1
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
3
|
Li F, Liu X, Li M, Wu S, Le Y, Tan J, Zhu C, Wan Q. Inhibition of PKM2 suppresses osteoclastogenesis and alleviates bone loss in mouse periodontitis. Int Immunopharmacol 2024; 129:111658. [PMID: 38359663 DOI: 10.1016/j.intimp.2024.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Chronic periodontitis triggers an increase in osteoclastogenesis, with glycolysis playing a crucial role in this process. Pyruvate kinase M2 (PKM2) is a critical enzyme involved in glycolysis and pyruvate metabolism. Yet, the precise function of PKM2 in osteoclasts and their formation remains unclear and requires further investigation. METHODS Bioinformatics was used to investigate critical biological processes in osteoclastogenesis. In vitro, osteoclastogenesis was analyzed using tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining, quantitative real‑time PCR (RT-qPCR), and Western blotting. Small interfering RNA (siRNA) of PKM2 and Shikonin, a specific inhibitor of PKM2, were used to verify the role of PKM2 in osteoclastogenesis. The mouse model of periodontitis was used to assess the effect of shikonin on bone loss. Analyses included micro computed tomography, immunohistochemistry, flow cytometry, TRAP staining and HE staining. RESULTS Bioinformatic analysis revealed a significant impact of glycolysis and pyruvate metabolism on osteoclastogenesis. Inhibition of PKM2 leads to a significant reduction in osteoclastogenesis. In vitro, co-culture of the heat-killed Porphyromonas gingivalis significantly promoted osteoclastogenesis, concomitant with an increased PKM2 expression in osteoclasts. Shikonin weakened the promoting effect of porphyromonas gingivalis on osteoclastogenesis. In vivo experiments demonstrated that inhibition of PKM2 by shikonin alleviated bone loss induced by periodontitis, suppressed excessive osteoclastogenesis in alveolar bone, and reduced tissue inflammation to some extent. CONCLUSION PKM2 inhibition by shikonin, a specific inhibitor of this enzyme, attenuated osteoclastogenesis and bone resorption in periodontitis. Shikonin appears to be a promising therapeutic agent for treating periodontitis.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Xinyuan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Mingjuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Shuxuan Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Yushi Le
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Jingjing Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Chongjie Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Qilong Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
4
|
Ke D, Xu H, Han J, Dai H, Wang X, Luo J, Yu Y, Xu J. Curcumin suppresses RANKL-induced osteoclast precursor autophagy in osteoclastogenesis by inhibiting RANK signaling and downstream JNK-BCL2-Beclin1 pathway. Biomed J 2024; 47:100605. [PMID: 37179010 PMCID: PMC10839592 DOI: 10.1016/j.bj.2023.100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Curcumin ameliorates bone loss by inhibiting osteoclastogenesis. Curcumin inhibits RANKL-promoted autophagy in osteoclast precursors (OCPs), which mediates its anti-osteoclastogenic effect. But the role of RANKL signaling in curcumin-regulated OCP autophagy is unknown. This study aimed to explore the relationship between curcumin, RANKL signaling, and OCP autophagy during osteoclastogenesis. METHODS We investigated the role of curcumin in RANKL-related molecular signaling in OCPs, and identified the significance of RANK-TRAF6 signaling in curcumin-treated osteoclastogenesis and OCP autophagy using flow sorting and lentiviral transduction. Tg-hRANKL mice were used to observe the in vivo effects of curcumin on RANKL-regulated bone loss, osteoclastogenesis, and OCP autophagy. The significance of JNK-BCL2-Beclin1 pathway in curcumin-regulated OCP autophagy with RANKL was explored via rescue assays and BCL2 phosphorylation detection. RESULTS Curcumin inhibited RANKL-related molecular signaling in OCPs, and repressed osteoclast differentiation and autophagy in sorted RANK+ OCPs but did not affect those of RANK- OCPs. Curcumin-inhibited osteoclast differentiation and OCP autophagy were recovered by TRAF6 overexpression. But curcumin lost these effects under TRAF6 knockdown. Furthermore, curcumin prevented the decrease in bone mass and the increase in trabecular osteoclast formation and autophagy in RANK+ OCPs in Tg-hRANKL mice. Additionally, curcumin-inhibited OCP autophagy with RANKL was reversed by JNK activator anisomycin and TAT-Beclin1 overexpressing Beclin1. Curcumin inhibited BCL2 phosphorylation at Ser70 and enhanced protein interaction between BCL2 and Beclin1 in OCPs. CONCLUSIONS Curcumin suppresses RANKL-promoted OCP autophagy by inhibiting signaling pathway downstream of RANKL, contributing to its anti-osteoclastogenic effect. Moreover, JNK-BCL2-Beclin1 pathway plays an important role in curcumin-regulated OCP autophagy.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haoying Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Junyong Han
- Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Hanhao Dai
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Orthopedics, Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Jun Luo
