1
|
Ling H, Wang XC, Liu ZY, Mao S, Yang JJ, Sha JM, Tao H. Noncoding RNA network crosstalk in organ fibrosis. Cell Signal 2024; 124:111430. [PMID: 39312989 DOI: 10.1016/j.cellsig.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen. parenchymal organs, including heart, liver, kidney, and spleen, play important roles in the development of fibrosis. These findings elucidate the intricate involvement of the lncRNA/circRNA-miRNA-mRNA axis in the pathophysiological processes underpinning organ fibrosis, thereby enhancing our comprehension of the onset and progression of this condition. Furthermore, they introduce novel potential therapeutic targets within the realm of ncRNA-based therapeutics, offering avenues for the development of innovative drugs aimed at mitigating or reversing the effects of organ fibrosis.
Collapse
Affiliation(s)
- Hui Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
2
|
Xiang Y, Hui S, Nie H, Guo C. LncRNA ZFAS1/miR-186-5p axis is involved in oxidative stress inhibition of myocardial ischemia-reperfusion injury by targeting BTG2. Expert Rev Clin Immunol 2024:1-12. [PMID: 39365123 DOI: 10.1080/1744666x.2024.2411999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2). METHODS The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified. RESULTS High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively. CONCLUSION Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Hao Nie
- Department of Geriatrics, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Chun Guo
- Pediatric Laboratory, Hunan Provincial People's Hospital (The First Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
3
|
Huang K, Huang D, Li Q, Zhong J, Zhou Y, Zhong Z, Tang S, Zhang W, Chen Z, Lu S. Upregulation of LncRNA UCA1 promotes cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Heliyon 2024; 10:e34181. [PMID: 39100475 PMCID: PMC11296037 DOI: 10.1016/j.heliyon.2024.e34181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing cardiomyocyte proliferation is essential to reverse or slow down the heart failure progression in many cardiovascular diseases such as myocardial infarction (MI). Long non-coding RNAs (lncRNAs) have been reported to regulate cardiomyocyte proliferation. In particular, lncRNA urothelial carcinoma-associated 1 (lncUCA1) played multiple roles in regulating cell cycle progression and cardiovascular diseases, making lncUCA1 a potential target for promoting cardiomyocyte proliferation. However, the role of lncUCA1 in cardiomyocyte proliferation remains unknown. This study aimed at exploring the function and underlying molecular mechanism of lncUCA1 in cardiomyocyte proliferation. Quantitative RT-PCR showed that lncUCA1 expression decreased in postnatal hearts. Gain-and-loss-of-function experiments showed that lncUCA1 positively regulated cardiomyocyte proliferation in vitro and in vivo. The bioinformatics program identified miR-128 as a potential target of lncUCA1, and loss of miR-128 was reported to promote cardiomyocyte proliferation by inhibiting the SUZ12/P27 pathway. Luciferase reporter assay, qRT-PCR, western blotting, and immunostaining experiments further revealed that lncUCA1 acted as a ceRNA of miR-128 to upregulate its target SUZ12 and downregulate P27, thereby increasing cyclin B1, cyclin E, CDK1 and CDK2 expression to promote cardiomyocyte proliferation. In conclusion, upregulation of lncRNA UCA1 promoted cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Our results indicated that lncUCA1 might be a new therapeutic target for stimulating cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Kang Huang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Denggao Huang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Qiang Li
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Jianghua Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Yilei Zhou
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Zanrui Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Shilin Tang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Wei Zhang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Zibin Chen
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Shijuan Lu
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| |
Collapse
|
4
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
5
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Jin G, Zheng J, Zhang Y, Yang Z, Chen Y, Huang C. LncRNA UCA1 epigenetically suppresses APAF1 expression to mediate the protective effect of sevoflurane against myocardial ischemia-reperfusion injury. Funct Integr Genomics 2022; 22:965-975. [PMID: 35723795 DOI: 10.1007/s10142-022-00874-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) is a leading cause of death globally. Whereas some long noncoding RNAs (lncRNAs) are known to participate in the progression of MI/RI, the role of urothelial carcinoma associated 1 (UCA1) in conjunction with sevoflurane treatment remains largely unknown. H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to establish an in vitro MI/RI model, and sevoflurane was then added. Cell viability, apoptosis, SOD activity, and MDA levels were measured. Levels of inflammatory cytokines and methylation of apoptosis protease-activating factor 1 (APAF1) were determined. Interactions among lncRNA UCA1, enhancer of zeste homologue 2 (EZH2), DNA methyltransferase-1 (DNMT1), and APAF1 were analyzed. After H/R treatment, the viability of H9C2 cardiomyocytes decreased and apoptosis rate, oxidative stress factor levels, inflammatory cytokine levels, and apoptosis-related protein levels all increased. Sevoflurane treatment reversed these changes. LncRNA UCA1 knockdown attenuated the therapeutic effect of sevoflurane on H/R-treated cardiomyocytes, and silencing of APAF1 reversed this role of UCA1 knockdown. Moreover, lncRNA UCA1 recruited DNMT1 through EZH2, thus promoting methylation of the APAF1 promoter region. LncRNA UCA1 recruits DNMT1 to promote methylation of the APAF1 promoter through EZH2, thus strengthening the protective effect of sevoflurane on H/R-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Guanjun Jin
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jungang Zheng
