1
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov 2024; 10:350. [PMID: 39103344 DOI: 10.1038/s41420-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is a highly aggressive and life-threatening malignancy that metastasizes in ~50% of patients, posing significant challenges to patient survival and treatment. Fatty acid (FA) metabolism regulates proliferation, immune escape, metastasis, angiogenesis, and drug resistance in CRC. FA metabolism consists of three pathways: de novo synthesis, uptake, and FA oxidation (FAO). FA metabolism-related enzymes promote CRC metastasis by regulating reactive oxygen species (ROS), matrix metalloproteinases (MMPs), angiogenesis and epithelial-mesenchymal transformation (EMT). Mechanistically, the PI3K/AKT/mTOR pathway, wnt/β-catenin pathway, and non-coding RNA signaling pathway are regulated by crosstalk of enzymes related to FA metabolism. Given the important role of FA metabolism in CRC metastasis, targeting FA metabolism-related enzymes and their signaling pathways is a potential strategy to treat CRC metastasis.
Collapse
Affiliation(s)
- Biao Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jing Mi
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
4
|
Chen Y, Pan G, Wu F, Zhang Y, Li Y, Luo D. Ferroptosis in thyroid cancer: Potential mechanisms, effective therapeutic targets and predictive biomarker. Biomed Pharmacother 2024; 177:116971. [PMID: 38901201 DOI: 10.1016/j.biopha.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Thyroid cancer is a prevalent endocrine malignancy whose global incidence has risen over the past several decades. Ferroptosis, a regulated form of cell death distinguished by the excessive buildup of iron-dependent lipid peroxidates, stands out from other programmed cell death pathways in terms of morphological and molecular characteristics. Increasing evidence suggests a close association between thyroid cancer and ferroptosis, that is, inducing ferroptosis effectively suppresses the proliferation of thyroid cancer cells and impede tumor advancement. Therefore, ferroptosis represents a promising therapeutic target for the clinical management of thyroid cancer in clinical settings. Alterations in ferroptosis-related genes hold potential for prognostic prediction in thyroid cancer. This review summarizes current studies on the role of ferroptosis in thyroid cancer, elucidating its mechanisms, therapeutic targets, and predictive biomarkers. The findings underscore the significance of ferroptosis in thyroid cancer and offer valuable insights into the development of innovative treatment strategies and accurate predictors for the thyroid cancer.
Collapse
Affiliation(s)
- Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Gang Pan
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fan Wu
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yu Zhang
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuanhui Li
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Dingcun Luo
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
5
|
Wang Z, Wang H, Zhou Y, Li L, Lyu M, Wu C, He T, Tan L, Zhu Y, Guo T, Wu H, Zhang H, Sun Y. An individualized protein-based prognostic model to stratify pediatric patients with papillary thyroid carcinoma. Nat Commun 2024; 15:3560. [PMID: 38671151 PMCID: PMC11053152 DOI: 10.1038/s41467-024-47926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Pediatric papillary thyroid carcinomas (PPTCs) exhibit high inter-tumor heterogeneity and currently lack widely adopted recurrence risk stratification criteria. Hence, we propose a machine learning-based objective method to individually predict their recurrence risk. We retrospectively collect and evaluate the clinical factors and proteomes of 83 pediatric benign (PB), 85 pediatric malignant (PM) and 66 adult malignant (AM) nodules, and quantify 10,426 proteins by mass spectrometry. We find 243 and 121 significantly dysregulated proteins from PM vs. PB and PM vs. AM, respectively. Function and pathway analyses show the enhanced activation of the inflammatory and immune system in PM patients compared with the others. Nineteen proteins are selected to predict recurrence using a machine learning model with an accuracy of 88.24%. Our study generates a protein-based personalized prognostic prediction model that can stratify PPTC patients into high- or low-recurrence risk groups, providing a reference for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - He Wang
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yan Zhou
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lu Li
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mengge Lyu
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Chunlong Wu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, China
| | - Tianen He
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lingling Tan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, China
| | - Yi Zhu
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Tiannan Guo
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Hongkun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yaoting Sun
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
6
|
