1
|
Guan L, Zeng R, Chen Y, He G, Yao W, Liu Z, Liu H. Pan-cancer analysis of the potential of PEA3 subfamily genes as tumor markers. Sci Rep 2024; 14:31518. [PMID: 39732961 DOI: 10.1038/s41598-024-82973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Polyomavirus enhancer activator 3 (PEA3), an ETS transcription factor, has been documented to regulate the development and metastasis of human cancers. Nonetheless, a thorough analysis examining the relationship between the PEA3 subfamily members and tumour development, prognosis, and the tumour microenvironment (TME) across various cancer types has not yet been conducted. The expression profiles and prognostic significance of the PEA3 subfamily were evaluated using data from the GEO, TCGA, and PrognoScan databases, in conjunction with COX regression analyses and the Kaplan-Meier Plotter. Furthermore, the relationships between PEA3 subfamily expression, stemness scores, tumor microenvironments, immune subtypes, and drug susceptibility across multiple cancer types were explored. We found that ETV1, ETV4 and ETV5 are highly expressed in cancer, and their biological functions are synergistic. In the prognostic analysis of the Cancer Genome Atlas, the PEA3 subfamily genes were found to be associated with the prognosis of multiple cancers such as Lung adenocarcinoma (LUAD), Liver hepatocellular carcinoma (LIHC), etc., and marked a worse prognosis at different endpoints. In addition, it was significantly correlated with the stromal and immune scores of pan-cancer, and also significantly associated with the RNA stemness score and DNA stemness score of pan-cancer. Expression levels of the PEA3 subfamily genes correlate with immune subtypes of LIHC, LUAD, and Lung squamous cell carcinoma. We also found a variety of drugs with positive and negative associations of ETV1, ETV4 and ETV5. These findings elucidate the role of the PEA3 subfamily gene as a biomarker for carcinogenesis and cancer progression, offering valuable insights for future research into the PEA3 subfamily gene as a potential therapeutic target across various cancer types.
Collapse
Affiliation(s)
- Lingling Guan
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Runhao Zeng
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Yi Chen
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Guohua He
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Wenxia Yao
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Zhaoyu Liu
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Hui Liu
- Precision Medicine Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
2
|
Ghnim ZS, Mahdi MS, Ballal S, Chahar M, Verma R, Al-Nuaimi AMA, Kumar MR, Al-Hussein RKA, Adil M, Jawad MJ. The role of kinesin superfamily proteins in hepatocellular carcinoma. Med Oncol 2024; 41:271. [PMID: 39400594 DOI: 10.1007/s12032-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
The most prevalent form of primary liver cancer, hepatocellular carcinoma (HCC) poses a significant global health challenge due to its limited therapeutic options. Researchers are currently focused on the complex molecular landscape that governs the initiation and progression of HCC in order to identify new avenues for diagnosis, prognosis, and treatment. In the context of HCC, the Kinesin Superfamily Proteins (KIFs) have become critical regulators of cellular processes, prompting a growing interest in their function among the diverse array of molecular actors implicated in cancer. The KIFs, a family of microtubule-based molecular motors, are renowned for their essential roles in the dynamics of mitotic spindles and intracellular transport. Beyond their well-established functions in normal cellular physiology, emerging evidence indicates that dysregulation of KIFs significantly contributes to the pathogenesis of HCC. Novel therapeutic targets and diagnostic markers are revealed through the unique opportunity to comprehend the complex interplay between KIFs and the molecular events that drive HCC.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Amritsar, Punjab, 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
3
|
Wang L, Zhang Z, Ma HZ. Prognostic value of PEA3 subfamily gene expression in cholangiocarcinoma. World J Gastrointest Oncol 2024; 16:4014-4027. [PMID: 39350976 PMCID: PMC11438781 DOI: 10.4251/wjgo.v16.i9.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a lethal malignancy with limited treatment options and poor prognosis. The PEA3 subfamily of E26 transformation specific genes: ETV1, ETV4, and ETV5 are known to play significant roles in various cancers by influencing cell proliferation, invasion, and metastasis. AIM To analyze PEA3 subfamily gene expression levels in CCA and their correlation with clinical parameters to determine their prognostic value for CCA. METHODS The expression levels of PEA3 subfamily genes in pan-cancer and CCA data in the cancer genome atlas and genotype-tissue expression project databases were analyzed with R language software. Survival curve and receiver operating characteristic analyses were performed using the SurvMiner, Survival, and Procr language packages. The gene expression profiling interactive analysis 2.0 database was used to analyze the expression levels of PEA3 subfamily genes in different subtypes and stages of CCA. Web Gestalt was used to perform the gene ontology/ Kyoto encyclopedia of genes and genomes (GO/KEGG) analysis, and STRING database analysis was used to determine the genes and proteins related to PEA3 subfamily genes. RESULTS ETV1, ETV4, and ETV5 expression levels were significantly increased in CCA. There were significant differences in ETV1, ETV4, and ETV5 expression levels among the different subtypes of CCA, and predictive analysis revealed that only high ETV1 and ETV4 expression levels were significantly associated with shorter overall survival in patients with CCA. GO/KEGG analysis revealed that PEA3 subfamily genes were closely related to transcriptional misregulation in cancer. In vitro and in vivo experiments revealed that PEA3 silencing inhibited the invasion and metastasis of CCA cells. CONCLUSION The expression level of ETV4 may be a predictive biomarker of survival in patients with CCA.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Zhe Zhang
