1
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Uzulmez B, Demirsoy Z, Can O, Gulseren G. Bioinspired Multi-Layer Biopolymer-Based Dental Implant Coating for Enhanced Osseointegration. Macromol Biosci 2023; 23:e2300057. [PMID: 37097091 DOI: 10.1002/mabi.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The major drawbacks of metal-based implants are weak osseointegration and post-operational infections. These limitations restrict the long-term use of implants that may cause severe tissue damage and replacement of the implant. Recent strategies to enhance the osseointegration process require an elaborate fabrication process and suffer from post-operative complications. To address the current challenges taking inspiration from the extracellular matrix (ECM), the current study is designed to establish enhanced osseointegration with lowered risk of infection. Natural biopolymer pectin, peptide amphiphiles, and enzyme-mimicking fullerene moieties are governed to present an ECM-like environment around the implant surfaces. This multifunctional approach promotes osseointegration via inducing biomineralization and osteoblast differentiation. Application of the biopolymer-based composite to the metal surfaces significantly enhances cellular attachment, supports the mineral deposition, and upregulates osteoblast-specific gene expression. In addition to the osteoinductive properties of the constructed layers, the inherent antimicrobial properties of multilayer coating are also used to prevent infection possibility. The reported biopolymer-artificial enzyme composite demonstrates antimicrobial activity against Escherichia coli and Bacillus subtilis as a multifunctional surface coating.
Collapse
Affiliation(s)
- Betul Uzulmez
- Department of Biotechnology, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Zeynep Demirsoy
- Department of Biotechnology, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Ozge Can
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, 42080, Turkey
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey
| | - Gulcihan Gulseren
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, 42080, Turkey
- Department of Biotechnology, Konya Food and Agriculture University, Konya, 42080, Turkey
| |
Collapse
|
4
|
Yusoff NISM, Tham WH, Wahit MU, Abdul Kadir MR, Wong T. The effect of hydroxyapatite filler on biodegradable poly(sorbitol sebacate malate) composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Noor Izyan Syazana Mohd Yusoff
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Weng Hong Tham
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| |
Collapse
|
5
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications- A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Feng J, Niu Y, Zhang Y, Zuo H, Wang S, Liu X. Ficus carica extract impregnated amphiphilic polymer scaffold for diabetic wound tissue regenerations. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:219-229. [PMID: 33666536 DOI: 10.1080/21691401.2021.1890610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
Diabetes associated injury healing and other tissue irregularities are viewed as a significant concern. The purpose of the study is to design the wound regeneration activity of Ficus carica extract (FFE) loaded amphiphilic polymeric scaffold of poly(xylitol-g-adipate-co-glutamide) (PXAG)-polyhydroxybutyrate (PHB) for potential diabetic affected wound regeneration. The PXAG copolymer was prepared by the condensation method, and the polymeric scaffolds of PXAG-PHB, PXAG-PHB/FFE were developed through the ultra-sonication process and magnetic stirrer processes. The chemical structure, crystalline nature, thermal stability, size, surface charge and surface morphology of PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds were investigated. The PXAG-PHB/FFE exhibits 99.0% free radical scavenging activity which was determined by the DPPH method. The inhibition zones by the PXAG-PHB/FFE indicate it had a higher antibacterial activity with the Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) pathogens. The PXAG, PXAG-PHB and PXAG-PHB/FFE polymeric scaffolds exhibited good viability against diabetic induced wound cells (WS1) in 100 μg/mL concentrations up to 72 h incubation. Since the synthesized PXAG-PHB/FFE polymeric scaffolds possess excellent thermal stability, bioactivity, biocompatibility and antioxidant activity along with potent antimicrobial activity, they play a potential role in diabetic wound tissue regenerations.