He L, Ye Q, Zhu Y, Zhong W, Xu G, Wang L, Wang Z, Zou X. Lipid Metabolism-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Advanced Gastric Cancer. Gastroenterol Res Pract 2024; 2024:6639205. [PMID: 38440405 PMCID: PMC10911888 DOI: 10.1155/2024/6639205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Abnormal lipid metabolism is known to influence the malignant behavior of gastric cancer. However, the underlying mechanism remains elusive. In this study, we comprehensively analyzed the biological significance of genes involved in lipid metabolism in advanced gastric cancer (AGC). Methods We obtained gene expression profiles from The Cancer Genome Atlas (TCGA) database for early and advanced gastric cancer samples and performed differential expression analysis to identify specific lipid metabolism-related genes in AGC. We then used consensus cluster analysis to classify AGC patients into molecular subtypes based on lipid metabolism and constructed a diagnostic model using least absolute shrinkage and selection operator- (LASSO-) Cox regression analysis and Gene Set Enrichment Analysis (GSEA). We evaluated the discriminative ability and clinical significance of the model using the Kaplan-Meier (KM) curve, ROC curve, DCA curve, and nomogram. We also estimated immune levels based on immune microenvironment expression, immune checkpoints, and immune cell infiltration and obtained hub genes by weighted gene co-expression network analysis (WGCNA) of differential genes from the two molecular subtypes. Results We identified 6 lipid metabolism genes that were associated with the prognosis of AGC and used consistent clustering to classify AGC patients into two subgroups with significantly different overall survival and immune microenvironment. Our risk model successfully classified patients in the training and validation sets into high-risk and low-risk groups. The high-risk score predicted poor prognosis and indicated low degree of immune infiltration. Subgroup analysis showed that the risk model was an independent predictor of prognosis in AGC. Furthermore, our results indicated that most chemotherapeutic agents are more effective for AGC patients in the low-risk group than in the high-risk group, and risk scores for AGC are strongly correlated with drug sensitivity. Finally, we performed qRT-PCR experiments to verify the relevant results. Conclusion Our findings suggest that lipid metabolism-related genes play an important role in predicting the prognosis of AGC and regulating immune invasion. These results have important implications for the development of targeted therapies for AGC patients.
Collapse
Affiliation(s)
- Lijian He
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Tongling People's Hospital, Tongling, Anhui Province, China
| | - Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenqi Zhong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, Chun YS. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun 2023; 14:6370. [PMID: 37828054 PMCID: PMC10570296 DOI: 10.1038/s41467-023-42170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Ye Lee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
8
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
9
|
He W, Cheng Z, Huo Z, Lin B, Wang X, Sun Y, Yu S, Cao S, Xue J, Liu R, Lv W, Li Y, Hong S, Xiao H. STRA6 Promotes Thyroid Carcinoma Progression via Activation of the ILK/AKT/mTOR Axis in Cells and Female Nude Mice. Endocrinology 2023; 164:6967061. [PMID: 36592123 DOI: 10.1210/endocr/bqac215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Metastasis has emerged to be an important cause for poor prognosis of thyroid carcinoma (TC) and its molecular mechanisms are not fully understood. STRA6 is a multifunctional membrane protein widely expressed in embryonic and adult tissues. The function and mechanism of STRA6 in TC remain elusive. OBJECTIVE We aimed to explore the role of STRA6 in TC progression and provide a therapeutic target for TC. METHODS The expression and clinicopathological relevance of STRA6 were explored in TC. Stable STRA6-knockdown TC cells were established and used to determine the biological function of STRA6 in vitro and in vivo. RNA sequencing and co-immunoprecipitation were performed to unveil the molecular mechanism of STRA6 in TC progression. The potential of STRA6 as a therapeutic target was evaluated by lipid nanoparticles (LNPs) containing siRNA. RESULTS STRA6 was upregulated in TC and correlated with aggressive clinicopathological features, including extrathyroidal extension and lymph node metastasis, which contributed to the poor prognosis of TC. STRA6 facilitated TC progression by enhancing proliferation and metastasis in vitro and in vivo. Mechanistically, STRA6 could interact with integrin-linked kinase (ILK) and subsequently activate the protein kinase B/mechanistic target of rapamycin (AKT/mTOR) signaling pathway. We further unveiled that STRA6 reprogrammed lipid metabolism through SREBP1, which was crucial for the metastasis of TC. Moreover, STRA6 siRNA delivered by LNPs significantly inhibited cell growth in xenograft tumor models. CONCLUSIONS Our study demonstrates the critical roles of STRA6 contributing to TC progression via the ILK/AKT/mTOR axis, which may provide a novel prognostic marker as well as a promising therapeutic target for aggressive TC.