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yiwei Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Zhaodong Yang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
7
|
Wang D, Niu Z, Wang X. The Regulatory Role of Non-coding RNA in Autophagy in Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2022; 13:822669. [PMID: 35370737 PMCID: PMC8970621 DOI: 10.3389/fphar.2022.822669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Following an acute myocardial infarction (AMI), thrombolysis, coronary artery bypass grafting and primary percutaneous coronary intervention (PPCI) are the best interventions to restore reperfusion and relieve the ischemic myocardium, however, the myocardial ischemia-reperfusion injury (MIRI) largely offsets the benefits of revascularization in patients. Studies have demonstrated that autophagy is one of the important mechanisms mediating the occurrence of the MIRI, while non-coding RNAs are the main regulatory factors of autophagy, which plays an important role in the autophagy-related mTOR signaling pathways and the process of autophagosome formation Therefore, non-coding RNAs may be used as novel clinical diagnostic markers and therapeutic targets in the diagnosis and treatment of the MIRI. In this review, we not only describe the effect of non-coding RNA regulation of autophagy on MIRI outcome, but also zero in on the regulation of non-coding RNA on autophagy-related mTOR signaling pathways and mitophagy. Besides, we focus on how non-coding RNAs affect the outcome of MIRI by regulating autophagy induction, formation and extension of autophagic vesicles, and the fusion of autophagosome and lysosome. In addition, we summarize all non-coding RNAs reported in MIRI that can be served as possible druggable targets, hoping to provide a new idea for the prediction and treatment of MIRI.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| |
Collapse
|
8
|
Pačesová D, Spišská V, Novotný J, Bendová Z. Maternal morphine intake during pregnancy and lactation affects the circadian clock of rat pups. Brain Res Bull 2021; 177:143-154. [PMID: 34560238 DOI: 10.1016/j.brainresbull.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Early-life morphine exposure causes a variety of behavioural and physiological alterations observed later in life. In the present study, we investigated the effects of prenatal and early postnatal morphine on the maturation of the circadian clockwork in the suprachiasmatic nucleus and the liver, and the rhythm in aralkylamine N-acetyltransferase activity in the pineal gland. Our data suggest that the most affected animals were those born to control, untreated mothers and cross-fostered by morphine-exposed dams. These animals showed the highest mesor and amplitude in the rhythm of Per2, Nr1d1 but not Per1 gene expression in the suprachiasmatic nuclei (SCN) and arrhythmicity in AA-NAT activity in the pineal gland. In a similar pattern to the rhythm of Per2 expression in the SCN, they also expressed Per2 in a higher amplitude rhythm in the liver. Five of seven specific genes in the liver showed significant differences between groups in their expression. A comparison of mean relative mRNA levels suggests that this variability was caused mostly by cross-fostering, animals born to morphine-exposed dams that were cross-fostered by control mothers and vice versa differed from both groups of natural mothers raising offspring. Our data reveal that the circadian system responds to early-life morphine administration with significant changes in clock gene expression profiles both in the SCN and in the liver. The observed differences between the groups suggest that the dose, timing and accompanying stress events such as cross-fostering may play a role in the final magnitude of the physiological challenge that opioids bring to the developing circadian clock.
Collapse
Affiliation(s)
- Dominika Pačesová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
9
|
Luo C, Xiong S, Huang Y, Deng M, Zhang J, Chen J, Yang R, Ke X. The Novel Non-coding Transcriptional Regulator Gm18840 Drives Cardiomyocyte Apoptosis in Myocardial Infarction Post Ischemia/Reperfusion. Front Cell Dev Biol 2021; 9:615950. [PMID: 34322480 PMCID: PMC8312575 DOI: 10.3389/fcell.2021.615950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ischemia/reperfusion-mediated myocardial infarction (MIRI) is a major pathological factor implicated in the progression of ischemic heart disease, but the key factors dysregulated during MIRI have not been fully elucidated, especially those essential non-coding factors required for cardiovascular development. METHODS A murine MIRI model and RNA sequencing (RNA-seq) were used to identify key lncRNAs after myocardial infarction. qRT-PCR was used to validate expression in cardiac muscle tissues and myocardial cells. The role of Gm18840 in HL-1 cell growth was determined by flow cytometry experiments in vitro. Full-length Gm18840 was identified by using a rapid amplification of cDNA ends (RACE) assay. The subcellular distribution of Gm18840 was examined by nuclear/cytoplasmic RNA fractionation and qRT-PCR. RNA pulldown and RNA immunoprecipitation (RIP)-qPCR assays were performed to identify Gm18840-interacting proteins. Chromatin isolation by RNA purification (ChIRP)-seq (chromatin isolation by RNA purification) was used to identify the genome-wide binding of Gm18840 to chromatin. The regulatory activity of Gm18840 in transcriptional regulation was examined by a luciferase reporter assay and qRT-PCR. RESULTS Gm18840 was upregulated after myocardial infarction in both in vivo and in vitro MIRI models. Gm18840 was 1,471 nt in length and localized in both the cytoplasm and the nucleus of HL-1 cells. Functional studies showed that the knockdown of Gm18840 promoted the apoptosis of HL-1 cells. Gm18840 directly interacts with histones, including H2B, highlighting a potential function in transcriptional regulation. Further ChIRP-seq and RNA-seq analyses showed that Gm18840 is directly bound to the cis-regulatory regions of genes involved in developmental processes, such as Junb, Rras2, and Bcl3. CONCLUSION Gm18840, a novel transcriptional regulator, promoted the apoptosis of myocardial cells via direct transcriptional regulation of essential genes and might serve as a novel therapeutic target for MIRI.