Collapse
Affiliation(s)
- Jia Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yu Niu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yi Zhang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Hong Zuo
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Shujin Wang
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Xufeng Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| |
Collapse
|
9
|
Nanohydroxyapatite Electrodeposition onto Electrospun Nanofibers: Technique Overview and Tissue Engineering Applications. Bioengineering (Basel) 2021; 8:bioengineering8110151. [PMID: 34821717 PMCID: PMC8615206 DOI: 10.3390/bioengineering8110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nanocomposite scaffolds based on the combination of polymeric nanofibers with nanohydroxyapatite are a promising approach within tissue engineering. With this strategy, it is possible to synthesize nanobiomaterials that combine the well-known benefits and advantages of polymer-based nanofibers with the osteointegrative, osteoinductive, and osteoconductive properties of nanohydroxyapatite, generating scaffolds with great potential for applications in regenerative medicine, especially as support for bone growth and regeneration. However, as efficiently incorporating nanohydroxyapatite into polymeric nanofibers is still a challenge, new methodologies have emerged for this purpose, such as electrodeposition, a fast, low-cost, adjustable, and reproducible technique capable of depositing coatings of nanohydroxyapatite on the outside of fibers, to improve scaffold bioactivity and cell–biomaterial interactions. In this short review paper, we provide an overview of the electrodeposition method, as well as a detailed discussion about the process of electrodepositing nanohydroxyapatite on the surface of polymer electrospun nanofibers. In addition, we present the main findings of the recent applications of polymeric micro/nanofibrous scaffolds coated with electrodeposited nanohydroxyapatite in tissue engineering. In conclusion, comments are provided about the future direction of nanohydroxyapatite electrodeposition onto polymeric nanofibers.
Collapse
|
10
|
Wang Y, Yao Y, Thirumurugan M, Prabakaran S, Rajan M, Wang K. Natural Drug-Loaded Bimetal-Substituted Hydroxyapatite-Polymeric Composite for Osteosarcoma-Affected Bone Repair. Front Cell Dev Biol 2021; 9:731887. [PMID: 34616738 PMCID: PMC8488211 DOI: 10.3389/fcell.2021.731887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Repairing segmental bone deformities after resection of dangerous bone tumors is a long-standing clinical issue. The study's main objective is to synthesize a natural bioactive compound-loaded bimetal-substituted hydroxyapatite (BM-HA)-based composite for bone regeneration. The bimetal (copper and cadmium)-substituted HAs were prepared by the sol-gel method and reinforced with biocompatible polyacrylamide (BM-HA/PAA). Umbelliferone (UMB) drug was added to the BM-HA/PAA composite to enhance anticancer activity further. The composite's formation was confirmed by various physicochemical investigations, such as FT-IR, XRD, SEM, EDAX, and HR-TEM techniques. The bioactivity was assessed by immersing the sample in simulated body fluid for 1, 3, and 7 days. The zeta potential values of BM-HA/PAA and BM-HA/PAA/UMB are -36.4 mV and -49.4 mV, respectively. The in vitro viability of the prepared composites was examined in mesenchymal stem cells (MSCs). It shows the ability of the composite to produce osteogenic bone regeneration without any adverse effects. From the gene expression and PCR results, the final UMB-loaded composite induced osteogenic markers, such as Runx, OCN, and VEFG. The prepared bimetal substituted polyacrylamide reinforced HA composite loaded with UMB drug has the ability for bone repair/regenerations.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Orthopedics, Daxing Hospital, Xi’an, China
| | - Yongfeng Yao
- Department of Orthopedics, Daxing Hospital, Xi’an, China
| | - Muthupandi Thirumurugan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | - Kai Wang
- Department of Hematology and Oncology, Honghui Hospital, Xi’an, China
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| |
Collapse
|
11
|
Song Q, Prabakaran S, Duan J, Jeyaraj M, Mickymaray S, Paramasivam A, Rajan M. Enhanced bone tissue regeneration via bioactive electrospun fibrous composite coated titanium orthopedic implant. Int J Pharm 2021; 607:120961. [PMID: 34333026 DOI: 10.1016/j.ijpharm.2021.120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract. Fibrous composite's functionality, phase characteristics, and morphology were evaluated by FT-IR, XRD, and SEM techniques, respectively. The average fiber diameter of MHAP/PVA had decreased from ~274 to ~255 nm after incorporating PEG polymer. That further increased from ~255 to ~275 nm after adding CQ extract. Besides the bioactivity in SBF solution, the degradable nature was confirmed by immersing the fibrous composite in Tris-HCL solution. The degradable studies evaluate that the composite was degraded depending on time, and it degrades about 9.42% after 7 days of immersion. Osteoblasts like MG-63 cells differentiation, proliferation, and calcium deposition were also determined. These results show that this new fibrous composite exhibits advanced osteoblasts properties. Thus, we concluded that this new fibrous scaffold coated Ti implant could act as a better implant to mimic ECM of bone structure and to improve osteogenesis during bone regeneration.