- Department of Emergency Medicine, The First People’s Hospital of Linping District Hangzhou, Hangzhou 311100, Zhejiang Province, China
| | - Hai-Zhang Ma
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250000, Shandong Province, China
| |
Collapse
|
4
|
Zhao YS, Liu DX, Tan FQ, Yang WX. KIF2A Upregulates PI3K/AKT Signaling through Polo-like Kinase 1 (PLK1) to Affect the Proliferation and Apoptosis Levels of Eriocheir sinensis Spermatogenic Cells. BIOLOGY 2024; 13:149. [PMID: 38534420 DOI: 10.3390/biology13030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
E. sinensis is an animal model for studying the reproduction and development of crustaceans. In this study, we knocked down the Es-Kif2a gene by injecting dsRNA into E. sinensis and inhibited Es-Plk1 gene expression by injecting PLK1 inhibitor BI6727 into E. sinensis. Then, the cell proliferation level, apoptosis level, and PI3K/AKT signaling expression level were detected. Our results showed that the proliferation level of spermatogenic cells decreased, while the apoptosis level increased after Es-Kif2a knockdown or Es-Plk1 inhibition. In order to verify whether these changes are caused by regulating the PI3K/AKT pathway, we detected the expression of PI3K and AKT proteins after Es-Kif2a knockdown or Es-Plk1 inhibition. Western Blot showed that in both the Es-Kif2a knockdown group and the Es-Plk1 inhibition group, the expression of PI3K and AKT proteins decreased. In addition, immunofluorescence showed that Es-KIF2A and Es-PLK1 proteins were co-localized during E. sinensis spermatogenesis. To further explore the upstream and downstream relationship between Es-KIF2A and Es-PLK1, we detected the expression level of Es-PLK1 after Es-Kif2a knockdown as well as the expression level of Es-KIF2A after Es-Plk1 inhibition. Western Blot showed that the expression of Es-PLK1 decreased after Es-Kif2a knockdown, while there was no significant change of Es-KIF2A after Es-Plk1 inhibition, indicating that Es-PLK1 may be a downstream factor of Es-KIF2A. Taken together, these results suggest that Es-KIF2A upregulates the PI3K/AKT signaling pathway through Es-PLK1 during the spermatogenesis of E. sinensis, thereby affecting the proliferation and apoptosis levels of spermatogenic cells.
Collapse
Affiliation(s)
- Yan-Shuang Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Su H, Shu S, Tang W, Zheng C, Zhao L, Fan H. ETV4 facilitates angiogenesis in hepatocellular carcinoma by upregulating MMP14 expression. Biochem Biophys Res Commun 2023; 684:149137. [PMID: 37897911 DOI: 10.1016/j.bbrc.2023.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Abnormal vascularization plays a crucial role in cell proliferation, tumor invasion and metastasis of hepatocellular carcinoma (HCC). It has been reported that ETV4 functions as an oncogenic gene in driving the carcinogenesis and progression, and promoting invasion and metastasis of HCC. However, the function of ETV4 on angiogenesis in HCC remains unclear. In the current study, immunohistochemistry showed that knockdown of ETV4 reduced angiogenesis in HCC xenograft tumor tissues. In vitro, tube formation assay verified that ETV4 expression promoted angiogenesis through simulating the angiogenic environment in HCC cells. Transcriptome sequencing indicated that MMP14 was one of the differentially expressed genes enriched in angiogenesis process. Subsequently, it was confirmed that MMP14 was regulated by ETV4 at the transcription level in HCC cells, clinical tissue samples and online databases. Further, we demonstrated that MMP14 induced angiogenesis in ETV4-mediated HCC microenvironment. Collectively, this research further reveals the biological mechanism of ETV4 in promoting the migration and invasion of HCC, and provides novel mechanistic insights and strategic guidance for anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Shihui Shu
- School of Life Science and Technology, Southeast University, Nanjing, China.
| | - Wenqing Tang
- School of Life Science and Technology, Southeast University, Nanjing, China.
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Luyu Zhao
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Liao K, Yang Q, Xu Y, He Y, Wang J, Li Z, Wu C, Hu J, Wang X. Identification of signature of tumor-infiltrating CD8 T lymphocytes in prognosis and immunotherapy of colon cancer by machine learning. Clin Immunol 2023; 257:109811. [PMID: 37858752 DOI: 10.1016/j.clim.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To explore the specific marker of CD8+ T cell subsets which are closely related to the prognosis and immunotherapy of patients with colon cancer. METHODS 18 kinds of immune cell expression profile data sets were obtained from GEO database. Compared with other immune cell types, the specific markers of CD8 (+) T cells (TI-CD8) in colorectal cancer were screened. Regression analyses were used to further screen prognostic related genes and construct a prognostic evaluation model. The patients were stratified and analyzed according to the risk scores, KRAS mutation status, stage, lymphatic infiltration and other indicators. The landscape of infiltration level, mutation and copy number variation of immune subsets in high and low TI-CD8Sig score groups were compared and analyzed. The difference of drug response between high and low TI-CD8Sig score groups was analyzed. Differential expression of the model genes was verified by the HPA database. RESULTS Six prognostic-related CD8T cell-specific gene targets were further screened, and the prognostic evaluation model was constructed. The AUC value of the model is >0.75. FAT3 and UNC13C showed a high mutation state in the low-risk group, while USH2A, MUC5B et al. specifically showed a high mutation state in the high-risk group. Compared with the low-risk group, the high-risk group had lower effective rate of drug response. The expression of PD-1 gene was positively correlated with the level of TI-CD8Sig score. CONCLUSION The risk assessment model based on CD8T cell-specific marker genes can effectively predict the prognosis and the drug response of patients with CRC.