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yunlong Yu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Yu T, Liu X, Jiang M, Li Y, Su H, Niu B. Cucumber seed polypeptides regulate RANKL-induced osteoclastogenesis through OPG/RANKL/RANK and NF-κB. In Vitro Cell Dev Biol Anim 2024; 60:54-66. [PMID: 38123756 PMCID: PMC10858069 DOI: 10.1007/s11626-023-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that endangers the health of elderly women. Cucumber seeds have shown excellent therapeutic effects on PMOP, but the mechanism of cucumber seed peptide (CSP) remains unclear. The expression levels of NF-κB and osteoclast-related genes were detected by RT-qPCR. The levels of apoptosis-related proteins were detected by Western blotting. Nuclear translocation of NF-κB p65 and osteoclast formation were detected by immunofluorescence and tartrate-resistant acid phosphatase (TRAP) staining, respectively. ELISA was used to detect the expression levels of OPG, M-CSF, and RANKL. Hematoxylin-eosin (H&E) and TRAP staining were used to observe the effects of CSP on bone formation. In RAW264.7 cells, CSP (0.4 mg/L, 4 mg/L, and 40 mg/L) effectively inhibited the expression of osteoclast-related genes (Cathepsin-K, MT1-MMP, MMP-9, and TRAP). TRAP-positive multinucleated giant cells gradually decreased. Furthermore, NF-κB pathway activation downstream of RANK was inhibited. In bone marrow stromal cells (BMSCs), the expression levels of M-CSF and RANKL gradually decreased, and OPG gradually increased with increasing CSP concentrations. Treatment of RAW264.7 cells with pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prevented the formation of osteoclasts. Treatment with different concentrations of CSP effectively decreased the levels of RANKL and M-CSF in rat serum and increased the expression of OPG in the oophorectomy (OVX) rat model. Furthermore, different concentrations of CSP could ameliorate the loss of bone structure and inhibit the formation of osteoclasts in rats. CSP inhibits osteoclastogenesis by regulating the OPG/RANKL/RANK pathway and inhibiting the NF-kB pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Xiao Liu
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Meng Jiang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yuanyue Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China
| | - Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China.
| |
Collapse
|
6
|
Yang T, Chen W, Gan K, Wang C, Xie X, Su Y, Lian H, Xu J, Zhao J, Liu Q. Myrislignan targets extracellular signal-regulated kinase (ERK) and modulates mitochondrial function to dampen osteoclastogenesis and ovariectomy-induced osteoporosis. J Transl Med 2023; 21:839. [PMID: 37993937 PMCID: PMC10664306 DOI: 10.1186/s12967-023-04706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Activated osteoclasts cause excessive bone resorption, and disrupt bone homeostasis, leading to osteoporosis. The extracellular signal-regulated kinase (ERK) signaling is the classical pathway related to osteoclast differentiation, and mitochondrial reactive oxygen species are closely associated with the differentiation of osteoclasts. Myrislignan (MRL), a natural product derived from nutmeg, has multiple pharmacological activities; however, its therapeutic effect on osteoporosis is unclear. Here, we investigated whether MRL could inhibit osteoclastogenesis and bone mass loss in an ovariectomy mouse model by suppressing mitochondrial function and ERK signaling. METHODS Tartrate-resistant and phosphatase (TRAP) and bone resorption assays were performed to observe the effect of MRL on osteoclastogenesis of bone marrow macrophages. MitoSOX RED and tetramethyl rhodamine methyl ester (TMRM) staining was performed to evaluate the inhibitory effect of MRL on mitochondria. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was performed to detect whether MRL suppressed the expression of osteoclast-specific genes. The impact of MRL on the protein involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB pathways was evaluated using western blotting. In addition, a specific ERK agonist LM22B-10, was used to revalidate the inhibitory effect of MRL on ERK. Finally, we established an ovariectomy mouse model to assess the therapeutic effect of MRL on osteoporosis in vivo. RESULTS MRL inhibited osteoclast differentiation and the associated bone resorption, by significantly decreasing osteoclastic gene expression. Mechanistically, MRL inhibited the phosphorylation of ERK by suppressing the mitochondrial function, thereby downregulating the nuclear factor of activated T cells 1 (NFATc1) signaling. LM22B-10 treatment further verified the targeted inhibition effect of MRL on ERK. Microscopic computed tomographic and histologic analyses of the tibial tissue sections indicated that ovariectomized mice had lower bone mass and higher expression of ERK compared with normal controls. However, MRL treatment significantly reversed these effects, indicating the anti-osteoporosis effect of MRL. CONCLUSION We report for the first time that MRL inhibits ERK signaling by suppressing mitochondrial function, thereby ameliorating ovariectomy-induced osteoporosis. Our findings can provide a basis for the development of a novel therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kai Gan
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoxiao Xie
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, WA, 6009, Australia.
