1
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Mikled P, Chavasiri W, Khongkow M. Development of dihydrooxyresveratrol-loaded nanostructured lipid carriers for safe and effective treatment of hyperpigmentation. Sci Rep 2024; 14:29211. [PMID: 39587280 PMCID: PMC11589685 DOI: 10.1038/s41598-024-80671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
Hyperpigmentation, a dermatological concern caused by increased melanin production, affects many people worldwide. Traditional skin-brightening products target inhibition of cellular tyrosinase activity but often contain harmful toxicants. Oxyresveratrol (OXR) is a robust tyrosinase inhibitor, but its instability, poor water solubility, and low skin permeation limit its use. This study aimed to overcome these challenges by modifying OXR to dihydrooxyresverstrol (DHO) and encapsulating both compounds into nanostructured lipid carriers (NLCs). The developed NLCs loaded with OXR (OXR-NLC) and DHO (DHO-NLC) achieve desirable physicochemical properties, high percentages of entrapment efficiency, and stability for at least three months during 4-40 ℃ of storage. DHO itself and NLC formulation of OXR dramatically enhanced the photostability of OXR. Additionally, NLC formulations significantly promoted controlled release and facilitated penetration through the skin-like hydrophobic membrane of OXR and DHO. Importantly, these NLC formulations exhibited no cytotoxicity on human keratinocyte cells up to 500 µg/mL and effectively reduced melanogenesis in B16F10 cells. Our findings indicate that DHO-loaded NLC offers a promising strategy for developing cosmeceutical products to address hyperpigmentation and promote skin lightening.
Collapse
Affiliation(s)
- Pirun Mikled
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
3
|
Zhao M, Zhou M, Lu P, Wang Y, Zeng R, Liu L, Zhu S, Kong L, Zhang J. Local anesthetic delivery systems for the management of postoperative pain. Acta Biomater 2024; 181:1-18. [PMID: 38679404 DOI: 10.1016/j.actbio.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management. STATEMENT OF SIGNIFICANCE: Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.
Collapse
Affiliation(s)
- Mingxu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Mengni Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Rong Zeng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lifang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China.
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Gu S, Luo Q, Wen C, Zhang Y, Liu L, Liu L, Liu S, Chen C, Lei Q, Zeng S. Application of Advanced Technologies-Nanotechnology, Genomics Technology, and 3D Printing Technology-In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics 2023; 15:2289. [PMID: 37765258 PMCID: PMC10535504 DOI: 10.3390/pharmaceutics15092289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There has been increasing interest and rapid developments in precision medicine, which is a new medical concept and model based on individualized medicine with the joint application of genomics, bioinformatics engineering, and big data science. By applying numerous emerging medical frontier technologies, precision medicine could allow individualized and precise treatment for specific diseases and patients. This article reviews the application and progress of advanced technologies in the anesthesiology field, in which nanotechnology and genomics can provide more personalized anesthesia protocols, while 3D printing can yield more patient-friendly anesthesia supplies and technical training materials to improve the accuracy and efficiency of decision-making in anesthesiology. The objective of this manuscript is to analyze the recent scientific evidence on the application of nanotechnology in anesthesiology. It specifically focuses on nanomedicine, precision medicine, and clinical anesthesia. In addition, it also includes genomics and 3D printing. By studying the current research and advancements in these advanced technologies, this review aims to provide a deeper understanding of the potential impact of these advanced technologies on improving anesthesia techniques, personalized pain management, and advancing precision medicine in the field of anesthesia.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingyong Luo
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Li Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liu Liu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
5
|