Collapse
Affiliation(s)
- Changjun Luo
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Si Xiong
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Yiteng Huang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jing Zhang
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Jianlin Chen
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Shenzhen University School of Medicine & Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
10
|
Etomidate Attenuates the Ferroptosis in Myocardial Ischemia/Reperfusion Rat Model via Nrf2/HO-1 Pathway. Shock 2021; 56:440-449. [PMID: 34091586 DOI: 10.1097/shk.0000000000001751] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ferroptosis has been found to play an important role in myocardial ischemia reperfusion (MIR) injury (MIRI). This study aimed to explore whether the improvement effect of Etomidate (Eto) on MIRI was related to ferroptosis. METHODS The MIRI rats were constructed using left anterior descending artery occlusion for 30 min followed by reperfusion for 3 h. The Eto post-conditioning was performed by Eto administration at the beginning of the reperfusion. For rescue experiments, MIRI rats were pretreated with ferroptosis inducer erastin or Nrf2 inhibitor ML385 intraperitoneally 1 h prior to MIR surgery. RESULTS Eto mitigated cardiac dysfunction and myocardium damage, as well as the release of creatine kinase and lactate dehydrogenase caused by ischemia/reperfusion (IR). Additionally, Eto reduced the expression of myocardial fibrosis-related proteins (collagen II and α-smooth muscle actin) and the secretion of inflammatory factors (IL-6, IL-1β, and TNF-α) in MIRI rats. Also, Eto inhibited IR-induced ferroptosis in myocardium, including reducing superoxide dismutase content, glutathione activity, and glutathione peroxidase 4 expression, while increasing the levels of malondialdehyde and iron and Acyl-CoA synthetase long-chain family member 4. Moreover, the inhibition of Eto on IR-induced myocardial fibrosis and inflammation could be eliminated by erastin. The up-regulation of Nrf2 and HO-1 protein expression, and the nuclear translocation of Nrf2 induced by Eto in the myocardial tissues of MIRI rats, could be prevented by erastin. Besides, ML385 eliminated the inhibition of Eto on ferroptosis induced by MIR. CONCLUSIONS Eto attenuated the myocardial injury by inhibiting IR-induced ferroptosis via Nrf2 pathway, which may provide a new idea for clinical reperfusion therapy.
Collapse
|
11
|
Huang F, Mai J, Chen J, He Y, Chen X. Non-coding RNAs modulate autophagy in myocardial ischemia-reperfusion injury: a systematic review. J Cardiothorac Surg 2021; 16:140. [PMID: 34022925 PMCID: PMC8141194 DOI: 10.1186/s13019-021-01524-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The myocardial infarction is the main cause of morbidity and mortality in cardiovascular diseases around the world. Although the timely and complete reperfusion via Percutaneous Coronary Intervention (PCI) or thrombolysis have distinctly decreased the mortality of myocardial infarction, reperfusion itself may lead to supererogatory irreversible myocardial injury and heart function disorders, namely ischemia-reperfusion (I/R) injury. Extensive studies have indicated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play important roles in the progress of myocardial I/R injury, which is closely correlative with cardiomyocytes autophagy. Moreover, autophagy plays an important role in maintaining homeostasis and protecting cells in the myocardial ischemia reperfusion and cardiomyocyte hypoxia-reoxygenation (H/R) progress. In this review, we first introduced the biogenesis and functions of ncRNAs, and subsequently summarized the roles and relevant molecular mechanisms of ncRNAs regulating autophagy in myocardial I/R injury. We hope that this review in addition to develop a better understanding of the physiological and pathological roles of ncRNAs, can also lay a foundation for the therapies of myocardial I/R injury, and even for other related cardiovascular diseases.