Collapse
Affiliation(s)
- Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yuhan Xu
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yingcheng He
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jingyi Wang
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Zimeng Li
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Chengfeng Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Jialing Hu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
Chen W, He Q, Liu J, Li N, Xiao K, Chen H. PLAGL2 promotes Snail expression and gastric cancer progression via UCA1/miR-145-5p/YTHDF1 axis. Carcinogenesis 2023; 44:328-340. [PMID: 36999803 DOI: 10.1093/carcin/bgad016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVES Although great progress has made in gastric cancer (GC) in the past years, the overall 5-year survival rate remains to be low for advanced GC patients. A recent study showed that PLAGL2 was increased in GC and enhanced the proliferation and metastasis of GC. Nevertheless, the underlying mechanism still needs to be investigated. METHODS Gene and protein expressions were assessed using RT-qPCR and western blot. The migration, proliferation and invasion of GC cells were examined using scratch assay, CCK-8 assay and Transwell assay, respectively. ChIP-PCR, dual-luciferase assay, RIP-qPCR and CoiP were utilized to confirm the interaction among PLAGL2, UCA1, miR-145-5p and YTHDF1 as well as METTL3, YTHDF1 and eEF-2. A mouse xenograft model was used utilized to further confirm the regulatory network. RESULTS PLAGL2 bound to the upstream promoter of UCA1, which regulated YTHDF1 by sponging miR-145-5p. METTL3 can mediate the m6A modification level of Snail. YTHDF1 recognized m6A-modified Snail by interacting with eEF-2 and thus promoted Snail expression, which eventually induced epithelial-mesenchymal transition (EMT) in GC cells and metastasis of GC. CONCLUSIONS Overall, our study demonstrates that PLAGL2 enhances Snail expression and GC progression via the UCA1/miR-145-5p/YTHDF1 axis, suggesting that PLAGL2 may become a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Wen Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Qunjun He
- Department of Quality Management and Information Statistics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Ni Li
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Kai Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Honghui Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| |
Collapse
|
8
|
Transcription Activation of Rab8A by PEA3 Augments Progression of Esophagus Cancer by Activating the Wnt/ β-Catenin Signaling Pathway. DISEASE MARKERS 2023; 2023:8143581. [PMID: 36815135 PMCID: PMC9940983 DOI: 10.1155/2023/8143581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Background Rab8A has been reported as an oncogenic gene in breast and cervical cancer. However, the function and molecular mechanism of Rab8A in esophagus cancer has not been reported. Methods Rab8A expression was detected by qPCR and western blotting assays, small interference RNA (siRNA) was applied to reduce Rab8A expression, and the biological behaviors of esophagus cancer cells were estimated by cell counting kit-8, colony formation, and transwell and western blotting assays. The transcriptional factor of Rab8A was verified by dual-luciferase assay and chromatin immunoprecipitation assay. The protein expression of key genes in the Wnt/β-catenin signaling pathway was determined by western blotting assay. M435-1279 was used to suppress the Wnt/β-catenin signaling pathway. Results A significant increase of Rab8A expression has been found in esophagus cancer cells. Knockdown of Rab8A suppressed the viability, colony formation, migration, and invasion abilities of esophagus cancer cells and induced apoptosis. PEA3 transcriptionally regulated Rab8A expression and promoted the viability, colony formation, migration, and invasion abilities of esophagus cancer cells and blocked apoptosis, which were diminished by si-Rab8A transfection. Additionally, the expression levels of key genes related to the Wnt/β-catenin signaling pathway were strengthened by PEA3 overexpression, which were reduced by si-Rab8A transfection. M435-1279 treatment significantly reduced the viability and colony formation of esophagus cancer cells. Conclusions The data showed that Rab8A was transcriptionally regulated by PEA3 and promoted the malignant behaviors of esophagus cancer cells by activating the Wnt/β-catenin pathway. The above results indicated that Rab8A may be considered as a promising biomarker for diagnosis and precision treatment in esophagus cancer.
Collapse
|
9
|
Sun RF, He N, Zhang GY, Yu ZY, Li LS, Ma ZJ, Jiao ZY. Combined Inhibition of KIF11 and KIF15 as an Effective Therapeutic Strategy for Gastric Cancer. Curr Cancer Drug Targets 2023; 23:293-306. [PMID: 35713129 DOI: 10.2174/1568009622666220616122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Novel therapeutic strategies are urgently required to improve clinical outcomes of gastric cancer (GC). KIF15 cooperates with KIF11 to promote bipolar spindle assembly and formation, which is essential for proper sister chromatid segregation. Therefore, we speculated that the combined inhibition of KIF11 and KIF15 might be an effective strategy for GC treatment. Hence, to test this hypothesis, we aimed to evaluate the combined therapeutic effect of KIF15 inhibitor KIF15- IN-1 and KIF11 inhibitor ispinesib in GC. METHODS We validated the expression of KIF11 and KIF15 in GC tissues using immunohistochemistry and immunoblotting. Next, we determined the effects of KIF11 or KIF15 knockout on the proliferation of GC cell lines. Finally, we investigated the combined effects of the KIF11 and KIF15 inhibitors both in vitro and in vivo. RESULTS KIF11 and KIF15 were overexpressed in GC tissues than in the adjacent normal tissues. Knockout of either KIF11 or KIF15 inhibited the proliferative and clonogenic abilities of GC cells. We found that the KIF15 knockout significantly increased ispinesib sensitivity in GC cells, while its overexpression showed the opposite effect. Further, using KIF15-IN-1 and ispinesib together had a synergistic effect on the antitumor proliferation of GC both in vitro and in vivo. CONCLUSION This study shows that the combination therapy of inhibiting KIF11 and KIF15 might be an effective therapeutic strategy against gastric cancer.