Bedair AF, Wahid A, El-Mezayen NS, El-Yazbi AF, Khalil HA, Hassan NW, Afify EA. Nicorandil/ morphine crosstalk accounts for antinociception and hepatoprotection in hepatic fibrosis in rats: Distinct roles of opioid/cGMP and NO/KATP pathways. Biomed Pharmacother 2023; 165:115068. [PMID: 37392650 DOI: 10.1016/j.biopha.2023.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Previous report indicated that nicorandil potentiated morphine antinociception and attenuated hepatic injury in liver fibrotic rats. Herein, the underlying mechanisms of nicorandil/morphine interaction were investigated using pharmacological, biochemical, histopathological, and molecular docking studies. Male Wistar rats were injected intraperitoneally (i.p.) with carbon tetrachloride (CCl4, 40%, 2 ml/kg) twice weekly for 5 weeks to induce hepatic fibrosis. Nicorandil (15 mg/kg/day) was administered per os (p.o.) for 14 days in presence of the blockers; glibenclamide (KATP channel blocker, 5 mg/kg, p.o.), L-NG-nitro-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor, 15 mg/kg, p.o.), methylene blue (MB, guanylyl cyclase inhibitor, 2 mg/kg, i.p.) and naltrexone (opioid antagonist, 20 mg/kg, i.p.). At the end of the 5th week, analgesia was evaluated using tail flick and formalin tests along with biochemical determinations of liver function tests, oxidative stress markers and histopathological examination of liver tissues. Naltrexone and MB inhibited the antinociceptive activity of the combination. Furthermore, combined nicorandil/morphine regimen attenuated the release of endogenous peptides. Docking studies revealed a possible interaction of nicorandil on µ, κ and δ opioid receptors. Nicorandil/morphine combination protected against liver damage as evident by decreased liver enzymes, liver index, hyaluronic acid, lipid peroxidation, fibrotic insults, and increased superoxide dismutase activity. Nicorandil/morphine hepatoprotection and antioxidant activity were inhibited by glibenclamide and L-NAME but not by naltrexone or MB. These findings implicate opioid activation/cGMP versus NO/KATP channels in the augmented antinociception, and hepatoprotection, respectively, of the combined therapy and implicate provoked cross talk by nicorandil and morphine on opioid receptors and cGMP signaling pathway. That said, nicorandil/morphine combination provides a potential multitargeted therapy to alleviate pain and preserve liver function.
Collapse
Affiliation(s)
- Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Hadeel A Khalil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Nayera W Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
6
|
Zhang S, Wang Y, Zhang S, Huang C, Ding Q, Xia J, Wu D, Gao W. Emerging Anesthetic Nanomedicines: Current State and Challenges. Int J Nanomedicine 2023; 18:3913-3935. [PMID: 37489141 PMCID: PMC10363368 DOI: 10.2147/ijn.s417855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Anesthetics, which include both local and general varieties, are a unique class of drugs widely utilized in clinical surgery to alleviate pain and promote relaxation in patients. Although numerous anesthetics and their traditional formulations are available in the market, only a select few exhibit excellent anesthetic properties that meet clinical requirements. The main challenges are the potential toxic and adverse effects of anesthetics, as well as the presence of the blood-brain barrier (BBB), which makes it difficult for most general anesthetics to effectively penetrate to the brain. Loading anesthetics onto nanocarriers as anesthetic nanomedicines might address these challenges and improve anesthesia effectiveness, reduce toxic and adverse effects, while significantly enhance the efficiency of general anesthetics passing through the BBB. Consequently, anesthetic nanomedicines play a crucial role in the field of anesthesia. Despite their significance, research on anesthetic nanomedicines is still in its infancy, especially when compared to other types of nanomedicines in terms of depth and breadth. Although local anesthetic nanomedicines have received considerable attention and essentially meet clinical needs, there are few reported instances of nanomedicines for general anesthetics. Given the extensive usage of anesthetics and the many of them need for improved performance, emerging anesthetic nanomedicines face both unparalleled opportunities and considerable challenges in terms of theory and technology. Thus, a comprehensive summary with systematic analyses of anesthetic nanomedicines is urgently required. This review provides a comprehensive summary of the classification, properties, and research status of anesthetic nanomedicines, along with an exploration of their opportunities and challenges. In addition, future research directions and development prospects are discussed. It is hoped that researchers from diverse disciplines will collaborate to study anesthetic nanomedicines and develop them as a valuable anesthetic dosage form for clinical surgery.