Collapse
Affiliation(s)
- Fuwen Huang
- The Fifth People's Hospital of Zhuhai, Zhuhai City, Guangdong Province, China
| | - Jingting Mai
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Jingwei Chen
- Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Yinying He
- The Fifth People's Hospital of Zhuhai, Zhuhai City, Guangdong Province, China
| | - Xiaojun Chen
- Foshan Hospital of Traditional Chinese Medicine, No.6 Qinren Road, Foshan City, Guangdong Province, 528000, PR China.
| |
Collapse
|
12
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
13
|
Efficacy of Alkaloids in Alleviating Myocardial Ischemia-Reperfusion Injury in Rats: A Meta-Analysis of Animal Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6661526. [PMID: 33791371 PMCID: PMC7997772 DOI: 10.1155/2021/6661526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Background Animal models are well established for studying the effects of alkaloids in preventing myocardial ischemia-reperfusion injury. However, few studies have investigated the therapeutic effects of alkaloids in humans. This meta-analysis and systematic review assessed the efficacy of alkaloids in attenuating infarct size in rats with myocardial ischemia-reperfusion injury. Methods An integrated literature search including the PubMed, Embase, and Cochrane Library databases was performed to identify studies that evaluated the therapeutic effects of alkaloids on myocardial ischemia-reperfusion injury in rats. The main outcome was infarct size, and SYRCLE's risk of bias tool was used to assess the quality of the studies. Results 22 studies were brought into the meta-analysis. Compared with the effects of vehicle, alkaloids significantly reduced infarct size (standardized mean difference (SMD) = -0.45; 95% confidence interval (CI) = -0.64 to - 0.26). In subgroup analyses, isoquinoline alkaloids (SMD = -0.43; 95%CI = -0.70 to - 0.16) significantly reduced infarct size versus the control. Conclusion Isoquinoline alkaloids can potentially alleviate myocardial ischemia-reperfusion injury. This meta-analysis and systematic review supply a reference for research programs aiming to develop alkaloid-based clinical drugs. This trial is registered with CRD42019135489.
Collapse
|
14
|
Diao L, Zhang Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2. Aging (Albany NY) 2021; 13:5967-5985. [PMID: 33591946 PMCID: PMC7950245 DOI: 10.18632/aging.202520] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Ischemia results in neuronal damage via alterations in gene transcription and protein expression. Long noncoding RNAs (LncRNAs) are pivotal in the regulation of target protein expression in hypoxia/reoxygenation (H/R). In this study, we observed the function of exosomes-carried lncRNA UCA1 in H/R-induced injury of cardiac microvascular endothelial cells (CMECs). In H/R cell model, CMECs were co-cultured with human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-ex). The loss-of-function experiments were conducted to assess the effect of lncRNA UCA1 on H/R injury by assessing the biological behaviors of CMECs. The relationship among lncRNA UCA1, miR-143 and Bcl-2 were verified. An ischemia-reperfusion (I/R) rat model was established. Then hUCMSC-ex was injected into I/R rats to identify its effects on apoptosis and autophagy. Functional rescue experiments were performed to verify the sponge system. In vitro and in vivo experiments showed that hUCMSC-ex protected I/R rats and H/R CMECs against injury. Silencing UCA1 in hUCMSC-ex or miR-143 overexpression aggravated H/R injury in CMECs. LncRNA UCA1 competitively bound to miR-143 to upregulate Bcl-2. And hUCMSCs-ex/si-UCA1+inhi-miR-143 treatment protected CMECs against H/R injury and inhibited hyperautophagy. Together, hUCMSC-ex-derived lncRNA UCA1 alleviates H/R injury through the miR-143/Bcl-2/Beclin-1 axis. Hence, this study highlights a stem cell-based approach against I/R injury.
Collapse
Affiliation(s)
- Liwei Diao
- Department of Thoracic and Cardiovascular Surgery, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518000, Guangdong, P.R. China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, P.R. China
| | - Qinghua Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, P.R. China
| |
Collapse
|
15
|
Chen D, Zheng K, Wu H, Zhang X, Ye W, Tan X, Xiong Y. Lin28a attenuates cerebral ischemia/reperfusion injury through regulating Sirt3-induced autophagy. Brain Res Bull 2021; 170:39-48. [PMID: 33548334 DOI: 10.1016/j.brainresbull.2021.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia-reperfusion injury causes damage to local brain tissue and its function, but its specific pathogenesis is still unclear. Autophagy is an important catabolic pathway in eukaryotic cells, which is mainly used to remove damaged intracellular organelles, misfolded long-acting macromolecules and participate in cerebral ischemia-reperfusion injury. Lin28 is a highly conserved RNA-binding protein that plays a role in regulating gene translation, which is important for the growth and maintenance of pluripotent cells. Lin28a has been reported to have a clear protective effect on post-ischemic reperfusion injury of the heart. However, whether Lin28a has an effect on nerve injury after cerebral ischemia-reperfusion needs further study. In this study, we found that the expression of Lin28a was decreased in cerebral ischemia-reperfusion mice model. Upregulation of Lin28a could alleviate the nerve injury caused by ischemia-reperfusion, and promote autophagy of nerve cells. Upregulation of Lin28a reduced nerve cell apoptosis and relieved nerve cell injure induced by oxygen-glucose deprivation/reoxygenation. Lin28a increased the LC3-II levels in nerve cells, suggesting the promotion of autophagy. Mechanism studies indicated that Lin28a promoted autophagy mainly through regulating Sirt3 expression and activating AMPK-mTOR pathway. In conclusion, our study revealed the important role of Lin28a in cerebral ischemia-reperfusion and suggested that Lin28a was a protective factor for cerebral ischemia-induced injury.