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology 2022:10.1007/s10266-022-00774-w. [DOI: 10.1007/s10266-022-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
|
8
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
9
|
Zhao M, Mei F, Lu J, Xiang Q, Xia G, Zhang X, Liu Z, Zhang C, Shen X, Zhong Q. Gadus morhua Eggs Sialoglycoprotein Prevent Estrogen Deficiency-Induced High Bone Turnover by Controlling OPG/RANKL/TRAF6 Pathway and Serum Metabolism. Front Nutr 2022; 9:871521. [PMID: 35495954 PMCID: PMC9040668 DOI: 10.3389/fnut.2022.871521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, the development of safe and effective anti-osteoporosis factors has attracted extensive attention. In this study, an estrogen-deficient osteoporosis rat model was employed to study the improving mechanism of sialoglycoprotein isolated from Gadus morhua eggs (Gds) against osteoporosis. The results showed that compared with OVX, Gds ameliorated the trabecular microstructure, especially the increased trabecular thickness, decreased trabecular separation, and enhanced the trabecular number. The analysis of qRT-PCR and western blotting found that Gds reduced bone resorption by inhibiting RANKL-induced osteoclastogenesis. The LC-MS/MS was used to investigate serum metabolism, and the enrichment metabolites were analyzed by the KEGG pathway. The results revealed that the Gds significantly altered the fat anabolism pathway, which includes ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. Altogether, Gds could improve osteoporosis by suppressing high bone turnover via controlling OPG/RANKL/TRAF6 pathway, which is implicated with ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. These findings indicated that Gds could be a candidate factor for anti-osteoporosis.
Collapse
Affiliation(s)
- Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jinfeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Qingying Xiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- *Correspondence: Guanghua Xia,
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Chenghui Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Qiuping Zhong
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Qiuping Zhong,
| |
Collapse
|
10
|
Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, Brandi ML. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci 2022; 23:ijms23042103. [PMID: 35216216 PMCID: PMC8879671 DOI: 10.3390/ijms23042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Teresa Vincenzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
11
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
12
|
Han H, He C, Chen X, Luo Y, Yang M, Wen Z, Hu J, Lin F, Han M, Yin T, Yang R, Lin H, Qi J, Yang Y. Shikonin N-benzyl matrinic acid ester derivatives as novel telomerase inhibitors with potent activity against lung cancer cell lines. Bioorg Med Chem Lett 2021; 57:128503. [PMID: 34922028 DOI: 10.1016/j.bmcl.2021.128503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 μM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.
Collapse
Affiliation(s)
- Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Cong He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingyu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuelin Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiabao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Faxiang Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Mi Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Yu C, Zhu Y, Lv X, Wang Y. 1α,25-(OH) 2-D 3 promotes the autophagy during osteoclastogenesis by enhancing RANKL-RANK-TRAF6 signaling. In Vitro Cell Dev Biol Anim 2021; 57:878-885. [PMID: 34780049 DOI: 10.1007/s11626-021-00632-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
As the active form of vitamin D3, 1α,25-(OH)2-D3 promotes receptor activator for nuclear factor-κB ligand (RANKL)-induced autophagy in osteoclast precursors (OCPs). However, the relationship between 1α,25-(OH)2-D3 and RANKL signaling is still unknown. This study aimed to explore whether 1α,25-(OH)2-D3 regulates OCP autophagy and osteoclastogenesis through RANKL signaling. Our results showed that 1α,25-(OH)2-D3 directly decreased OCP autophagy while significantly enhancing the ability of RANKL to promote OCP autophagy. Moreover, 1α,25-(OH)2-D3 not only promoted the expression of key signaling proteins in OCPs induced by RANKL but also enhanced the coimmunoprecipitation levels of RANK and TRAF6. Notably, 1α,25-(OH)2-D3 significantly enhanced the autophagic activity and osteoclast differentiation of RANK-positive OCPs but did not affect the autophagic activity or osteoclast differentiation of RANK-negative OCPs. More importantly, 1α,25-(OH)2-D3 had no effect on autophagy or osteoclastogenesis in TRAF6-silenced OCPs. Overall, 1α,25-(OH)2-D3 could upregulate RANKL-RANK-TRAF6 signaling in OCPs, thereby promoting OCP autophagy and osteoclastogenesis.