Collapse
Affiliation(s)
- Ruo-Fei Sun
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Na He
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Geng-Yuan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Ze-Yuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Lian-Shun Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zhi-Jian Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Wang J, Zhao A, Huang X, Zhang X. HPV16 E6E7 up-regulates KIF2A expression by activating JNK/c-Jun signal, is beneficial to migration and invasion of cervical cancer cells. Open Med (Wars) 2022; 17:1780-1787. [PMID: 36447525 PMCID: PMC9663933 DOI: 10.1515/med-2022-0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2023] Open
Abstract
Cervical cancer is the fourth most common cancer and the fourth leading cause of cancer death in women. Human papillomavirus (HPV16) E6/E7 heterogenous expression in C33A cells increased the mRNA and protein levels of KIF2A, while siRNA deletion of endogenous E6/E7 reduced the mRNA and protein levels of KIF2A in SiHa cells. KIF2A promoted cell migration and invasion, and regulated the expression of epithelial-mesenchymal transition-related proteins in C33A and SiHa cells. The exogenous expression of E6/E7 in C33A cells increased the phosphorylation of Akt, ERK, and JNK. However, Akt (API-2) and ERK (PD98059) inhibitors had no effect on the increase in KIF2A expression induced by E6/E7, while JNK inhibitors (JNK-IN-8 and SP600125) blocked the increase in KIF2A expression induced by E6/E7. The exogenous expression of E6/E7 increased the levels of transcription factor c-Jun, which is the classic substrate of JNK. Knockdown of c-Jun reduced the increase in KIF2A expression induced by E6/E7. In summary, KIF2A plays a key role in the motility and metastasis of cervical cancer. HPV16 E6/E7 can increase the levels of transcription factor c-Jun by activating the JNK signal, thereby up-regulating the transcriptional expression of KIF2A.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Anqi Zhao
- Department of Obstetrics and Gynecology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
11
|
Wang C, Xie X, Li W, Jiang D. Expression of KIF2A, NDC80, CDK1, and CCNB1 in breast cancer patients: Their interaction and linkage with tumor features and prognosis. J Clin Lab Anal 2022; 36:e24647. [PMID: 35949045 PMCID: PMC9459262 DOI: 10.1002/jcla.24647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A), nuclear division cycle 80 (NDC80), cyclin‐dependent kinase 1 (CDK1), and cyclin B1 (CCNB1) exhibit a complex interrelation, which promote cancer progression via multiple ways, whereas their interaction and clinical implications in breast cancer are obscure. Hence, this study aimed to evaluate the correlation among KIF2A, NDC80, CDK1, CCNB1, and their linkage with clinicopathological features and prognosis in breast cancer patients. Methods 195 breast cancer patients underwent surgical resection were analyzed. KIF2A, NDC80, CDK1, and CCNB1 expressions were determined by immunohistochemical (IHC) assay and scored by a semiquantitative IHC score or positive cell percentage. Results KIF2A expression positively associated with NDC80, CDK1, and CCNB1 expressions (all p < 0.01). In terms of tumor features: KIF2A high expression linked with increased T stage (p = 0.011), N stage (p = 0.014), and TNM stage (p = 0.009) but not tumor differentiation (p = 0.651). NDC80 high expression only related to higher N stage (p = 0.010); CDK1 high expression only connected with elevated N stage (p = 0.035) and TNM stage (p = 0.023). In aspect of prognosis, high expression of KIF2A was correlated with worse disease‐free survival (DFS) (p = 0.031), while NDC80 high (p = 0.329), CDK1 high (p = 0.276), and CCNB1 positive (p = 0.063) expressions only showed trends to link with poor DFS (without statistical significance). Furthermore, high expression of KIF2A (p = 0.063), NDC80 (p = 0.939), CDK1 (p = 0.413) and positive expression of CCNB1 (p = 0.296) did not relate to overall survival. Conclusion KIF2A correlates with NDC80, CDK1, CCNB1, and may link with advanced tumor stages and poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Cong Wang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Xianxin Xie
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Weijie Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhang X, Wu M, Peng G, Li W, Guo Z, Li H, Jiang M. Aberrant kinesin family member 2A signifies tumor size and invasion, and may help predict prognosis of patients with papillary thyroid carcinoma. Oncol Lett 2022; 24:256. [PMID: 35765280 PMCID: PMC9219030 DOI: 10.3892/ol.2022.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Kinesin family member 2A (KIF2A) has been reported as an oncogene and potential biomarker for the progression of numerous cancer types; however, its role in papillary thyroid carcinoma (PTC) has remained elusive. The present study aimed to assess KIF2A expression in patients with PTC and explore the potential association between KIF2A, clinicopathological features and the prognosis of PTC. A total of 200 patients with PTC who received surgical resection were retrospectively reviewed. KIF2A expression was detected using immunohistochemistry (IHC) in 200 pairs of carcinoma/para-carcinoma tissues and using reverse transcription-quantitative PCR in 91 pairs of carcinoma/para-carcinoma tissues. Clinical and pathological data, disease-free survival (DFS) and overall survival (OS) rates of all patients were obtained. The results of the present study demonstrated that KIF2A protein and mRNA expression were both elevated in carcinoma tissues compared with those in para-carcinoma tissues. KIF2A protein expression in carcinoma tissues was positively associated with increased tumor size and a higher pathologic tumor-nodes-metastasis (pTNM) stage. However, KIF2A mRNA expression in carcinoma tissues was only associated with an increased pTNM stage and not with any other clinicopathological features. In addition, high levels of KIF2A protein expression in carcinoma tissues led to a poor predicted DFS, but were not associated with OS. Following adjustments using a multivariate Cox regression model, high KIF2A protein expression levels were indicated to be independently associated with a decreased DFS. In conclusion, aberrant KIF2A signifies tumor size and invasion, and may help to predict prognosis in patients with PTC.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mian Wu
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Gongling Peng
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Wenhuan Li
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhe Guo
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hai Li
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
13
|
Yang H, Liu Y. Kinesin Family Member 2A Serves as a Potential Biomarker Reflecting More Frequent Lymph Node Metastasis and Tumor Recurrence Risk in Basal-Like Breast Cancer Patients. Front Surg 2022; 9:889294. [PMID: 35784940 PMCID: PMC9243457 DOI: 10.3389/fsurg.2022.889294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A) is reported as an oncogene and a potential biomarker for progression and prognosis in several cancers such as cervical, ovarian, and gastric. However, its clinical value in basal-like breast cancer (BLBC) is unclear. This study aims to evaluate KIF2A expression and its correlation with clinical features and survival rates in BLBC patients. Methods KIF2A mRNA and protein expressions in tumor and adjacent tissues from 89 BLBC patients are assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry assays, respectively. Results Both KIF2A protein (p < 0.001) and mRNA expressions (p < 0.001) were higher in tumor than in adjacent tissue. Besides, tumor KIF2A protein expression was positively correlated with N (p = 0.028) and TNM (p = 0.014) stages; meanwhile, tumor KIF2A mRNA expression was positively correlated with N stage (p = 0.046), TNM stage (p = 0.006), and tumor size (p = 0.043). Additionally, both tumor KIF2A protein (p = 0.035) and mRNA (p = 0.039) high expressions were correlated with worse disease-free survival (DFS) but not with overall survival (both p > 0.05). Moreover, tumor KIF2A protein expression was higher in relapsed patients than in non-relapsed patients within 3 years (p = 0.015) and 5 years (p = 0.031), whereas no difference was found between the dead and survivors within 3 years (p = 0.057) or 5 years (p = 0.107). Lastly, after adjustment, tumor KIF2A mRNA high exhibited a trend that correlated with DFS but without statistical significance (p = 0.051). Conclusion KIF2A correlates with more frequent lymph node metastasis and worse DFS in BLBC patients, shedding light on its potency as a biomarker for BLBC.