Collapse
Affiliation(s)
- Qichun Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
| | - Jiafeng Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology Xi'an Jiaotong University, Xi'an 710004, China
| | | | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
12
|
Prabakaran S, Rajan M, Geng Z, Liu Y. Fabrication of substituted hydroxyapatite-starch-clay bio-composite coated titanium implant for new bone formation. Carbohydr Polym 2021; 271:118432. [PMID: 34364572 DOI: 10.1016/j.carbpol.2021.118432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
The clay/polymeric matrices have much attention from researchers in bio-medical applications due to their numerous uses. This study introduces new orthopedic titanium (Ti) implant with increasing bio-activity by treating the surface of the Ti implant with bio-compatible composite coating. Wollastonite (WST) clay combined minerals (Mg2+and Gd3+) substituted hydroxyapatite (HAP)/Starch composite was prepared using in-situ co-precipitation method. It was successfully coated on the orthopedic grade Ti plate by the Electrophoretic Deposition (EPD) method. The functionality, phase, morphology, and bio-activity analysis of the composite were evaluated by FT-IR, XRD, HR-TEM, and SEM analysis, respectively. The mechanical property, i.e., Vickers microhardness value of the MHAP/Starch/WST composite coated Ti plate, showed 242 ± 1.92 Hv. The in-vitro MG-63 osteoblast cells viability, differentiation, and Ca mineralization of MHAP/Starch/WST composite suggests that this new implant will be used for bone regeneration application after careful evaluation of in-vivo and clinical studies.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
13
|
Zhao S, Cui W, Rajendran NK, Su F, Rajan M. Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
AbouAitah K, Bil M, Pietrzykowska E, Szałaj U, Fudala D, Woźniak B, Nasiłowska J, Swiderska-Sroda A, Lojkowski M, Sokołowska B, Swieszkowski W, Lojkowski W. Drug-Releasing Antibacterial Coating Made from Nano-Hydroxyapatite Using the Sonocoating Method. NANOMATERIALS 2021; 11:nano11071690. [PMID: 34203218 PMCID: PMC8307745 DOI: 10.3390/nano11071690] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Medical implant use is associated with a risk of infection caused by bacteria on their surface. Implants with a surface that has both bone growth-promoting properties and antibacterial properties are of interest in orthopedics. In the current study, we fabricated a bioactive coating of hydroxyapatite nanoparticles on polyether ether ketone (PEEK) using the sonocoating method. The sonocoating method creates a layer by immersing the object in a suspension of nanoparticles in water and applying a high-power ultrasound. We show that the simple layer fabrication method results in a well-adhering layer with a thickness of 219 nm to 764 nm. Dropping cefuroxime sodium salt (Cef) antibiotic on the coated substrate creates a layer with a drug release effect and antibacterial activity against Staphylococcus aureus. We achieved a concentration of up to 1 mg of drug per cm2 of the coated substrate. In drug release tests, an initial burst was observed within 24 h, accompanied by a linear stable release effect. The drug-loaded implants exhibited sufficient activity against S. aureus for 24 and 168 h. Thus, the simple method we present here produces a biocompatible coating that can be soaked with antibiotics for antibacterial properties and can be used for a range of medical implants.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| | - Monika Bil
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02822 Warsaw, Poland;
| | - Elzbieta Pietrzykowska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Damian Fudala
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Bartosz Woźniak
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Justyna Nasiłowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Maciej Lojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| |
Collapse
|
15
|
Xu H, Zou X, Xia P, Huang H, Liu F, Ramesh T. Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomed Mater 2021; 16. [PMID: 33618343 DOI: 10.1088/1748-605x/abe8ac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Bio-ceramic morphology plays a crucial role in bone repair and regeneration. It is extensively utilized in bone scaffold synthesis due to its better biological system activity and biocompatibility. Here, the ultra-long tricalcium phosphate (UTCP) was synthesized with the assistance of the ultrasonication method. The UTCP is modified as a scaffold by the reinforcement of methacrylate chitosan (MAC) polymer. The functionality of UTCP, UTCP combined MAC, methotrexate (MTX) loaded composites was characterized through FTIR (Fourier transform infrared spectroscopy). The crystalline natures are investigated by the XRD (X-ray diffraction), and results shows the ultra-long tricalcium phosphate crystalline phase is not altered after the reinforcement of MAC polymer and loading of MTX drugs. The morphological analyses were observed through electron microscopic analysis, and rod, polymer-coated rod structures were observed. The UTCP/MAC composite mechanical stress was increased from 1813 Pa of UTCP to 4272 Pa. The MTX loading and release was achieved 79.0 % within 3 h and 76.15 % at 20 h respectively. The UTCP/MAC and UTCP/MAC/MTX's viability investigated osteoblast like the cells (MG-63), and the MTX loaded UTCP/MAC composite exhibits good viability behaviors up to 96.0 % in 14 days. The results confirm the higher compatibility of the composite and profitable cell growth. It may be suitable for bone implantation preparation and it helps in faster regeneration of bone tissue after the in-vivo and clinical evaluation.
