1
|
Zhang Y, Luo W, Zhao M, Li Y, Wu X. Advances in understanding the effects of cardiopulmonary bypass on gut microbiota during cardiac surgery. Int J Artif Organs 2025; 48:51-63. [PMID: 39878195 DOI: 10.1177/03913988251313881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery; however, its impact on gut microbiota and metabolites remains insufficiently studied. CPB may disrupt the intestinal mucosal barrier, altering the composition and function of gut microbiota, thereby triggering local immune responses and systemic inflammation, which may lead to postoperative complications. This narrative review examines relevant literature from PubMed, Web of Science, Google Scholar, and CNKI databases over the past decade. Keywords such as "gut microbiota," "cardiopulmonary bypass," "cardiac surgery," and "postoperative complications" were employed, with Boolean operators used to refine the search results. The review examines changes in gut microbiota before and after CPB, their role in postoperative complications, and potential strategies for modulation to improve outcomes.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wei Luo
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Maomao Zhao
- Department of Cardiology, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Wang M, Liu K, Bao W, Hang B, Chen X, Zhu X, Li G, Liu L, Xiang H, Hu H, Lu Y, Song Z, Chen J, Wang Y. Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9. Dev Cell 2025:S1534-5807(24)00734-2. [PMID: 39755115 DOI: 10.1016/j.devcel.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025]
Abstract
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9. Snhg9 promotes tumor growth through inhibition of the tumor suppressor p53. Snhg9 suppresses p53 activity by dissociating the p53 deacetylase sirtuin 1 (SIRT1) from the cell cycle and apoptosis regulator 2 (CCAR2). Consequently, the depletion of the microbiota by antibiotics causes upregulation of Snhg9 and accelerates CRC progression. Moreover, Snhg9 is functionally conserved. Human SNHG9 promotes tumor growth via the same mechanism as mouse Snhg9, despite their low sequence similarity.
Collapse
Affiliation(s)
- Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Kailin Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Wu Bao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Bingqing Hang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xianjiong Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xinyi Zhu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Guifang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Haoyi Xiang
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Hai Hu
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Zhangfa Song
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jiaxin Chen
- Department of Breast Surgery and Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China.
| |
Collapse
|
3
|
Sun S, Kong L, Hu F, Wang S, Geng M, Cao H, Tao X, Tao F, Liu K. Metabolic Alterations of Short-Chain Organic Acids in the Elderly Link Antibiotic Exposure with the Risk for Depression. Metabolites 2024; 14:689. [PMID: 39728470 DOI: 10.3390/metabo14120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Our previous study showed that antibiotic exposure was linked to depressive symptomatology in community-dwelling older adults in China. Our current study aims to explore the underlying mechanisms by assessing the intermediated effects of circulating short-chain organic acids (SCOAs) on this association. METHODS Depressive symptoms were screened by the 30-item Geriatric Depression Scale (GDS-30). Urinary concentrations of antibiotics and serum SCOAs were measured using a liquid chromatography-mass spectrometry method. RESULTS Increased exposure to sulfadiazine, azithromycin, tetracyclines, or veterinary antibiotics (VAs) was positively associated with GDS-30 scores. Tetracycline reduced levels of caproic acid, iso-butyric acid, and iso-caproic acid (iso-CA), with iso-CA concentration inversely correlating with GDS-30 scores, while β-hydroxybutyric acids showed a positive correlation. The mediating effect of serum iso-CA on the association between depression and ofloxacin, with a mediating effect of 25.3%, and the association between depression and tetracycline, with a mediating effect of 46.3%, were both statistically significant, indicating partial mediation. CONCLUSIONS Antibiotics may affect the levels of SCOAs in older adults and could potentially contribute to depressive symptoms by influencing alterations in serum iso-CA levels.