Collapse
Affiliation(s)
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bai F, He Z, Zhou H, Gan W. Kinesin family member 2A links with advanced tumor stage, reduced chemosensitivity and worse prognosis in gastric cancer. J Clin Lab Anal 2022; 36:e24313. [PMID: 35313389 PMCID: PMC9102491 DOI: 10.1002/jcla.24313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A) induces gastric cancer (GC) growth and invasion, while its clinical relevance in GC patients is not reported. This study aimed to investigate the linkage of KIF2A with clinicopathological features, prognosis, and chemosensitivity of GC. Methods A total of 160 surgical GC patients were reviewed, with their tumor and adjacent tissues acquired for immunohistochemical (IHC) assay to measure KIF2A expression, then scored by a semi‐quantitative method (IHC score: 0–12). KIF2A siRNA or nonsense‐siRNA were transfected into HGC‐27 and NCI‐N87 cells underwent various concentrations of capecitabine or oxaliplatin treatment followed by chemosensitivity assessment. Results Kinesin family member 2A expression was elevated in the tumor tissue compared to the adjacent tissue (IHC score: 5.6 ± 3.1 vs. 2.9 ± 1.7, p < 0.001). Besides, tumor KIF2A expression was related to larger tumor size (p = 0.014), higher N stage (p = 0.004) and TNM stage (p = 0.011); however, it was not linked with other clinicopathological features (all p > 0.05). Signally, tumor KIF2A high expression predicted poor overall survival (p = 0.037). After adjustment via multivariate Cox's regression, tumor KIF2A high expression independently linked with worse disease‐free survival (p = 0.033). Finally, KIF2A knockdown improved the oxaliplatin chemosensitivity vastly but only slightly affected capecitabine chemosensitivity in HGC‐27 and NCI‐N87 cells. Conclusion Kinesin family member 2A reflects larger tumor size, advanced TNM stage, improved chemosensitivity, and predicts unfavorable survival in GC.
Collapse
Affiliation(s)
- Fei Bai
- Department of Gastroduodenal Pancreas Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuo He
- Department of Gastroduodenal Pancreas Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Gan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Wang F, Li J, Li L, Chen Z, Wang N, Zhu M, Mi H, Xiong Y, Guo G, Gu Y. Circular RNA circ_IRAK3 contributes to tumor growth through upregulating KIF2A via adsorbing miR-603 in breast cancer. Cancer Cell Int 2022; 22:81. [PMID: 35164763 PMCID: PMC8845402 DOI: 10.1186/s12935-022-02497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Breast cancer (BC) threatens the health of women around the world. Researchers have proved that hsa_circ_0005505 (circ_IRAK3) facilitates BC cell invasion and migration, but the regulatory mechanisms of circ_IRAK3 in BC remain mostly unknown. We aim to explore a new mechanism by which circ_IRAK3 promotes BC progression. Methods Levels of circ_IRAK3, microRNA (miR)-603, and kinesin family member 2A (KIF2A) mRNA in BC tissues and cells were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The cell cycle progression, colony formation, and proliferation of BC cells were evaluated by flow cytometry, plate clone, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays. The migration, invasion, and apoptosis of BC cells were determined by transwell or flow cytometry assays. Several protein levels were detected using western blotting. The targeting relationship between circ_IRAK3 or KIF2A and miR-603 was verified via dual-luciferase reporter assay. The role of circ_IRAK3 in vivo was verified by xenograft assay. Results We observed higher levels of circ_IRAK3 in BC tissues and cell lines than their respective controls. Functional experiments presented that circ_IRAK3 silencing induced BC cell apoptosis, curbed cell proliferation, migration, and invasion in vitro, and decreased tumor growth in vivo. Mechanistically, circ_IRAK3 could modulate kinesin family member 2A (KIF2A) expression through acting as a microRNA (miR)-603 sponge. miR-603 silencing impaired the effects of circ_IRAK3 inhibition on the malignant behaviors of BC cells. Also, the repressive effects of miR-603 mimic on the malignant behaviors of BC cells were weakened by KIF2A overexpression. Conclusions circ_IRAK3 exerted a promoting effect on BC progression by modulating the miR-603/KIF2A axis, providing a piece of novel evidence for circ_IRAK3 as a therapeutic target for BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02497-y.