Collapse
Affiliation(s)
- Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhen Cheng
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bo Lin
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuejie Wang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yijia Sun
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiming Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
10
|
Tan M, Lin X, Chen H, Ye W, Yi J, Li C, Liu J, Su J. Sterol regulatory element binding transcription factor 1 promotes proliferation and migration in head and neck squamous cell carcinoma. PeerJ 2023; 11:e15203. [PMID: 37090107 PMCID: PMC10117388 DOI: 10.7717/peerj.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Background Sterol-regulatory element-binding protein 1 (SREBP1) is a transcription factor involved in lipid metabolism that is encoded by sterol regulatory element binding transcription factor 1(SREBF1). SREBP1 overexpression is associated with the progression of several human tumors; however, the role of SREBP1 in head and neck squamous cell carcinoma (HNSC) remains unclear. Methods SREBF1 expression in pan-cancer was analyzed using the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data, and the association between SREBF1 expression and clinical characteristics of HNSC patients was examined using the UALCAN database. Enrichment analysis of SREBF1-related genes was performed using the Cluster Profiler R package. TCGA database was used to investigate the relationship between immune cell infiltration and SREBF1 expression. CCK-8, flow cytometry, and wound healing assays were performed to investigate the effect of SREBF1 knockdown on the proliferation and migration of HNSC cells. Results SREBF1 was significantly upregulated in several tumor tissues, including HNSC, and SREBF1 overexpression was positively correlated with sample type, cancer stage, tumor grade, and lymph node stage in HNSC patients. Gene enrichment analysis revealed that SREBF1 is associated with DNA replication and homologous recombination. SREBF1 upregulation was positively correlated with the infiltration of cytotoxic cells, B cells, T cells, T helper cells, and NK CD56 bright cells in HNSC. Knockdown of SREBF1 inhibited the proliferation and migration of HNSC cells (Hep2 and TU212) and induced apoptosis by downregulating the expression of steroidogenic acute regulatory protein-related lipid transfer 4 (STARD4). Conclusions SREBF1 may promote HNSC proliferation, migration and inhibit apoptosis by upregulating STARD4 and affecting the level of immune cell infiltration.