Collapse
Affiliation(s)
- Donghai Chen
- Department of Neurosurgery, Hengdian Wenrong Hospital, Jinhua City, Zhejiang Province, 322118,China
| | - Kuang Zheng
- Department of Neurosurgery, The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Henggang Wu
- Department of Neurosurgery, Hengdian Wenrong Hospital, Jinhua City, Zhejiang Province, 322118,China
| | - Xuchun Zhang
- Department of Neurosurgery, Hengdian Wenrong Hospital, Jinhua City, Zhejiang Province, 322118,China
| | - Wangyang Ye
- Department of Neurosurgery, The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Xianxi Tan
- Department of Neurosurgery, The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Ye Xiong
- Department of Neurosurgery, The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China.
| |
Collapse
|
16
|
Ying Y, Xiang G, Chen M, Ye J, Wu Q, Dou H, Sheng S, Zhu S. Gelatine nanostructured lipid carrier encapsulated FGF15 inhibits autophagy and improves recovery in spinal cord injury. Cell Death Discov 2020; 6:137. [PMID: 33298870 PMCID: PMC7710748 DOI: 10.1038/s41420-020-00367-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Gelatine nanostructured lipid carriers (GNLs) have attracted increasing attention due to their biodegradable status and capacity to capture various biologically active compounds. Many studies demonstrated that fibroblast growth factor therapies after spinal cord injury (SCI) can be used in the future for the recovery of neurons. In this study, the therapeutic effects of GNL-encapsulated fibroblast growth factor 15 (FGF15) and FGF15 were compared in SCI. The FGF15-GNLs had 88.17 ± 1.22% encapsulation efficiency and 4.82 ± 0.12% loading capacity. The effects of FGF15-GNLs and FGF15 were assessed based on the Basso–Beattie–Bresnahan (BBB) locomotion scale, inclined plane test and footprint analysis. Immunofluorescent staining was used to identify the expression of autophagy-associated proteins, GFAP (glial fibrillary acidic protein) and neurofilament 200 (NF200). FGF15-GNLs use enhanced the repair after SCI compared to the effect of FGF15. The suppression of autophagy-associated proteins LC3-II and beclin-1, and p62 enhancement by FGF15-GNLs treatment were more pronounced. Thus, the effects of FGF15-GNLs on the recovery after SCI are related to the inhibition of autophagy and glial scar, and promotion of nerve regeneration in SCI.
Collapse
Affiliation(s)
- Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
17
|
Wang M, Liu S, Wang H, Tang R, Chen Z. Morphine post-conditioning-induced up-regulation of lncRNA TINCR protects cardiomyocytes from ischemia-reperfusion injury via inhibiting degradation and ubiquitination of FGF1. QJM 2020; 113:859-869. [PMID: 32176291 DOI: 10.1093/qjmed/hcaa088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our previous study has demonstrated that morphine post-conditioning (MpostC) protects cardiomyocytes from ischemia/reperfusion (I/R) injury partly through activating protein kinase-epsilon (PKCε) signaling pathway and subsequently inhibiting mitochondrial permeability transition pore (mPTP) opening. AIM In this study, we aim to investigate the relationship between long non-coding RNA TINCR and PKCε in cardiomyocytes under MpostC-treated I/R injury. DESIGN The myocardial I/R rat model was established by the ligation of lower anterior descending coronary artery for 45 min followed by the reperfusion for 1 h, and MpostC was performed before the reperfusion. METHOD H/R and MpostC were performed in the rat cardiomyocyte cell line (H9C2), and the Cytochrome-c release in cytosol and mPTP opening were determined. Cell viability was detected by using Cell Counting Kit-8, and cell apoptosis was determined by using flow cytometry or TUNEL assay. RESULTS The results indicated that MpostC restored the expression of TINCR in I/R rat myocardial tissues. In cardiomyocytes, the therapeutic effect of MpostC, including reduced mPTP opening, reduced Cytochrome-c expression, increased cell viability and reduced cell apoptosis, was dramatically negated by interfering TINCR. The expression of fibroblast growth factor 1 (FGF1), a protein that activates PKCε signaling pathway, was positively correlated with TINCR. The RNA immunoprecipitation and RNA pull-down assay further confirmed the binding between FGF1 and TINCR. Furthermore, TINCR was demonstrated to inhibit the degradation and ubiquitination of FGF1 in cardiomyocytes using the cycloheximide experiment and the ubiquitination assay. The TINCR/FGF1/PKCε axis was revealed to mediate the protective effect of MpostC against hypoxia/reoxygenation injury both in vitro and in vivo. CONCLUSION In conclusion, our findings demonstrated that MpostC-induced up-regulation of TINCR protects cardiomyocytes from I/R injury via inhibiting degradation and ubiquitination of FGF1, and subsequently activating PKCε signaling pathway, which provides a novel insight in the mechanism of TINCR and PKCε during MpostC treatment of I/R injury.