Collapse
Affiliation(s)
- Chengjian Yu
- Department of Emergency, 900 Hospital of The Joint Logistics Team, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Yunrong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, No. 163 Shoushan Road, Jiangyin, 214400, Jiangsu, China.
| | - Xiaofei Lv
- Department of Orthopedics, Yixin Shanjuan Orthopaedic Hospital, YiXing, 214000, Jiangsu, China
| | - Yabin Wang
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, No. 163 Shoushan Road, Jiangyin, 214400, Jiangsu, China
| |
Collapse
|
14
|
Liu Y, Zheng J, Chen Y, Wang F, Ye H, Wang M, Zhang Z. Shikonin protects against lipopolysaccharide-induced inflammation and apoptosis in human nucleus pulposus cells through the nuclear factor-kappa B pathway. Food Sci Nutr 2021; 9:5583-5589. [PMID: 34646528 PMCID: PMC8497831 DOI: 10.1002/fsn3.2519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the protective effect and mechanism of shikonin on human intervertebral disk degeneration. METHODS Human primary nucleus pulposus (NP) cells cultured in vitro were used for the experiments. The effects of different concentrations of shikonin (1, 2, 4, 8, and 16 µM) on the activity of lipopolysaccharide (LPS)-induced NP cells were determined using the CCK-8 assay, and the appropriate drug concentration was determined. The experiment was divided into the control, LPS, and LPS + shikonin groups. ELISA and Western blot were used to detect the expression of the inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-1β. NP cell apoptosis was measured using Western blot and caspase 3 activity. Western blot and immunofluorescence assays were used to detect the protein expression of p-P65 and P65 and the nuclear translocation of P65. RESULTS The CCK-8 assay showed that shikonin had no cytotoxic effect on NP cells and increased the activity of LPS-induced NP cells, especially at a concentration of 4 μM. Shikonin reversed the expression of the inflammatory cytokines TNF-α and IL-1β and apoptosis-related molecules Bax, Bcl-2, and cleaved caspase 3 in LPS-induced NP cells. In addition, shikonin significantly decreased apoptosis and caspase-3 activity in LPS-induced NP cells. Furthermore, shikonin treatment significantly inhibited the expression of p-P65 and nuclear translocation of P65, and nuclear factor-kappa B (NF-κB) pathway inhibitor Pyrrolidinedithiocarbamate ammonium (PDTC) significantly enhanced the anti-inflammatory and antiapoptotic effects of shikonin in LPS-induced NP cells. CONCLUSION Shikonin significantly inhibited the inflammatory response and apoptosis of human primary NP cells, possibly through the NF-κB pathway.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - Jiazhuang Zheng
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - Yu Chen
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - Fandong Wang
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - He Ye
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - Miao Wang
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| | - Zhi Zhang
- Department of OrthopaedicsSuining Central HospitalSuiningChina
| |
Collapse
|
15
|
Cheng YT, Liao J, Zhou Q, Huo H, Zellmer L, Tang ZL, Ma H, Hong W, Liao DJ. Zoledronic acid modulates osteoclast apoptosis through activation of the NF-κB signaling pathway in ovariectomized rats. Exp Biol Med (Maywood) 2021; 246:1727-1739. [PMID: 33926259 PMCID: PMC8719043 DOI: 10.1177/15353702211011052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
Bone mass loss (osteoporosis) seen in postmenopausal women is an adverse factor for implant denture. Using an ovariectomized rat model, we studied the mechanism of estrogen-deficiency-caused bone loss and the therapeutic effect of Zoledronic acid. We observed that ovariectomized-caused resorption of bone tissue in the mandible was evident at four weeks and had not fully recovered by 12 weeks post-ovariectomized compared with the sham-operated controls. Further evaluation with a TUNEL assay showed ovariectomized enhanced apoptosis of osteoblasts but inhibited apoptosis of osteoclasts in the mandible. Zoledronic acid given subcutaneously as a single low dose was shown to counteract both of these ovariectomized effects. Immunohistochemical staining showed that ovariectomized induced the protein levels of RANKL and the 65-kD subunit of the NF-κB complex mainly in osteoclasts, as confirmed by staining for TRAP, a marker for osteoclasts, whereas zoledronic acid inhibited these inductions. Western blotting showed that the levels of RANKL, p65, as well as the phosphorylated form of p65, and IκB-α were all higher in the ovariectomized group than in the sham and ovariectomized + zoledronic acid groups at both the 4th- and 12th-week time points in the mandible. These data collectively suggest that ovariectomized causes bone mass loss by enhancing apoptosis of osteoblasts and inhibiting apoptosis of osteoclasts. In osteoclasts, these cellular effects may be achieved by activating RANKL-NF-κB signalling. Moreover, zoledronic acid elicits its therapeutic effects in the mandible by counteracting these cellular and molecular consequences of ovariectomized.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Hua Huo