Collapse
Affiliation(s)
- Shujing Sun
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Li Kong
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Fangting Hu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No. 81 Meishan Road, Hefei 230032, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an 237000, China
| | - Xingyong Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No. 81 Meishan Road, Hefei 230032, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No. 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
4
|
Jeong C, Baek H, Bae J, Hwang N, Ha J, Cho YS, Lim DJ. Gut microbiome in the Graves' disease: Comparison before and after anti-thyroid drug treatment. PLoS One 2024; 19:e0300678. [PMID: 38820506 PMCID: PMC11142679 DOI: 10.1371/journal.pone.0300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/01/2024] [Indexed: 06/02/2024] Open
Abstract
While several studies have proposed a connection between the gut microbiome and the pathogenesis of Graves's disease (GD), there has been a lack of reports on alteration in microbiome following using anti-thyroid drug treatment (ATD) to treat GD. Stool samples were collected from newly diagnosed GD patients provided at baseline and after 6 months of ATD treatment. The analysis focused on investigating the association between the changes in the gut microbiome and parameter including thyroid function, thyroid-related antibodies, and the symptom used to assess hyperthyroidism before and after treatment. A healthy control (HC) group consisting of data from 230 healthy subjects (110 males and 120 females) sourced from the open EMBL Nucleotide Sequence Database was included. Twenty-nine GD patients (14 males and 15 females) were enrolled. The analysis revealed a significant reduction of alpha diversity in GD patients. However, after ATD treatment, alpha diversity exhibited a significant increase, restored to levels comparable to the HC levels. Additionally, GD patients displayed lower levels of Firmicutes and higher levels of Bacteroidota. Following treatment, there was an increased in Firmicutes and a decrease in Bacteroidota, resembling levels found in the HC levels. The symptoms of hyperthyroidism were negatively associated with Firmicutes and positively associated with Bacteroidota. GD had significantly lower levels of Roseburia, Lachnospiraceaea, Sutterella, Escherichia-shigella, Parasuterella, Akkermansia, and Phascolarctobacterium compared to HC (all p < 0.05). Post-treatment, Subdoligranulum increased (p = 0.010), while Veillonella and Christensenellaceaea R-7 group decreased (p = 0.023, p = 0.029, respectively). Anaerostipes showed a significant association with both higher smoking pack years and TSHR-Ab levels, with greater abundantce observed in smokers among GD (p = 0.16). Although reduced ratio of Firmicutes/Bacteroidetes was evident in GD, this ratio recovered after treatment. This study postulates the involvement of the gut microbiome in the pathogenesis of GD, suggesting potential restoration after treatment.
Collapse
Affiliation(s)
- Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hansang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Nakwon Hwang
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
6
|
Ge H, Li T, Yang Q, Tang Y, Liu J, Yu Y, Zhang T. Egg white peptides administration in enhancing pathological immune response and regulating intestinal bacteria abundance: A new strategy for relieving young mice colitis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yuanhu Tang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| |
Collapse
|
7
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
8
|
Li L, Wang M, Bao J, Wang N, Huang Y, He S, Chen B, Yan F. Periodontitis may impair the homeostasis of systemic bone through regulation of gut microbiota in
ApoE
‐/‐
mice. J Clin Periodontol 2022; 49:1304-1319. [PMID: 35871602 DOI: 10.1111/jcpe.13708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Lili Li
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Min Wang
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Jun Bao
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Nannan Wang
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Yuezhen Huang
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Shasha He
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Bin Chen
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| | - Fuhua Yan
- Department of Periodontology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
- Central laboratory of Stomatology, Nangjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu P.R. China
| |
Collapse
|
9
|
Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Animal Model Exp Med 2022; 5:311-322. [PMID: 35808814 PMCID: PMC9434590 DOI: 10.1002/ame2.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever‐expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high‐throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.