Collapse
Affiliation(s)
- M Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong 266034, China
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261053, China
| | - S Liu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - H Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong 266034, China
| | - R Tang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Z Chen
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong 266034, China
- Department of Anesthesiology, Qingdao Binhai University Affiliated Hospital, Qingdao, Shandong 266404, China
| |
Collapse
|
18
|
Gong C, Zhou X, Lai S, Wang L, Liu J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8838524. [PMID: 33299883 PMCID: PMC7710414 DOI: 10.1155/2020/8838524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion injury (IRI) elicits tissue injury involved in a wide range of pathologies. Multiple studies have demonstrated that noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), participate in the pathological development of IRI, and they may act as biomarkers, therapeutic targets, or prognostic indicators. Nonetheless, the specific molecular mechanisms of ncRNAs in IRI have not been completely elucidated. Regulatory networks among lncRNAs/circRNAs, miRNAs, and mRNAs have been the focus of attention in recent years. Studies on the underlying molecular mechanisms have contributed to the discovery of therapeutic targets or strategies in IRI. In this review, we comprehensively summarize the current research on the lncRNA/circRNA-miRNA-mRNA axes and highlight the important role of these axes in IRI.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xueliang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lijun Wang
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
19
|
Ding YM, Chan EC, Liu LC, Liu ZW, Wang Q, Wang JL, Cui XP, Jiang F, Guo XS. Long noncoding RNAs: Important participants and potential therapeutic targets for myocardial ischaemia reperfusion injury. Clin Exp Pharmacol Physiol 2020; 47:1783-1790. [PMID: 32621522 DOI: 10.1111/1440-1681.13375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/15/2023]
Abstract
Myocardial ischaemia reperfusion (I/R) injury is one of the leading causes of coronary artery disease-associated morbidity and mortality. While different strategies have been used to limit I/R injuries, cardiac functions often do not recover to the normal level as anticipated. Recent studies have pointed to important roles of long noncoding RNAs (lncRNAs) in the development of myocardial I/R injury. LncRNA is a class of RNA molecules of more than 200 nucleotides in length which are not translated into proteins. I/R causes dysregulation of lncRNA expression in cardiomyocytes, thereby affecting multiple cellular functions including mitochondrial homeostasis, apoptosis, necrosis and autophagy, suggesting that manipulating lncRNAs may be of great potential in counteracting I/R injury-induced myocardial dysfunctions. In this review, we provide an updated summary on our knowledge about contributions of lncRNAs to the development of I/R injury, with an emphasis on the functional links between several well established cardiac lncRNAs and regulation of cellular outcomes post I/R.
Collapse
Affiliation(s)
- Yu-Ming Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Elsa Ching Chan
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - Li-Chang Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Nephropathy, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Wei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian-Li Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiao-Pei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Sun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
20
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
21
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
22
|
Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng Transl Med 2020; 5:e10172. [PMID: 33005738 PMCID: PMC7510462 DOI: 10.1002/btm2.10172] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Both extracellular vesicles (EVs) and long noncoding RNAs (lncRNAs) have been increasingly investigated as biomarkers, pathophysiological mediators, and potential therapeutics. While these two entities have often been studied separately, there are increasing reports of EV-associated lncRNA activity in processes such as oncogenesis as well as tissue repair and regeneration. Given the powerful nature and emerging translational impact of other noncoding RNAs such as microRNA (miRNA) and small interfering RNA, lncRNA therapeutics may represent a new frontier. While EVs are natural vehicles that transport and protect lncRNAs physiologically, they can also be engineered for enhanced cargo loading and therapeutic properties. In this review, we will summarize the activity of lncRNAs relevant to both tissue repair and cancer treatment and discuss the role of EVs in enabling the potential of lncRNA therapeutics.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John W. Harmon
- Department of Surgery and Hendrix Burn/Wound LaboratoryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
23
|
Wang Y, Yang T, Han Y, Ren Z, Zou J, Liu J, Xi S. lncRNA OTUD6B-AS1 Exacerbates As 2O 3-Induced Oxidative Damage in Bladder Cancer via miR-6734-5p-Mediated Functional Inhibition of IDH2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3035624. [PMID: 32952848 PMCID: PMC7481943 DOI: 10.1155/2020/3035624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