Collapse
Affiliation(s)
- Hongyao Xu
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Xiangjie Zou
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Pengcheng Xia
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - He Huang
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Feng Liu
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Orthopaedics, Nanjing, Jiangsu, 210029, CHINA
| | - Thiyagarajan Ramesh
- Basic Medical Science, Prince Sattam bin Abdulaziz University College of Medicine, Al-Kharj-11942, Kingdom of Saudi Arabia., Al-Kharj, Al-Kharj, 11942, SAUDI ARABIA
| |
Collapse
|
16
|
Prabakaran S, Rajan M. The osteogenic and bacterial inhibition potential of natural and synthetic compound loaded metal–ceramic composite coated titanium implant for orthopedic applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02363b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Schematic illustration of the preparation, electrophoretic deposition, antibacterial and osteogenic bone regeneration abilities of the MHAP/ChN/GGe/GTN composite. Where, the green colored shape with red, yellow and blue spheres indicates the GGe.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
17
|
Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front Bioeng Biotechnol 2020; 8:603072. [PMID: 33262980 PMCID: PMC7686851 DOI: 10.3389/fbioe.2020.603072] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Depending on the requirements of specific applications, implanted materials including metals, ceramics, and polymers have been used in various disciplines of medicine. Titanium and its alloys as implant materials play a critical role in the orthopedic and dental procedures. However, they still require the utilization of surface modification technologies to not only achieve the robust osteointegration but also to increase the antibacterial properties, which can avoid the implant-related infections. This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications. These surface techniques include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc. Moreover, the microstructure evolution is comprehensively discussed, which is followed by enhanced mechanical properties, osseointegration, antibacterial properties, and clinical outcomes. Future researches should focus on the combination of multiple methods or improving the structure and composition of the composite coating to further enhance the coating performance.
Collapse
Affiliation(s)
- Tong Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Song
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Lanjie Li
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Beibei Zhao
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
18
|
Stojanović S, AlKhoury H, Radenković M, Cvetković V, Jablonska M, Schmelzer CEH, Syrowatka F, Živković JM, Groth T, Najman S. Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. J Biomed Mater Res A 2020; 109:1353-1365. [PMID: 33128275 DOI: 10.1002/jbm.a.37126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Biphasic calcium phosphate (BCP) materials are widely employed as bone substitute materials due to their resorption/degradation properties. Inflammation after implantation of such materials represents a prerequisite for bone tissue repair and regeneration but can be also problematic if it is not only transient and if it is followed by fibrosis and scarring. Here, we modified BCP covalently with hyaluronan (HA) and heparin (Hep), glycosaminoglycans that possess anti-inflammatory properties. Beside the characterization of particle surface properties, the focus was on in vivo tissue response after subcutaneous implantation in mice. Histological analysis revealed a decrease in signs of inflammatory response to BCP when modified with either HA or Hep. Reduced vascularization after 30 days was noticed when BCP was modified with either HA or Hep with greater cellularity in all examined time points. Compared to plain BCP, expression of endothelial-related genes Flt1 and Vcam1 was higher in BCP-HA and BCP-Hep group at day 30. Expression of osteogenesis-related genes Sp7 and Bglap after 30 days was the highest in BCP group, followed by BCP-Hep, while the lowest expression was in BCP-HA group which correlates with collagen amount. Hence, coating of BCP particles with HA seems to suppress inflammatory response together with formation of new bone-like tissue, while the presence of Hep delays the onset of inflammatory response but permits osteogenesis in this subcutaneous bone-forming model. Transferring the results of this study to other coated materials intended for biomedical application may also pave the way to reduction of inflammation after their implantation.