Collapse
Affiliation(s)
- Yunchang Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Yang M, Zheng X, Wu Y, Zhang R, Yang Q, Yu Z, Liu J, Zha B, Gong Q, Yang B, Sun B, Zeng M. Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment. Front Cell Infect Microbiol 2022; 12:794711. [PMID: 35402292 PMCID: PMC8989835 DOI: 10.3389/fcimb.2022.794711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Immune dysfunction caused by environmental factors plays an important role in the development of Graves’ disease (GD), and environmental factors are closely related to the intestinal flora. Our previous study showed significant changes in the intestinal flora in GD patients compared with healthy volunteers. This study analyzed the relationships between changes in the intestinal flora, thyroid function and relevant thyroid antibodies in GD patients before and after methimazole treatment. The subjects were divided into the UGD group (18 newly diagnosed GD patients), the TGD group (10 GD patients with normal or approximately normal thyroid function after methimazole treatment) and the NC group (11 healthy volunteers). Their fresh stool samples were sent for 16S rRNA gene amplification and Illumina platform sequencing. The correlations of the relative abundance of Bifidobacterium with the levels of TRAb, TgAb and TPOAb in the NC group and the UGD group were analyzed. A total of 1,562,445 high-quality sequences were obtained. In the UGD group, the abundances of Bifidobacterium and Collinsella were higher than that in the NC group; Bacteroides abundance in the TGD group was higher than that in the NC group, while Prevotella and Dialister abundances were lower than that in the NC group; Prevotella and Collinsella abundances in the UGD group were higher than that in the TGD group. The predominant abundance distribution of Bifidobacteriaceae in the UGD group at the family level was superior to that in the NC group. The abundance of Bifidobacterium was positively correlated with the levels of TRAb, TgAb, and TPOAb. The biological diversity of the intestinal flora was reduced in GD patients. After methimazole treatment, the composition of the intestinal flora was significantly altered. The change in Bifidobacterium abundance was positively correlated with TRAb, TgAb and TPOAb, suggesting that it might be related to the immune mechanism of GD. The results of this study may deepen our understanding of the pathogenesis of GD and provide a new idea for the treatment of GD.
Collapse
Affiliation(s)
- Mengxue Yang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Mengxue Yang,
| | - Xiaodi Zheng
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bo Yang
- Department of Endocrinology, Zunyi Medical University, Zunyi, China
| | - Bowen Sun
- Department of Endocrinology, Zunyi Medical University, Zunyi, China
| | - Miao Zeng
- Department of Infectious Diseases I, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Li C, Wang J, Ma R, Li L, Wu W, Cai D, Lu Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol Res 2021; 175:105972. [PMID: 34758401 DOI: 10.1016/j.phrs.2021.105972] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of colon and rectum with unknown etiology, and the lesions are mainly confined to the mucosa and submucosa of large intestine. The main clinical features of UC include diarrhea, abdominal pain, bloody purulent stool and tenesmus, which seriously affect patients' quality of life. Most of UC patients would receive drug therapy with the exception of surgery for some severe cases. However, current drugs for the treatment of UC have certain limitations including difficulty of radical treatment, adverse reactions and drug resistance after long-term use and exorbitant price of some drugs. The research and development of new drugs for the treatment of UC is urgent, and natural alkaloids are an important source. This research paid close attention to the progress of natural alkaloids from diverse medicinal plants for treating UC in the last twenty years. The potential mechanisms for the natural alkaloids in the treatment of UC was closely related to its modulation of oxidative stress, immune response, intestinal flora and improvement of the gut barrier function. Remarkable effectiveness and safety of natural-derived alkaloids make them potential candidates of UC therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Luhao Li
- Health Service Center of Dengfeng Street Community, Yuexiu District, Guangzhou 510091, PR China
| | - Wenfeng Wu
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Dake Cai
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
12
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|
13
|
Expression of Th17/Treg Cells in Peripheral Blood and Related Cytokines of Patients with Ulcerative Colitis of Different Syndrome Types and Correlation with the Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4600947. [PMID: 34603468 PMCID: PMC8486524 DOI: 10.1155/2021/4600947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
Objective To explore the expression of helper T cells 17 (Th17)/regulatory T cells (Treg) in peripheral blood and related cytokines of patients with different types of ulcerative colitis (UC) and analyze their correlation with the disease. Methods From January 2018 to December 2019, 53 patients diagnosed with UC in our hospital were selected. According to their medical syndromes, they were divided into the damp-heat internal accumulation group (n = 35) and the spleen-kidney yang deficiency group (n = 18). 