Collapse
Affiliation(s)
- Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Zhuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Guangcheng Guo
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
16
|
Lv HC, Lv YY, Wang G, Zhang XH, Li SN, Yue XF, Lu W. Mechanism of miR-424-5p promoter methylation in promoting epithelial-mesenchymal transition of hepatocellular carcinoma cells. Kaohsiung J Med Sci 2022; 38:336-346. [PMID: 35049148 DOI: 10.1002/kjm2.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 11/05/2022] Open
Abstract
The current study set out to clarify the role of miR-424-5p promoter methylation in epithelial mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) cells. The findings of quantitative real-time-polymerase chain reaction and methylation-sensitive high-resolution melting assays elicited that miR-424-5p was poorly expressed in HCC tissues and cells while highly methylated. Meanwhile, upon demethylation, miR-424-5p expression levels were partly recovered in HCC cells. In addition, miR-424-5p upregulation reduced cell viability and elevated apoptosis of HCC cells, in parallel with increased N-cadherin and decreased E-cadherin levels. Dual-luciferase reporter assay further validated that miR-424-5p bound to the kinesin family member 2A (KIF2A), and miR-424-5p overexpression downregulated KIF2A. In addition, KIF2A overexpression reversed the miR-424-5p-driven changes in terms of cell viability, apoptosis and EMT-related protein levels. Furthermore, xenograft tumors were established via injection of Huh7 cells, followed by miR-424-5p overexpression in vivo, which inhabited KIF2A downregulation and attenuated tumor growth along with decreased Ki67 positive expression, diminished N-cadherin and elevated E-cadherin levels. Overall, our findings supported the conclusion that miR-424-5p promoter methylation reduced miR-424-5p expression and upregulated KIF2A, thereby promoting HCC EMT.
Collapse
Affiliation(s)
- Hong-Cheng Lv
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yan-Yan Lv
- Tianjin Second People's Hospital, Tianjin, China
| | - Gang Wang
- Tianjin Union Medical Center, Tianjin, China
| | - Xie-Hua Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China.,Department of infectious diseases, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Sheng-Nan Li
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China.,Tianjin Second People's Hospital, Tianjin, China
| | - Xiao-Fen Yue
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China.,Tianjin Second People's Hospital, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Zhu Y, Ma C, Lv A, Kou C. Circular RNA circ_0010235 sponges miR-338-3p to play oncogenic role in proliferation, migration and invasion of non-small-cell lung cancer cells through modulating KIF2A. Ann Med 2021; 53:693-706. [PMID: 34024242 PMCID: PMC8158223 DOI: 10.1080/07853890.2021.1925736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circular RNA microarray analysis showed hsa_circ_0010235 (circ_0010235) was highly upregulated in non-small-cell lung cancer (NSCLC) patients; however, its role in carcinogenesis and development of NSCLC cells was unrevealed. Here, we intended to investigate role and mechanism of circ_0010235 in NSCLC proliferation, migration and invasion. METHODS AND RESULTS Expression of circ_0010235, microRNA (miR)-338-3p and kinesin family member 2A (KIF2A) was detected by quantitative real-time PCR, western blotting and immunohistochemistry (IHC). Cell progression was measured by cell-counting kit-8 assay, 5-ethynyl-2-deoxyuridine (EdU) assay, flow cytometry, transwell assay, western blotting, IHC and xenograft experiment. The relationship among circ_0010235, miR-338-3p and KIF2A was determined by dual-luciferase reporter assay, RNA immunoprecipitation and Pearson's correlation analysis. Expression of circ_0010235 was increased in human NSCLC tissues and cells, accompanied with miR-338-3p downregulation and KIF2A upregulation. Essentially, circ_0010235 could sponge miR-338-3p via target binding, and miR-338-3p downstream targeted KIF2A. Functionally, exhaustion of circ_0010235 induced apoptosis rate of NSCLC cells and curbed cell viability, EdU incorporation, migration rate and invasion rate, accompanied with higher E-cadherin and lower N-cadherin expression. Additionally, re-expression of miR-338-3p prompted above similar effects in NSCLC cells in vitro. Contrarily, miR-338-3p blockage partially counteract the effects of circ_0010235 exhaustion; plus, restoration of KIF2A could attenuate miR-338-3p role, as well. Notably, interfering circ_0010235 delayed tumour growth of NSCLC cells by promoting miR-338-3p and E-cadherin expression, and depressing KIF2A, ki-67 and N-cadherin expression. CONCLUSIONS circ_0010235 could be a novel identified oncogenic circRNA in NSCLC, and targeting miR-338-3p/KIF2A axis was one regulatory mechanism underlying circ_0010235.KEY MESSAGECirc_0010235 was an upregulated circRNA in NSCLC patients and cells.Interfering circ_0010235 restrained NSCLC cell proliferation and metastasis in vitro and in vivo.miR-338-3p per se suppressed NSCLC in vitro and its downregulation diminished the tumour-suppressive role of circ_0010235 blockage in NSCLC cells.miR-338-3p could downstream target KIF2A and be sponged by circ_0010235.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Internal Medicine (1), Shandong Provincial Chest Hospital, Jinan, China
| | - Chunling Ma
- Department of Ophthalmology, Shandong Feicheng Mining Center Hospital, Feicheng, China
| | - Aiai Lv
- Department of Internal Medicine (5), Shandong Provincial Chest Hospital, Jinan, China
| | - Changwei Kou
- Department of Internal Medicine (1), Shandong Provincial Chest Hospital, Jinan, China
| |
Collapse
|
18
|
Liang X, Xia R. Kinesin family member 2A acts as a potential prognostic marker and treatment target via interaction with PI3K/AKT and RhoA/ROCK pathways in acute myeloid leukemia. Oncol Rep 2021; 47:18. [PMID: 34792179 PMCID: PMC8630525 DOI: 10.3892/or.2021.8229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022] Open
Abstract
KIF2A has been shown to be involved in the regulation of AML pathology, however, the mechanistic role of KIF2A in AML has not been fully identified. The present study aimed to identify the underlying mechanism of KIF2A regulation of AML cell function and chemosensitivity. A total of 58 patients with AML and 30 healthy subjects were enrolled for clinical analysis. AML cells (KG‑1 and Kasumi‑1) were transfected with KIF2A or control small interfering (si)RNA. PI3K/AKT pathway activator (740 Y‑P) and RhoA overexpression plasmid were added to rescue the effect of KIF2A siRNA. Cell proliferation, apoptosis, chemosensitivity to ADR and AraC, expression levels of mRNA/proteins associated with PI3K/AKT and RhoA/ROCK pathways were measured by Cell Counting Kit‑8, flow cytometry, reverse transcription‑quantitative PCR and western blotting. KIF2A was overexpressed, and correlated with higher levels of bone marrow blast, poor risk classification, lower treatment response and unfavorable survival profile in patients with AML. KIF2A siRNA inhibited proliferation but enhanced apoptosis and chemosensitivity to ADR and AraC in KG‑1 and Kasumi‑1 cells, which also inactivated PI3K/AKT and RhoA/ROCK pathways. Subsequent rescue experiments showed that 740 Y‑P and RhoA overexpression plasmid promoted cell survival and decreased chemosensitivity, which reversed the effect of KIF2A siRNA in KG‑1 and Kasumi‑1 cells. KIF2A was correlated with worse clinical features and survival in patients with AML; its knockdown promoted apoptosis and chemosensitivity by inactivating PI3K/AKT and RhoA/ROCK signaling pathways in AML cells. These data suggested KIF2A may be a potential prognostic marker and treatment target for AML management.