Collapse
|
11
|
Nagayama Y, Hamada K. Reprogramming of Cellular Metabolism and Its Therapeutic Applications in Thyroid Cancer. Metabolites 2022; 12:1214. [PMID: 36557253 PMCID: PMC9782759 DOI: 10.3390/metabo12121214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Metabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness. Thus, the mechanistic elucidation of these metabolic changes is invaluable for understanding the pathogenesis of cancers and developing novel metabolism-targeted therapies. In this review article, we first provide an overview of essential metabolic mechanisms, and then summarize the recent findings of metabolic reprogramming and the recent reports of metabolism-targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koichiro Hamada
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
12
|
Zhao Q, Lin X, Wang G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front Oncol 2022; 12:952371. [PMID: 35912181 PMCID: PMC9330218 DOI: 10.3389/fonc.2022.952371] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sterol regulatory element binding protein-1 (SREBP-1), a transcription factor with a basic helix–loop–helix leucine zipper, has two isoforms, SREBP-1a and SREBP-1c, derived from the same gene for regulating the genes of lipogenesis, including acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Importantly, SREBP-1 participates in metabolic reprogramming of various cancers and has been a biomarker for the prognosis or drug efficacy for the patients with cancer. In this review, we first introduced the structure, activation, and key upstream signaling pathway of SREBP-1. Then, the potential targets and molecular mechanisms of SREBP-1-regulated lipogenesis in various types of cancer, such as colorectal, prostate, breast, and hepatocellular cancer, were summarized. We also discussed potential therapies targeting the SREBP-1-regulated pathway by small molecules, natural products, or the extracts of herbs against tumor progression. This review could provide new insights in understanding advanced findings about SREBP-1-mediated lipogenesis in cancer and its potential as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| |
Collapse
|
13
|
Zhu T, Wang Z, Zou T, Xu L, Zhang S, Chen Y, Chen C, Zhang W, Wang S, Ding Q, Xu G. SOAT1 Promotes Gastric Cancer Lymph Node Metastasis Through Lipid Synthesis. Front Pharmacol 2021; 12:769647. [PMID: 34790132 PMCID: PMC8591064 DOI: 10.3389/fphar.2021.769647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidences demonstrate that metabolic reprogramming is a hallmark of malignancies, including gastric cancer (GC). Abnormal expression of metabolic rate-limiting enzymes, as the executive medium of energy metabolism, drives the occurrence and development of cancer. However, a comprehensive model of metabolic rate-limiting enzymes associated with the development and progression of GC remains unclear. In this research, we identified a rate-limiting enzyme, sterol O-acyltransferase 1 (SOAT1), was highly expressed in cancerous tissues, which was associated with advanced tumor stage and lymph node metastasis, leading to the poor prognosis of GC. It was shown that knockdown of SOAT1 or pharmacological inhibition of SOAT1 by avasimibe could suppress GC cell proliferation, cholesterol ester synthesis, and lymphangiogenesis. However, overexpression of SOAT1 promoted these biological processes. Mechanistically, SOAT1 regulated the expression of cholesterol metabolism genes SREBP1 and SREBP2, which could induce lymphangiogenesis via increasing the expression of VEGF-C. In conclusion, our results indicated that SOAT1 promotes gastric cancer lymph node metastasis through lipid synthesis, which suggested that it may be a promising prognostic biomarker for guiding clinical management and treatment decisions.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianhui Zou
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Lei Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu Zhang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Weijie Zhang
- Department of Thyroid and Breast Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shouyu Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Qingqing Ding
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Xu C, Zhang L, Wang D, Jiang S, Cao D, Zhao Z, Huang M, Jin J. Lipidomics reveals that sustained SREBP-1-dependent lipogenesis is a key mediator of gefitinib-acquired resistance in EGFR-mutant lung cancer. Cell Death Discov 2021; 7:353. [PMID: 34775471 PMCID: PMC8590692 DOI: 10.1038/s41420-021-00744-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with EGFR mutations in non-small cell lung cancer (NSCLC) have been greatly benefited from gefitinib, however, the therapeutic has failed due to the presence of acquired resistance. In this study, we show that gefitinib significantly induces downregulation of Sterol Regulator Element Binding (SREBP1) in therapy-sensitive cells. However, this was not observed in EGFR