Collapse
Affiliation(s)
- Shuo Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Yishu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Shuai Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Chengqi Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Qiyang Ding
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ji Xia
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| |
Collapse
|
7
|
Yuan S, Chen J, Feng S, Li M, Sun Y, Liu Y. Combination anesthetic therapy: co-delivery of ropivacaine and meloxicam using transcriptional transactivator peptide modified nanostructured lipid carriers in vitro and in vivo. Drug Deliv 2022; 29:263-269. [PMID: 35014916 PMCID: PMC8757603 DOI: 10.1080/10717544.2021.2023695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Combination therapy combining two drugs in one modified drug delivery system is used to achieve synergistic analgesic effect, and bring effective control of pain management, especially postoperative pain management. In the present study, a combination of drug delivery technologies was utilized. Transcriptional transactivator (TAT) peptide modified, transdermal nanocarriers were designed to co-deliver ropivacaine (RVC) and meloxicam (MLX) and anticipated to achieve longer analgesic effect and lower side effect. TAT modified nanostructured lipid carriers (TAT-NLCs) were used to co-deliver RVC and MLX. RVC and MLX co-loaded TAT-NLCs (TAT-NLCs-RVC/MLX) were evaluated through in vitro skin permeation and in vivo treatment studies. NLCs-RVC/MLX showed uniform and spherical morphology, with a size of 133.4 ± 4.6 nm and a zeta potential of 20.6 ± 1.8 mV. The results illustrated the anesthetic pain relief ability of the present constructed system was significantly improved by the TAT modification through the enhanced skin permeation efficiency and the co-delivery of MLX along with RVC that improved pain management by reducing inflammation at the injured area. This study provides an efficient and facile method for preparing TAT-NLCs-RVC/MLX as a promising system to achieve synergistic analgesic effect.
Collapse
Affiliation(s)
- Shu Yuan
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Jun Chen
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Shuo Feng
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Min Li
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yingui Sun
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yuzhen Liu
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9165443. [PMID: 35434138 PMCID: PMC9010220 DOI: 10.1155/2022/9165443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380 ± 4 nm, positive zeta potential after coating with chitosan (23.3 ± 1.7 mV), and high encapsulation efficiency (96.7 ± 0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.
Collapse
|
9
|
Iván Martínez-Muñoz O, Elizabeth Mora-Huertas C. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting. Int J Pharm 2022; 614:121440. [PMID: 34998924 DOI: 10.1016/j.ijpharm.2021.121440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Nanoprecipitation is a practical method to prepare carriers at the nanometric scale, which attracts attention in pharmaceutics because of its low cost, easy setup, the versatility of the starting materials, possibility to obtain different kinds of carriers, and minimal environmental impact. Since 1986, this technique has been extensively employed in research; therefore, this paper focuses on state of art regarding inventions wherein it is employed. To this end, 133 nanoprecipitation-based patent families are identified in the PatSnap® platform, which allows identifying general trends. Afterwards, a sample of 40 patent families reported as granted (21 families) or patent applications (19 families) during the last decade are studied in depth to establish the research tendencies. Undoubtedly, Chinese universities are positioned as leaders in this field, and cancer treatments are the more claimed use followed far behind for developments targeting neurodegenerative and diabetes diseases. New proposals on targeted and stimuli response particles are also claimed, and development of polymers, prodrugs, and improvements to the technique such as the flash-nanoprecipitation, use of microfluidics, or design of green process are relevant. Interestingly, nanoprecipitation-related patent families have significantly increased during the last decade, being the 71% of the total, which makes alluring the perspectives about its industrial harnessing.
