dos Santos HS. Antinociceptive Effect of the Essential Oil of Schinus terebinthifolius (female) Leaves on Adult Zebrafish ( Danio rerio). Zebrafish 2020; 17:112-119. [PMID: 32105571 DOI: 10.1089/zeb.2019.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schinus terebinthifolius Raddi (Anacardiaceae) is popularly known in Brazil as aroeira-da-praia and has pharmacological use as an astringent, antidiarrheal, anti-inflammatory, depurative, diuretic, and antifebrile agent. Although the neuropathic antinociceptive potential of S. terebinthifolius fruits has already been investigated, this study is the first one to analyze the acute antinociceptive effect of the essential oil of S. terebinthifolius (female) leaves (EOFSt) on adult zebrafish. EOFSt was submitted to antioxidant activity evaluation by two methods (ferrous ion-chelating capacity [FIC] and β-carotene). The animals (n = 6/group) were treated orally (20 μL) with EOFSt (0.1, 0.5, or 1.0 mg/mL) or vehicle (0.9% sodium chloride [NaCl]; 20 μL), and submitted to nociception (formalin, cinnamaldehyde, capsaicin, glutamate, acidic saline, and hypertonic saline). Possible neuromodulation mechanisms, as well motor alterations and toxicity were also evaluated. In the FIC assay, EOFSt showed ferrous ion-chelating capacity in ∼40% to 90%. Regarding the β-carotene bleaching assay, EOFSt showed inhibition in a 58% to 80% range. Oral administration of EOFSt showed no acute toxicity and did not alter the locomotor system of aZF, and reduced the nociceptive behavior in all tested models. These effects of EOFSt were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EOFSt was inhibited by naloxone, L-NAME, ketamine, camphor, ruthenium red, and amiloride. The antinociceptive effect of the EOFSt cornea was inhibited by capsazepine. EOFSt has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors, and transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), and acid-sensing ion channels. The EOFSt also has the pharmacological potential for corneal pain treatment and this effect is modulated by the TRPV1 channel.
Collapse
Affiliation(s)
- Maria da Conceição L Lima
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - José Ismael F de Araújo
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Carolina Gonçalves Mota
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Francisco Ernani A Magalhães
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Adriana R Campos
- Experimental Biology Nucleus (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Priscila T da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | | | | | - Karolina C de Sousa
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Márcia B de Sousa
- Institute of Exact and Nature Sciences, Biological Sciences Course, University of the Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Silvana Saker-Sampaio
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Anna L Pereira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Edson H Teixeira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil.,Science and Technology Center-Chemistry Course, State University of Vale do Acarau, Sobral, Brazil
| |
Collapse
|
37
|
Capatina L, Boiangiu RS, Dumitru G, Napoli EM, Ruberto G, Hritcu L, Todirascu-Ciornea E. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish ( Danio rerio). Antioxidants (Basel) 2020; 9:antiox9010062. [PMID: 31936730 PMCID: PMC7023291 DOI: 10.3390/antiox9010062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis L. is a traditional herb with various therapeutic applications such as antibacterial, antioxidant, anti-inflammatory, antidepressant, and anticholinesterase activities, and can be used for the prevention or treatment of dementia. In the present study, we tested whether Rosmarinus officinalis L. could counteract scopolamine-induced anxiety, dementia, and brain oxidative stress in the zebrafish model and tried to find the underlying mechanism. Rosmarinus officinalis L. essential oil (REO: 25, 150, and 300 µL/L) was administered by immersion to zebrafish (Danio rerio) once daily for eight days while scopolamine (100 µM) treatment was delivered 30 min before behavioral tests. The antidepressant and cognitive-enhancing actions of the essential oil in the scopolamine zebrafish model was measured in the novel tank diving test (NTT) and Y-maze test. The chemical composition was identified by Gas chromatograph–Mass spectrometry (GC-MS) analysis. The brain oxidative status and acetylcholinesterase (AChE) activity was also determined. REO reversed scopolamine-induced anxiety, memory impairment, and brain oxidative stress. In addition, a reduced brain AChE activity following the administration of REO in scopolamine-treated fish was observed. In conclusion, REO exerted antidepressant-like effect and cognitive-enhancing action and was able to abolish AChE alteration and brain oxidative stress induced by scopolamine.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
- Correspondence: ; Tel.: +40-232201666
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| |
Collapse
|
38
|
Schinus terebinthifolius Essential Oil Attenuates Scopolamine-Induced Memory Deficits via Cholinergic Modulation and Antioxidant Properties in a Zebrafish Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5256781. [PMID: 31885652 PMCID: PMC6914997 DOI: 10.1155/2019/5256781] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Schinus terebinthifolius is a plant well recognized for its therapeutic profile such as anti-inflammatory and antitumor activities, promoting antibacterial activity and antioxidant and antidiabetic properties. This study aimed at examining whether Schinus terebinthifolius memory-enhancing activities are mediated by cholinergic and brain antioxidant systems in a scopolamine zebrafish model. Schinus terebinthifolius essential oil (10, 25, and 50 μL/L) was delivered to zebrafish by immersion in water for 8 days. Memory deficits were induced by scopolamine (100 μM) administration. Zebrafish were divided into seven groups (n = 15/group): vehicle group, scopolamine (100 μM) group, Schinus terebinthifolius essential oil groups (STF; 10, 25, and 50 μL/L), the imipramine group (IMP; 20 mg/L, as the positive control in the NTT test), and the donepezil group (DP; 10 mg/L, as the positive control in the Y-maze test). Memory status was estimated by the novel tank diving test (NTT) and the Y-maze test and finally was validated by comparison with imipramine (20 mg/L) and donepezil (10 mg/L). Gas chromatography-mass spectrometry (GC-MS) was used to detect oil compounds. Brain levels of acetylcholinesterase (AChE) and antioxidant enzymes were measured. After being exposed to Schinus terebinthifolius essential oil, the scopolamine zebrafish exhibited an improvement of memory processes in the NTT and Y-maze tests. The essential oil attenuated the elevated level of AChE and brain oxidative stress. Schinus terebinthifolius essential oil was found to support memory formation through the inhibition of the AChE activity and decreasing oxidative stress in the scopolamine-treated zebrafish brains.