Arsenic trioxide (As2O3) is a promising effective chemotherapeutic agent for cancer treatment; however, how and through what molecular mechanisms the oxidative damage of As2O3 is controlled remains poorly understood. Recently, the involvement of dysregulated long noncoding RNA ovarian tumor domain containing 6B antisense RNA1 (lncRNA OTUD6B-AS1) in tumorigenesis is established. Here, for the first time, we characterize the regulation of As2O3 in the oxidative damage against bladder cancer via lncRNA OTUD6B-AS1. As2O3 could activate lncRNA OTUD6B-AS1 transcription in bladder cancer cells, and these findings were validated in a xenograft tumor model. Functional assays showed that lncRNA OTUD6B-AS1 dramatically exacerbated As2O3-mediated oxidative damage by inducing oxidative stress. Mechanistically, As2O3 increased levels of metal-regulatory transcription factor 1 (MTF1), which regulates lncRNA OTUD6B-AS1, in response to oxidative stress. Further, lncRNA OTUD6B-AS1 inhibited mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) expression by stabilizing miR-6734-5p, which contributed to cytotoxicity by enhancing oxidative stress. Together, our findings offer new insights into the mechanism of As2O3-induced oxidative damage and identify important factors in the pathway, As2O3/lncRNA OTUD6B-AS1/miR-6734-5p/IDH2, expanding the knowledge of activity of As2O3 as cancer treatment.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Environmental Health, China Medical University, Shenyang 110122, China
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Tianyao Yang
- Department of Environmental Health, China Medical University, Shenyang 110122, China
| | - Yanshou Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiayun Zou
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Department of Environmental Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
24
|
Li JJ, Chen XF, Wang M, Zhang PP, Zhang F, Zhang JJ. Long non-coding RNA UCA1 promotes autophagy by targeting miR-96-5p in acute myeloid leukaemia. Clin Exp Pharmacol Physiol 2020; 47:877-885. [PMID: 31953866 DOI: 10.1111/1440-1681.13259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been identified as an oncogene and is involved in acute myeloid leukaemia (AML). Autophagy contributes to tumourigenesis and cancer cell survival. The purpose of this study was to investigate the regulatory role and mechanism of UCA1 in AML cell viability by its effect on autophagy. The expression of UCA1, miR-96-5p, and ATG7 was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. The autophagy level was assessed by green fluorescent protein (GFP)-LC3 immunofluorescence and western blot. The interaction between UCA1 and miR-96-5p or ATG7 was analyzed by luciferase reporter activity. The results showed that UCA1 promoted AML cell proliferation by inducing autophagy. Mechanistically, UCA1 acted as a sponge of miR-96-5p by binding to miR-96-5p. ATG7 was a direct target of miR-96-5p and positively regulated by UCA1. Further results showed that the miR-96-5p mimic effectively counteracted the UCA1 overexpression-mediated induction of the ATG7/autophagy pathway. Collectively, UCA1 functions as a sponge of miR-96-5p to upregulate its target ATG7, thereby resulting in autophagy induction. Our findings reveal a UCA1-mediated molecular mechanism responsible for autophagy induction in AML and help to improve the understanding of the molecular mechanism of AML progression.
Collapse
Affiliation(s)
- Jia Jia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Feng Chen
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ping Ping Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Feng Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Jing Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
25
|
Hu F, Yang J, Chen X, Shen Y, Chen K, Fu X, Guo S, Jiang Z. LncRNA 1700020I14Rik/miR-297a/CGRP axis suppresses myocardial cell apoptosis in myocardial ischemia-reperfusion injury. Mol Immunol 2020; 122:54-61. [PMID: 32298875 DOI: 10.1016/j.molimm.2020.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely related to various human diseases, but their role in myocardial injury has not been fully elucidated. In the current study, we found that the expression of lncRNA 1700020I14Rik was significantly down-regulated in myocardial injury tissues and the underlying mechanism by which lncRNA 1700020I14Rik regulated myocardial cell injury was investigated. METHODS The model of myocardial ischemia-reperfusion (I/R) injury and myocardial cells hypoxia/reoxygenation (H/R) injury were established and the expression of 1700020I14Rik, miR-297a or CGRP was analyzed by qRT-PCR or Western blot. Moreover, myocardial cell apoptosis was assessed by TUNEL staining and the concentration of LDH in the mouse plasma sample or myocardial cell culture supernatant was measured by the LDH cytotoxicity test kit. Furthermore, the differences of myocardial cell survival rate after H/R treatment were assessed by MTT assay and the observation of CGRP expression was performed in HL-1 cells overexpressed or silenced with 1700020I14Rik or miR-297a. In addition, the regulating function of miR-297a on 1700020I14Rik and CGRP expression was analyzed by a dual luciferase reporter assay. RESULTS The expressions of 1700020I14Rik and CGRP were abnormally down-regulated in a model of myocardial I/R injury and myocardial cells H/R injury, while miR-297a was up-regulated. By TUNEL staining, the apoptotic rate of myocardial cells in the model of myocardial I/R injury was significantly increased. Furthermore, the concentrations of LDH in the mouse plasma sample or myocardial cell culture supernatant were significantly increased after myocardial cell injury. By MTT assay, the survival rate of cells was decreased after myocardial cells were treated with H/R. In addition, overexpression of 1700020I14Rik or knockdown of miR-297a could up-regulate CGRP protein level, while interference with 1700020I14Rik or overexpression of miR-297a produced the opposite result. Further study confirmed that lncRNA 1700020I14Rik/miR-297a/CGRP axis suppressed myocardial cell apoptosis in myocardial I/R injury. CONCLUSION Our results indicated that 1700020I14Rik was abnormally down-regulated in myocardial injury tissues. In-depth studies manifested that 1700020I14Rik/miR-297a/CGRP axis suppressed myocardial cell apoptosis in myocardial I/R injury.