Collapse
Affiliation(s)
- Oscar Iván Martínez-Muñoz
- Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Farmacia. Ciudad Universitaria, Carrera 30 45-03, Edificio 450, Bogotá, postal code 111321, Colombia
| | - Claudia Elizabeth Mora-Huertas
- Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Farmacia. Ciudad Universitaria, Carrera 30 45-03, Edificio 450, Bogotá, postal code 111321, Colombia.
| |
Collapse
|
10
|
Balogh M, Janjic JM, Shepherd AJ. Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine. Antioxid Redox Signal 2022; 36:122-143. [PMID: 34416821 PMCID: PMC8823248 DOI: 10.1089/ars.2021.0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Diabetes is a major source of neuropathy and neuropathic pain that is set to continue growing in prevalence. Diabetic peripheral neuropathy (DPN) and pain associated with diabetes are not adequately managed by current treatment regimens. Perhaps the greatest difficulty in treating DPN is the complex pathophysiology, which involves aspects of metabolic disruption and neurotrophic deficits, along with neuroimmune interactions. There is, therefore, an urgent need to pursue novel therapeutic options targeting the key cellular and molecular players. Recent Advances: To that end, cellular targeting becomes an increasingly compelling drug delivery option as our knowledge of neuroimmune interactions continues to mount. These nanomedicine-based approaches afford a potentially unparalleled specificity and longevity of drug targeting, using novel or established compounds, all while minimizing off-target effects. Critical Issues: The DPN therapeutics directly targeted at the nervous system make up the bulk of currently available treatment options. However, there are significant opportunities based on the targeting of non-neuronal cells and neuroimmune interactions in DPN. Future Directions: Nanomedicine-based agents represent an exciting opportunity for the treatment of DPN with the goals of improving the efficacy and safety profile of analgesia, as well as restoring peripheral neuroregenerative capacity. Antioxid. Redox Signal. 36, 122-143.
Collapse
Affiliation(s)
- Mihály Balogh
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Sci Rep 2021; 11:21463. [PMID: 34728779 PMCID: PMC8563806 DOI: 10.1038/s41598-021-99743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
Tetracaine (TTC) is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers (NLC) may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4% TTC. Structural properties and encapsulation efficiency (%EE > 63%) guided the selection of three pre-formulations of different lipid composition, through a 23 factorial design of experiments (DOE). DLS and TEM analyses revealed average sizes (193-220 nm), polydispersity (< 0.2), zeta potential |- 21.8 to - 30.1 mV| and spherical shape of the nanoparticles, while FTIR-ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre-formulation (CP-TRANS/TTC) showed phase-separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid (cetyl palmitate) and liquid (Transcutol) lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach (DOE and biophysical techniques) two optimized pre-formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic (> 48 h) and reducing TTC cytotoxicity against Balb/c 3T3 cells.
Collapse
|
12
|
Goder D, Giladi S, Furer A, Zilberman M. Bupivacaine-eluting soy protein structures for controlled release and localized pain relief: An in vitro and in vivo study. J Biomed Mater Res A 2021; 109:1681-1692. [PMID: 33728803 DOI: 10.1002/jbm.a.37163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
Burn pain is known to be excruciating, and while burn care has greatly advanced, treatment for burn-related pain is lacking. Current pain relief methods include systemic administration of analgesics, which does not provide high drug concentration at the wound site. In the present study, soy protein was used as the base material for bupivacaine-loaded hybrid wound dressings. The effect of the formulation on the drug release profile was studied using high performance liquid chromatography, and the cytotoxicity was tested on human fibroblasts. A second-degree burn model in rats was used to quantify the efficacy of the wound dressings in vivo, using the Rat Grimace Scale. All tested films exhibited high biocompatibility, and the drug release profiles showed rapid release during the initial 5 hr and a continuous slower release for another 24 hr. Significant pain relief was achieved in the animal trials, proving a decrease of 51-68% in pain levels during days 1-3 post-burn. Hence, the results indicate a safe and controlled bupivacaine release for a period of more than 24 hr, effectively treating pain caused by second-degree burns. The understanding of the formulation-properties effects, together with our in vivo study, enables to advance this field toward tailorable systems with high therapeutic potential.