Collapse
|
39
|
Abstract
In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
|
40
|
Rodrigues P, Barbosa LB, Bianchini AE, Ferrari FT, Baldisserotto B, Heinzmann BM. Nociceptive-like behavior and analgesia in silver catfish (Rhamdia quelen). Physiol Behav 2019; 210:112648. [PMID: 31408639 DOI: 10.1016/j.physbeh.2019.112648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/01/2022]
Abstract
Fish are useful animal models in research and have been employed in developing new pharmacological approaches. This study aimed to establish the use of silver catfish (Rhamdia quelen) as an animal model to evaluate antinociceptive activity. Initially, different concentrations of acetic acid (2.5-20%), formalin 1% (1-10 μL), menthol 0.5% (1-10 μL) or vehicle were injected in the lips to establish which concentration of each sample promotes nociceptive-like behavior in various parameters. The effect of morphine (0.5-10 mg/kg) on locomotion parameters was also evaluated for antinociceptive concentration determination. Morphine was administered intramuscularly immediately prior to algogen administration. The inhibition was evaluated with the antagonist naloxone (5 mg/kg), which was administered in the same way. Recording time varied according to the algogen used in each test and locomotor activity was evaluated by ANY-maze® software. Acid acetic at 15%, 10 μL of 1% formalin, and 1 μL of 0.5% menthol were chosen since they promoted nociceptive-like behavior in several parameters. Morphine (5 mg/kg) reversed the algogen-induced nociceptive-like behavior and naloxone inhibited this effect. Therefore, the proposed experimental model demonstrated specificity for nociception, since the reversion of the nociceptive-like behavior for a compound with well-described analgesic activity was observed. This new pharmacological model contributes to evaluating compounds with analgesic potential and developing new analgesic drugs, in addition to being a promising alternative to use with rodents.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Adriane Erbice Bianchini
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
41
|
Dumitru G, El-Nashar HAS, Mostafa NM, Eldahshan OA, Boiangiu RS, Todirascu-Ciornea E, Hritcu L, Singab ANB. Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152889. [PMID: 30901660 DOI: 10.1016/j.phymed.2019.152889] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Agathisflavone, a biflavonoid isolated from Schinus polygamus (Cav.) Cabrera leaves been reported to promote various biological activities such as anti-inflammatory properties, promoting cognition and preventing cancer, antioxidant and antiapoptotic activities. PURPOSE Here, we tested the hypothesis whether anxiety, amnesia, and brain oxidative stress induced by scopolamine could be counteracted in zebrafish model by agathisflavone and tried to ascertain the underlying mechanism. METHODS Agathisflavone (1, 3 and 5 µg/l) was administered by immersion to zebrafish once daily for 8 days period. Anxiety and memory impairment were induced with scopolamine (100 µM) and measured with the novel tank diving test (NTT) and the Y-maze test. Zebrafish were divided into seven groups (n = 20/group): first group - control, second group - scopolamine (100 μM), the third, fourth and fifth group - agathisflavone treatment groups (FAB, 1 µg/l, 3 µg/l, and 5 µg/l), the sixth group - imipramine (IMP, 20 mg/l, as the positive control in NTT test), and the seventh group - donepezil group (DP, 10 mg/l, as the positive control in Y-maze test). The identification of the agathisflavone was done by spectroscopy, and the structure of the compound was confirmed by (-) Electrospray Ionisation Mass Spectrometry (ESI-MS). The brain oxidative status and acetylcholinesterase (AChE) activity were also investigated. RESULTS Agathisflavone from Schinus polygamus (Cav.) Cabrera leaves was identified. Also, we demonstrated that agathisflavone significantly reversed scopolamine-induced behavioral score alteration in the NTT and Y-maze tests. Consequently, agathisflavone promoted inhibition of AChE activity and restored the brain antioxidant status. CONCLUSION Our results demonstrate that agathisflavone promotes brain antioxidant action and ameliorates scopolamine-induced anxiety and memory deficits in zebrafish.
Collapse
Affiliation(s)
- Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700505, Romania
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700505, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700505, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700505, Romania.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|