Collapse
Affiliation(s)
- Fudong Hu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengcun Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhengming Jiang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Cong L, Su Y, Wei D, Qian L, Xing D, Pan J, Chen Y, Huang M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J Cell Mol Med 2020; 24:2356-2368. [PMID: 31955523 PMCID: PMC7011153 DOI: 10.1111/jcmm.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background Catechin protects heart from myocardial ischaemia/reperfusion (MI/R) injury. However, whether catechin inhibits H/R‐induced myocardial cell apoptosis is largely unknown. Objective This study aims to investigate the underlying mechanism of catechin in inhibiting the apoptosis of H/R‐induced myocardial cells. Methods LncRNA MIAT expression was detected by qRT‐PCR. Cell viability of H9C2 cells was detected using CCK‐8 assay. The apoptosis of H9C2 cells was detected by flow cytometry. The interaction between CREB and MIAT promoter regions was confirmed by dual‐luciferase reporter gene assay and ChIP assay. Results In MI/R rats, catechin improved heart function and down‐regulated lncRNA MIAT expression in myocardial tissue. In H/R‐induced H9C2 cells, catechin protected against cell apoptosis, and lncRNA MIAT overexpression attenuated this protective effect of catechin. We confirmed that transcription factor CREB could bind to MIAT promoter region, and catechin suppressed lncRNA MIAT expression through up‐regulating CREB. Catechin improved mitochondrial function and relieved apoptosis through promoting Akt/Gsk‐3β activation. In addition, MIAT inhibited Akt/Gsk‐3β activation and promoted cell apoptosis in H/R‐induced H9C2 cells. Finally, we found catechin promoted Akt/Gsk‐3β activation through inhibiting MIAT expression in H/R‐induced H9C2 cells. Conclusion Catechin relieved H/R‐induced myocardial cell apoptosis through regulating CREB/lncRNA MIAT/Akt/Gsk‐3β pathway.
Collapse
Affiliation(s)
- Lin Cong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisheng Su
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dazhen Wei
- Department of Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Qian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dawei Xing
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialin Pan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyuan Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20123079. [PMID: 31238513 PMCID: PMC6627372 DOI: 10.3390/ijms20123079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the most serious health problem in the world, displaying high rates of morbidity and mortality. One of the main risk factors for CVDs is age. Indeed, several mechanisms are at play during aging, determining the functional decline of the cardiovascular system. Aging cells and tissues are characterized by diminished autophagy, causing the accumulation of damaged proteins and mitochondria, as well as by increased levels of oxidative stress, apoptosis, senescence and inflammation. These processes can induce a rapid deterioration of cellular quality-control systems. However, the molecular mechanisms of age-associated CVDs are only partially known, hampering the development of novel therapeutic strategies. Evidence has emerged indicating that noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and micro RNAs (miRNAs), are implicated in most patho-physiological mechanisms. Specifically, lncRNAs can bind miRNAs and act as competing endogenous-RNAs (ceRNAs), therefore modulating the levels of the mRNAs targeted by the sponged miRNA. These complex lncRNA/miRNA/mRNA networks, by regulating autophagy, apoptosis, necrosis, senescence and inflammation, play a crucial role in the development of age-dependent CVDs. In this review, the emerging knowledge on lncRNA/miRNA/mRNA networks will be summarized and the way in which they influence age-related CVDs development will be discussed.
Collapse
|
28
|
Li M, Duan L, Li Y, Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci 2019; 233:116440. [PMID: 31047893 DOI: 10.1016/j.lfs.2019.04.066] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Non-coding RNAs including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) have been reported to participate in pathological developments of CVDs through various mechanisms. Among them, the networks among lncRNAs/circRNAs, miRNAs, and mRNAs have recently attracted attention. Understanding the molecular mechanism could aid the discovery of therapeutic targets or strategies in CVDs including atherosclerosis, myocardial infarction (MI), hypertrophy, heart failure (HF) and cardiomyopathy. In this review, we summarize the latest research involving the lncRNA/circRNA-miRNA-mRNA axis in CVDs, with emphasis on the molecular mechanism.
Collapse
Affiliation(s)
- Ming Li
- Department of Gastroenterology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun 130041, China
| | - Liwei Duan
- Department of Gastroenterology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun 130041, China
| | - Yangxue Li
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun 130041, China.
| |
Collapse
|