Collapse
Affiliation(s)
- Daniella Goder
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shir Giladi
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Furer
- Medical Corps, Israel Defense Forces, Tel Aviv, Israel
- Department of Military Medicine, Hebrew University Hadassah School of Medicine, Jerusalem, Israel
| | - Meital Zilberman
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
In vitro and in vivo evaluation of a lidocaine loaded polymer nanoparticle formulation co-loaded with lidocaine for local anesthetics effect. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Favatela F, Horst M, Bracone M, Gonzalez J, Alvarez V, Lassalle V. Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Safety and efficacy concerns of modern strategies of local anesthetics delivery. 3 Biotech 2020; 10:333. [PMID: 32656066 DOI: 10.1007/s13205-020-02309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022] Open
Abstract
In the last few decades, several formulations have evolved to realize better efficacy of administered anesthesia. These innovative formulations have facilitated surgeons to perform operations under purely local anesthesia, which provides extra protection and comfort to patients. Ease of delivery of local anesthesia is the need of the current generation, because some of the standard procedures are performed without the use of any sedative agent. Therefore, we are presenting here the various approaches of administration of local anesthetics by the surgeons. To construct a comprehensive report on various methods of anesthesia, we followed a systematic literature search of bibliographic databases of published articles recently in the international journals and publishers of repute. A comprehensive study of several reports of the field indicates that there are significant progresses towards developing novel formulations of anesthesia drugs as well as strategies of delivery. Among formulations, nanoparticle-based delivery approaches, including polymeric, liposomal, and micellar structures, have offered the much needed efficacy with low toxicity. Therefore, several of such techniques are at various stages of clinical trials. Nanotechnology-based delivery approaches have significantly emerged in recent past due to the low systemic toxicity and better efficacy of the nonconventional local anesthetics. The other methods of local anesthesia delivery such as transdermal, magnetophoresis, electrophoresis, and iontophoresis are frequently used due to them being minimally invasive and locally effective. Therefore, the combination of the nanotechnological methods with above mentioned techniques would significantly enhance the overall process of local anesthesia delivery and efficacy.
Collapse
|
16
|
Afra B, Mohammadi M, Soleimani M, Mahjub R. Preparation, statistical optimization, in vitro characterization, and in vivo pharmacological evaluation of solid lipid nanoparticles encapsulating propolis flavonoids: a novel treatment for skin edema. Drug Dev Ind Pharm 2020; 46:1163-1176. [PMID: 32503368 DOI: 10.1080/03639045.2020.1779286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Propolis is a natural resinous product and exerts anti-inflammatory properties. The aim of this study is formulation and characterization of solid lipid nanoparticles (SLNs) encapsulating propolis flavonoids (PFs), intended for topical treatment of skin edema. The nanoparticles were prepared and statistically optimized using Box-Behnken response surface methodology. The in vitro release profile of the optimized nanoparticles was investigated. Cytotoxicity of nanoparticles on HSF-PI 18 cell line was determined. Permeation and penetration of nanoparticles across the incised skin were measured. Finally, the nanoparticles were incorporated into a pharmaceutical hydrogel formulation and the in vivo efficacy in reduction of skin edema was determined. The size, PdI, zeta potential, entrapment efficiency (EE%) and loading efficiency (LE %) of the optimized nanoparticles were 111.3 ± 19.35 nm, 0.34 ± 0.005, -24.17 ± 3.3 mV, 73.5 ± 0.86%, and 3.2 ± 0.27%, respectively. Data obtained through in vitro release study suggested a burst release followed by a prolonged release behavior up to 24 h post incubation time interval. The prepared SLNs exhibited no cytotoxicity on HSF-PI 18 cell line. Ex vivo permeation and penetration study of nanoparticles across the incised skin showed approximately a 2.5-fold and a 3-fold increase in cumulative amount of transport and cumulative amount of skin penetration, respectively. Finally, in vivo studies in rat models, showed a threefold reduction in volume of the edema in animals treated with SLNs. The obtained data revealed that the prepared SNs entrapping PFs, exert high skin targeting effects, prolonged anti-inflammatory properties and therefore high efficiency in treatment of skin edema.
Collapse
Affiliation(s)
- Bahareh Afra
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|