Collapse
Affiliation(s)
- Xinglin Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
19
|
Moon HH, Kreis NN, Friemel A, Roth S, Schulte D, Solbach C, Louwen F, Yuan J, Ritter A. Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover. Cancers (Basel) 2021; 13:5673. [PMID: 34830827 PMCID: PMC8616312 DOI: 10.3390/cancers13225673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is crucial for cell motility and migration by regulating multiple cellular activities such as transport and endocytosis of key components of focal adhesions (FA). The kinesin-13 family is important in the regulation of MT dynamics and the best characterized member of this family is the mitotic centromere-associated kinesin (MCAK/KIF2C). Interestingly, its overexpression has been reported to be related to increased metastasis in various tumor entities. Moreover, MCAK is involved in the migration and invasion behavior of various cell types. However, the precise molecular mechanisms were not completely clarified. To address these issues, we generated CRISPR/dCas9 HeLa and retinal pigment epithelium (RPE) cell lines overexpressing or downregulating MCAK. Both up- or downregulation of MCAK led to reduced cell motility and poor migration in malignant as well as benign cells. Specifically, it's up- or downregulation impaired FA protein composition and phosphorylation status, interfered with a proper spindle and chromosome segregation, disturbed the assembly and disassembly rate of FA, delayed cell adhesion, and compromised the plus-tip dynamics of MTs. In conclusion, our data suggest MCAK act as an important regulator for cell motility and migration by affecting the actin-MT cytoskeleton dynamics and the FA turnover, providing molecular mechanisms by which deregulated MCAK could promote malignant progression and metastasis of tumor cells.
Collapse
Affiliation(s)
- Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University, D-60528 Frankfurt, Germany;
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| |
Collapse
|
20
|
Jiang W, Xu Y, Chen X, Pan S, Zhu X. E26 transformation-specific variant 4 as a tumor promotor in human cancers through specific molecular mechanisms. Mol Ther Oncolytics 2021; 22:518-527. [PMID: 34553037 PMCID: PMC8433062 DOI: 10.1016/j.omto.2021.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
E26 transformation-specific (ETS) variant 4 (ETV4) is an important transcription factor that belongs to the ETS transcription factor family and is essential for much cellular physiology. Recent evidence has revealed that ETV4 is aberrantly expressed in many types of tumors, and its overexpression is related to poor prognosis of cancer patients. Additionally, increasing studies have identified that ETV4 promotes cancer growth, invasion, metastasis, and drug resistance. Mechanistically, the level of ETV4 is regulated by some post-translation modulations in a broad spectrum of cancers. However, little progress has been made to comprehensively summarize the critical roles of ETV4 in different human cancers. Hence, this review mainly focuses on the physiological functions of ETV4 in various human tumors. In addition, the molecular mechanisms of ETV4-mediated cancer progression were elucidated, including how ETV4 modulates its downstream signaling pathways and how ETV4 is regulated by some factors. On this basis, the present review may provide a valuable therapeutics strategy for future cancer treatment by targeting ETV4-related pathways.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
21
|
Wang L, Zhang Y, Yang J, Liu L, Yao B, Tian Z, He J. The Knockdown of ETV4 Inhibits the Papillary Thyroid Cancer Development by Promoting Ferroptosis Upon SLC7A11 Downregulation. DNA Cell Biol 2021; 40:1211-1221. [PMID: 34283663 DOI: 10.1089/dna.2021.0216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most prevalent endocrine malignancies. Herein, we aimed to provide a new viewpoint for the PTC progression and explore a new target for the effective therapy for PTC. We found that E26 transformation specific (ETS) variant 4 (ETV4, an ETS family transcription factor) was upregulated in PTC tissues and cells. In vitro experiments exhibited that silencing ETV4 suppressed PTC cell proliferation and cell cycle progression, while the overexpression of ETV4 gained the opposite results. Dual-luciferase reporter assay highlighted that ETV4 could upregulate the solute carrier family 7 member 11 (SLC7A11, a key role for cysteine uptake in ferroptosis) transcription by binding to its promoter region directly. Moreover, the viability inhibition of PTC cells induced by the knockdown of ETV4 was at least partly through the promotion of ferroptosis upon the downregulation of SLC7A11. In in vivo experiment, the results showed that the downregulation of ETV4 repressed the tumor development through the low expression of SLC7A11, and the ETV4 overexpression obtained the contrary effects. Overall, the data suggested that the knockdown of ETV4 suppressed the PTC progression by promoting ferroptosis upon SLC7A11 downregulation.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiapeng Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lei Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baiyu Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Modeling Neurodevelopmental Disorders and Epilepsy Caused by Loss of Function of kif2a in Zebrafish. eNeuro 2021; 8:ENEURO.0055-21.2021. [PMID: 34404749 PMCID: PMC8425962 DOI: 10.1523/eneuro.0055-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years there has been extensive research on malformations of cortical development (MCDs) that result in clinical features like developmental delay, intellectual disability, and drug-resistant epilepsy (DRE). Various studies highlighted the contribution of microtubule-associated genes (including tubulin and kinesin encoding genes) in MCD development. It has been reported that de novo mutations in KIF2A, a member of the kinesin-13 family, are linked to brain malformations and DRE. Although it is known that KIF2A functions by regulating microtubule depolymerization via an ATP-driven process, in vivo implications of KIF2A loss of function remain partly unclear. Here, we present a novel kif2a knock-out zebrafish model, showing hypoactivity, habituation deficits, pentylenetetrazole-induced seizure susceptibility and microcephaly, as well as neuronal cell proliferation defects and increased apoptosis. Interestingly, kif2a−/− larvae survived until adulthood and were fertile. Notably, our kif2a zebrafish knock-out model demonstrated many phenotypic similarities to KIF2A mouse models. This study provides valuable insights into the functional importance of kif2a in zebrafish and phenotypical hallmarks related to KIF2A mutations. Ultimately, this model could be used in a future search for more effective therapies that alleviate the clinical symptoms typically associated with MCDs.