Collapse
Affiliation(s)
- Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Hala AlKhoury
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Vladimir Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Magdalena Jablonska
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jelena M Živković
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
19
|
Prabakaran S, Rajan M, Lv C, Meng G. Lanthanides-Substituted Hydroxyapatite/ Aloe vera Composite Coated Titanium Plate for Bone Tissue Regeneration. Int J Nanomedicine 2020; 15:8261-8279. [PMID: 33149574 PMCID: PMC7603079 DOI: 10.2147/ijn.s267632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/12/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To develop the surface-treated metal implant with highly encouraged positive properties, including high anti-corrosiveness, bio-activeness and bio-compatibleness for orthopedic applications. METHODS In this work, the surface of commercially pure titanium (Ti) metal was treated with bio-compatible polydopamine (PD) by merely immersing the Ti plate in PD solution. The composite of trivalent lanthanide minerals (La3+, Ce3+ and Gd3+)-substituted hydroxyapatite (MHAP) with Aloe vera (AV) gel was prepared and coated on the PD-Ti plate by electrophoretic deposition (EPD) method. The choice of trivalent lanthanide ions is based on their bio-compatible nature and bone-seeking properties. The formation of the PD layer, composites, and composite coatings on Ti plate and PD-Ti surface was confirmed by FT-IR, XRD, SEM and HR-TEM observations. In-vitro assessments such as osteoblasts like MG-63 cell viability, alkaline phosphatase activity and mineralization ability of the MHAP/AV composite were tested, and the composite-coated plate was implanted into a rat bone defect model for in-vivo bone regeneration studies. RESULTS The coating ability of the MHAP/AV composite was highly preferred to PD-treated Ti plate than an untreated Ti plate due to the metal absorption ability of PD. This was confirmed by SEM analysis. The in-vitro and in-vivo studies show the better osteogenic ability of MHAP/AV composite at 14th day and 4th week of an experimental period, respectively. CONCLUSION The osteoblast ability of the fabricated device without producing any adverse effect in the rat model recommends that the fabricated device would serve as a better platform on the hard tissue regeneration for load-bearing applications of orthopedics.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai625021, India
| | - Changwei Lv
- Department of Orthopaedics, The Affiliated Hospital of Northwest University, Xi’an No.3 Hospital, Xi’an710018, Mainland China
| | - Guolin Meng
- Orthopaedic Department of Xijing Hospital of the Fourth Military Medical University, Xi’an, Shaanxi, 710032, Mainland China
| |
Collapse
|
20
|
Calcium Phosphate Based Bioactive Ceramic Layers on Implant Materials Preparation, Properties, and Biological Performance. COATINGS 2020. [DOI: 10.3390/coatings10090823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calcium phosphate based bioactive ceramics (CPCs) can be successfully applied as implant coatings since they are chemically similar to the inorganic constituent of hard tissues (bones, teeth). Nowadays, in orthopedic surgeries, it is still common to use metallic implants. However, the biological response of the human body to these foreign materials can be adverse, causing the failure of implant materials. This disadvantage can be avoided by bioactive coatings on the surface of implants. CPCs can be prepared by different routes that provide coatings of different quality and properties. In our paper, we compared the morphological, chemical, and biological properties of CPC coatings prepared by the pulse current electrochemical method. The size and thickness of the pulse current deposited platelets largely depended on the applied parameters such as the length of ton and the current density. The decrease in the ton/toff ratio resulted in thinner, more oriented platelets, while the increase in current density caused a significant decrease in grain size. The higher pH value and the heat treatment favored the phase transformation of CPCs from monetite to hydroxyapatite. The contact angle measurements showed increased hydrophilicity of the CPC sample as well as better biocompatibility compared to the uncoated implant material.
Collapse
|
21
|
Stevanović M, Djošić M, Janković A, Nešović K, Kojić V, Stojanović J, Grujić S, Matić Bujagić I, Rhee KY, Mišković-Stanković V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. ACS OMEGA 2020; 5:15433-15445. [PMID: 32637818 PMCID: PMC7331062 DOI: 10.1021/acsomega.0c01583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 05/03/2023]
Abstract
The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL-1) and HAP/CS/Gent (4.039 U mL-1) coatings, compared to the control (0.900 U mL-1)). Drug-release kinetics was investigated in deionized water at 37 °C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (∼21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.
Collapse
Affiliation(s)
- Milena Stevanović
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Djošić
- Institute
for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea
86, 11000 Belgrade, Serbia
| | - Ana Janković
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Katarina Nešović
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology
Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Jovica Stojanović
- Institute
for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea
86, 11000 Belgrade, Serbia
| | - Svetlana Grujić
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ivana Matić Bujagić
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Kyong Yop Rhee
- Department
of Mechanical Engineering, Kyung Hee University, Yongin 446-701, South Korea
| | - Vesna Mišković-Stanković
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Department
of Mechanical Engineering, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|