mutant NSCLC cells with acquired resistance. Lipidomics analysis showed that gefitinib could differently change the proportion of saturated phospholipids and unsaturated phospholipids in gefitinib-sensitive and acquired-resistant cells. Besides, levels of ROS and MDA were increased upon SREBP1 inhibition and even more upon gefitinib treatment. Importantly, inhibition of SREBP1 sensitizes EGFR-mutant therapy-resistant NSCLC to gefitinib both in vitro and in vivo models. These data suggest that sustained de novo lipogenesis through the maintenance of active SRBEP-1 is a key feature of acquired resistance to gefitinib in EGFR mutant lung cancer. Taken together, targeting SREBP1-induced lipogenesis is a promising approach to overcome acquired resistance to gefitinib in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Chuncao Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daifei Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Li H, Chen Z, Zhang Y, Yuan P, Liu J, Ding L, Ye Q. MiR-4310 regulates hepatocellular carcinoma growth and metastasis through lipid synthesis. Cancer Lett 2021; 519:161-171. [PMID: 34303763 DOI: 10.1016/j.canlet.2021.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), which is characterized by reprogrammed lipid metabolism, is a highly malignant tumor with a high incidence and mortality rate. While lipid metabolism is a promising target for HCC therapy, the regulation of lipid metabolism is not well elucidated. Through CRISPR/Cas9 screening, we show that miR-4310 inhibits lipid synthesis by targeting fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1). In patients with HCC, miR-4310 is significantly downregulated, and its expression is negatively correlated with expressions of FASN and SCD1. Furthermore, low expression of miR-4310 is associated with poor prognosis. By suppressing SCD1-and FASN-mediated lipid synthesis, miR-4310 inhibits HCC cell proliferation, migration, and invasion in vitro and suppresses HCC tumor growth and metastasis in vivo. Our data indicate that miR-4310 plays an important role in HCC tumor growth and metastasis by regulating the FASN- and SCD1-mediated lipid synthesis pathways. Targeting the miR-4310-FASN/SCD pathway may provide a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Huayue Li
- Medical School of Guizhou University, Guiyang, 550025, China; Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zhongwu Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ping Yuan
- Fujian Key Laboratory Zoonoses Research, Fujian Center for Disease Control and Prevention, Fuzhou, PR China; School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Medical School of Guizhou University, Guiyang, 550025, China; Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
16
|
Regulatory Roles of SREBF1 and SREBF2 in Lipid Metabolism and Deposition in Two Chinese Representative Fat-Tailed Sheep Breeds. Animals (Basel) 2020; 10:ani10081317. [PMID: 32751718 PMCID: PMC7460493 DOI: 10.3390/ani10081317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Sterol regulatory element binding proteins (SREBPs) play the crucial role in regulating the cholesterol and fatty acid metabolism. However, it is unclear whether SREBPs are involved in the regulation of lipid metabolism in fat-tailed sheep. This study reveals the expression profiles of SREBF1 and SREBF2 in liver and adipose tissues of two Chinese representative fat-tailed sheep breeds, and provides a new insight for the regulatory role of SREBP1 and SREBP2 in fat metabolism and deposition in fat-tailed sheep. Abstract Sterol regulatory element binding proteins (SREBPs) can regulate the lipid homeostasis by regulating its target genes, which are crucial for the cholesterol and fatty acid metabolism. However, the transcriptional regulation role of SREBPs in fat-tailed sheep is unclear. In this study, two Chinese representative breeds of total 80 fat-tailed sheep were employed, serum triglyceride, total cholesterol (TC), non-esterified fatty acid (NEFA), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and mRNA expressions of SREBF1 and SREBF2 in seven different adipose tissues and liver were examined in sheep at the ages of 4, 6, 8, 10, and 12 months, respectively. The subcellular localization and function of SREBP1/2 were predicted through bioinformatics approaches. The results demonstrated that serum TC and NEFA levels among breeds were significantly different, and most serum indices were dynamically altered in an age-dependent manner. The mRNA expression profiling of SREBF1 and SREBF2 are breed-specific with temporal and spatial expressions differences. Further analysis shows that SREBF1/2 transcriptional levels and tail traits are closely related. All investigations simplify that SREBF1/2 play a crucial role in lipid metabolism and deposition during growth and development of the fat-tailed sheep, which also provides a novel insight for revealing the genetic mechanism of different tail type and meat quality.
Collapse
|