Collapse
|
23
|
Sun T, Zhang J. ETV4 mediates the wnt/β-catenin pathway through transcriptional activation of ANXA2 to promote hepatitis B virus-associated liver hepatocellular carcinoma progression. J Biochem 2021; 170:663-673. [PMID: 34347084 DOI: 10.1093/jb/mvab088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
ETS variant 4 (ETV4) has been implicated in the development of various cancers. However, the molecular events mediated by ETV4 in liver cancer are poorly understood, especially in Hepatitis B virus (HBV)-associated liver hepatocellular carcinoma (LIHC). Here, we aimed to identify the target involved in ETV4-driven hepatocarcinogenesis. Bioinformatics analysis revealed that ETV4 was highly expressed in patients with HBV-associated LIHC, and HBV infection promoted the expression of ETV4 in LIHC cells. Inhibition of ETV4 repressed the proliferation, migration, invasion of LIHC cells and suppressed the secretion of HBV and the replication of HBV DNA. ANXA2 expression in LIHC patients was positively correlated with ETV4 expression. ChIP and dual-luciferase reporter assays revealed that ETV4 elevated the ANXA2 expression at the transcriptional level by binding to the ANXA2 promoter. Overexpression of ANXA2 reversed the inhibitory effect of sh-ETV4 on the malignant biological behaviors of HBV-infected LIHC cells by activating the Wnt/β-catenin pathway. In conclusion, ETV4 mediates the activation of Wnt/β-catenin pathway through transcriptional activation of ANXA2 expression to promote HBV-associated LIHC progression.
Collapse
Affiliation(s)
- Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| | - Jing Zhang
- Department Of Respiratory, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| |
Collapse
|
24
|
Liu W, Xu C, Meng Q, Kang P. The clinical value of kinesin superfamily protein 2A in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101527. [PMID: 33713978 DOI: 10.1016/j.clinre.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND This study aimed to investigate the clinical value of kinesin superfamily protein 2A (KIF2A) in hepatocellular carcinoma (HCC) patients. METHODS This study retrospectively analyzed 196 HCC patients who underwent hepatic resection, and their preoperative clinical characteristics were collected from the medical records. Immunohistochemical (IHC) assay was performed to detect KIF2A expression, subsequently KIF2A expression was evaluated by a semi-quantitative IHC score (according to IHC staining density and intensity of positively stained cells) and then graded as KIF2A-/KIF2A+/KIF2A++/KIF2A+++ for analysis. Overall survival (OS) was calculated from the date of resection to the date of death. RESULTS Compared to adjacent tissue, both KIF2A IHC score and grade were higher in tumor tissue (Both P < 0.001). Tumor KIF2A expression was positively correlated with performance status score (P = 0.001), multifocal tumor nodule (P = 0.018), largest tumor size (P = 0.015) and Barcelona clinic liver cancer stage (P < 0.001). Regarding live function indexes, tumor KIF2A expression was positively associated with aspartate aminotransferase (P = 0.006). As to tumor markers, tumor KIF2A expression showed a trend to be positively correlated with alpha fetoprotein (P = 0.060) and carbohydrate antigen 199 (P = 0.053), but no statistical significance. Kaplan-Meier curve showed that tumor higher KIF2A expression was associated with worse OS (P < 0.001), which was further validated by multivariate Cox's regression analysis as higher an independent factor predicting shorter OS (P = 0.001). CONCLUSION KIF2A is upregulated in tumor tissue than adjacent tissue, importantly, tumor KIF2A is associated with worse liver function, raised tumor stage and poor OS in HCC patients.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlin Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyang Meng
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Kang
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Lu XQ, Zhang JQ, Zhang SX, Qiao J, Qiu MT, Liu XR, Chen XX, Gao C, Zhang HH. Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis. BMC Cancer 2021; 21:697. [PMID: 34126961 PMCID: PMC8201699 DOI: 10.1186/s12885-021-08358-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy. Methods Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients. Conclusions We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08358-7.
Collapse
Affiliation(s)
- Xiao-Qing Lu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jia-Qian Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng-Ting Qiu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiang-Rong Liu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Xiao-Xia Chen
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huan-Hu Zhang
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|