21 healthy volunteers were selected as the control group. The Mayo scoring standard was used to determine the severity of the patient's condition. The expression levels of Th17/Treg cells and related cytokines in peripheral blood were compared between the groups. Pearson correlation was used to analyze the correlation between the ratio of Th17 and Treg cells in the peripheral blood of UC patients and the ratio of TH17/Treg with Mayo score. Results The peripheral blood Th17 cell ratio and Th17/Treg ratio of the damp-heat internal accumulation and spleen-kidney yang deficiency group were higher than those of the control group; the Treg cell ratio was lower than that of the control group; the peripheral blood Th17 cell ratio and Th17/Treg ratio of the damp-heat internal accumulation group were higher those of the spleen-kidney yang deficiency group; and the proportion of Treg cells was lower than that of the spleen-kidney yang deficiency group (P < 0.05). The expression levels of serum IL-6, IL-17, IL-22, and TNF-α in the damp-heat internal accumulation and spleen-kidney yang deficiency group were higher than those of the control group; IL-10 and TGF-β were lower than those of the control group; the levels of serum IL-6, IL-17, IL-22, and TNF-α in the damp-heat internal accumulation group were higher than those of the spleen-kidney yang deficiency group; and both IL-10 and TGF-β were lower than those of the spleen-kidney yang deficiency group (P < 0.05). The peripheral blood Th17 cell ratio and Th17/Treg ratio in the moderately active period group and severely active period group were higher than those of the lightly active period group; the Treg cell ratio was lower than that of the lightly active period group; the peripheral blood Th17 cell ratio and Th17/Treg ratio in the severely active period group were higher than those in the moderately active period group; and the proportion of Treg cells was lower than that of the moderately active period group. Pearson correlation analysis showed that the proportion of Th17 cells and Th17/Treg in peripheral blood of UC patients were both positively correlated with Mayo score (r = 0.762, r = 0.777, P < 0.001). Treg was negatively correlated with Mayo score (r = -0.790, P < 0.001). Conclusion There are differences in the expression of peripheral blood Th17/Treg cells and related cytokines among UC patients with different syndromes, and the damp-heat content is the most significant. The higher the ratio of Th17 cells in peripheral blood and the degree of Th17/Treg imbalance, the lower the ratio of Treg cells, and the more severe the condition of UC patients, which can provide a preliminary quantitative basis for the TCM classification and severity of the diagnosis of UC.
Collapse
|
14
|
Li DP, Cui M, Tan F, Liu XY, Yao P. High Red Meat Intake Exacerbates Dextran Sulfate-Induced Colitis by Altering Gut Microbiota in Mice. Front Nutr 2021; 8:646819. [PMID: 34355008 PMCID: PMC8329097 DOI: 10.3389/fnut.2021.646819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious hazard to public health, but the precise etiology of the disease is unclear. High intake of red meat diet is closely related to the occurrence of IBD. In this study, we investigated whether the high intake of red meat can increase the sensitivity of colitis and the underlying mechanism. Mice were fed with different levels of red meat for 8 weeks and then the colonic contents were analyzed by 16S rRNA sequencing. Then 3% dextran sulfate sodium was used to induce colitis in mice. We observed the severity of colitis and inflammatory cytokines. We found that high-dose red meat caused intestinal microbiota disorder, reduced the relative abundance of Lachnospiraceae_NK4A136_group, Faecalibaculum, Blautia and Dubosiella, and increased the relative abundance of Bacteroides and Alistipes. This in turn leads to an increase in colitis and inflammatory cytokine secretion. Moreover, we found that high red meat intake impaired the colon barrier integrity and decreased the expression of ZO-1, claudin, and occludin. We also found high red meat intake induced the production of more inflammatory cytokines such as IL-1β, TNF-α, IL-17, and IL-6 and inflammatory inducible enzymes such as COX-2 and iNOS in dextran sulfate sodium-induced colitis. These results suggest that we should optimize the diet and reduce the intake of red meat to prevent the occurrence of IBD.
Collapse
Affiliation(s)
- Dan-Ping Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Fang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiao-Yan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
15
|
Interactions between Gut Microbiota and Immunomodulatory Cells in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:1430605. [PMID: 32963490 PMCID: PMC7499318 DOI: 10.1155/2020/1430605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases caused by abnormal immune activation and immune tolerance. Immunomodulatory cells (ICs) play a critical role in the maintenance and homeostasis of normal immune function and in the pathogenesis of RA. The human gastrointestinal tract is inhabited by trillions of commensal microbiota on the mucosal surface that play a fundamental role in the induction, maintenance, and function of the host immune system. Gut microbiota dysbiosis can impact both the local and systemic immune systems and further contribute to various diseases, such as RA. The neighbouring intestinal ICs located in distinct intestinal mucosa may be the most likely intermediary by which the gut microbiota can affect the occurrence and development of RA. However, the reciprocal interaction between the components of the gut microbiota and their microbial metabolites with distinct ICs and how this interaction may impact the development of RA are not well studied. Therefore, a better understanding of the gut microbiota, ICs, and their interactions might improve our knowledge of the mechanisms by which the gut microbiota contribute to RA and facilitate the further development of novel therapeutic approaches. In this review, we have summarized the roles of the gut microbiota in the immunopathogenesis of RA, especially the interactions between the gut microbiota and ICs, and further discussed the strategies for treating RA by targeting/regulating the gut microbiota.
Collapse
|
16
|
Zhang Y, Wu Z, Liu J, Zheng Z, Li Q, Wang H, Chen Z, Wang K. Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis. Food Res Int 2020; 137:109641. [PMID: 33233220 DOI: 10.1016/j.foodres.2020.109641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
It has been claimed that Dendrobium officinale applied as a functional food in China for centuries derived from the excellent anti-inflammatory activities. Herein, we aim to investigate the core structure of a Dendrobium officinale polysaccharide (DOP) based on the linear structural features by a specific endo-β-1,4-mannanase which was required for the protective effect against dextran sulfate sodium (DSS)-induced colitis in mice. Structure characterization revealed that enzymatic fragment contained the core domain (EDOP) which was composed of glucose and mannose in the molar ratio of 1.00:4.76, and consisted of (1 → 4)-β-D-Glcp and (1 → 4)-β-D-Manp with some attached 2-O-acetylated groups. In colitis mice, both DOP and EDOP could dramatically attenuate the clinical signs via blocking pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and their related mRNA), restoring the levels of short-chain fatty acids (SCFAs), activating the G-protein coupled receptors (GPRs) and modulating the gut microbiota. Gut microbiota dysbiosis is currently considered to be an important factor affecting colitis. The treatment of DOP and EDOP could recall the diversity of gut microbiota and modulate the abundance of the gut microbiota, including increasing the abundance of Bacteroides, Lactobacillus and Ruminococcaceae and reducing the abundance of Proteobacteria. Our findings have suggested that EDOP, as a core domain of DOP, retained similar structural features together with anti-inflammatory activity with DOP, and they could be potentially applied as natural candidates in the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - HongJing Wang
- Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
17
|
Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother 2020; 125:109914. [PMID: 32035395 DOI: 10.1016/j.biopha.2020.109914] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUD/AIM Previous studies have found that probiotic fermented camel milk has anti-diabetic effect by inducing (glucagon-like peptide-1) GLP-1 secretion. Probiotics are valuable in prevention and treatment of diabetes. As a result, our team islolated 14 probiotics from fermented camel milk. These probiotics have beneficial characteristics, but the possible anti-diabetic mechanisms remains unclear. The present study aimed to explore the possoble anti-diabetic mechanisms of 14 probiotics. METHODS C57BL/Ks mice were normal group. The db/db mice were randomized into five groups: model group, metformin group, liraglutide group, low-dose and high-dose probiotic group. Biochemical parameters were determined by the respective assay kits. The levels of the short-chain fatty acids (SCFAs) and microbiota were respectively determined by gas chromatography and qRT-PCR. HE staining and immunofluorescence were used for histomorphological observation. Quantitative PCR and western-blot were determined the gene and protein expression of Bax, Bcl-2, Caspase-3 and PI3K/AKT. RESULTS Probiotics significantly improved blood glucose and blood lipid parameters, as well as the morphological changes of pancreas, liver and kidney. Probiotics improved the gut barrier function through increasing the levels of SCFA-producing bacteria and SCFAs as well as the expression of claudin-1 and mucin-2, and decreasing Escherichia coli and LPS level. In additon, probiotics enhanced insulin secretion through glucose-triggered GLP-1 secretion by upregulating G protein-coupled receptor 43/41 (GPR43/41), proglucagon and proconvertase 1/3 activity. Forthermore, probiotics protected pancreas against apoptosis, which may be dependent on the upregulation of PI3K/AKT pathway. CONCLUSIONS The anti-diabetic effect of 14 probiotics in db/db mice seem to be related to an increase of SCFA-producing bacteria, the improvement of intestinal barrier function and the upregulation of GLP-1 production, and indicate these probiotics might be a good candidate to prevent and treat diabetes.
Collapse
|
18
|
Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|