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zheng-Long Tang
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Hong Ma
- School/Hospital of Stomatology, Guizhou Medical University, Guizhou 550004, P.R. China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guizhou 550004, P.R. China
| | - Dezhong Joshua Liao
- Department of Pathology, Guizhou Medical University School of Medicine, Guizhou 550004, P.R. China
| |
Collapse
|
16
|
Guo W, Li H, Lou Y, Zhang Y, Wang J, Qian M, Wei H, Xiao J, Xu Y. Tyloxapol inhibits RANKL-stimulated osteoclastogenesis and ovariectomized-induced bone loss by restraining NF-κB and MAPK activation. J Orthop Translat 2021; 28:148-158. [PMID: 33981577 PMCID: PMC8063697 DOI: 10.1016/j.jot.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Objective Tyloxapol is a non-ionic surfactant with diverse pharmacological effects including anti-inflammatory, anti-malignant tumor and antioxidant activities. However, the effect of tyloxapol on osteoclastogenesis has not been elucidated. In this study, we intended to clarify the effect of tyloxapol on RANKL-stimulated osteoclastogenesis and the molecular mechanism both ex vivo and in vivo. Methods In vitro osteoclastogenesis assay was performed in BMMs and Raw 264.7 cells. The mature osteoclasts were visualized by TRAP staining. The osteoblsats were visualized by alkaline phosphatase (ALP) staining and Von Kossa staining. To assess whether tyloxapol inhibited the function of mature osteoclasts, F-actin belts and pit formation assays were carried out in BMMs. To evaluate the effect of tyloxapol on post-menopausal osteoporosis, the OVX mouse model were utilized. The bone tissue TRAP staining was used to evaluate the osteoclast activity in vivo. The von kossa staining and micro computed tomography were used to evaluate the histomorphometric parameters. The Goldner's staining was used to evaluate the osteoblast activity. The expression of osteoclastogenesis-associated markers were evaluated by Real-time PCR. The NF-κB and NFATc1 transcriptional activities were illustrated utilizing the assay of luciferase reporter. The effect of tyloxapol pretreatment on IκBa degradation and p65 phosphorylation was evaluated using Western bloting assay. The effect of tyloxapol pretreatment on p65 nuclear translocation was evaluated utilizing immunofluorescence. The effect of tyloxapol pretreatment on the phosphorylatio of ERK, p38 and JNK was examined utilizing Western bloting assay. Results In our research, we found that tyloxapol suppresses RANKL-stimulated osteoclastogenesis in a dose dependent manner and in the initial stage of osteoclastogenesis. Through F-actin belts and pit formation assays, we found that tyloxapol had the ability to inhibit the function of mature osteoclasts in vitro. The results of animal experiments demonstrated that tyloxapol inhibits OVX-induced bone mass loss by inhibiting the activity of osteoclasts but had a limited effect on osteoblastic differentiation and mineralization. Molecularly, we found that tyloxapol suppresses RANKL-stimulated NF-κB activation through suppressing degradation of IκBα, phosphorylation and nuclear translocation of p65. At last, MAPK signaling pathway was also suppressed by tyloxapol in dose and time-dependent manners. Conclusion Our research illustrated that tyloxapol was able to suppress osteoclastogenesis in vitro and ovariectomized-induced bone loss in vivo by restraining NF-κB and MAPK activation. This is pioneer research could pave the way for the development of tyloxapol as a potential therapeutic treatment for osteoporosis. The translational potential of this article This study explores that tyloxapol, also known as Triton WR-1339, may be a drug candidate for osteoclastogenic sicknesses like osteoporosis. Our study may also extend the clinical therapeutic spectrum of tyloxapol.
Collapse
Affiliation(s)
- Wen Guo
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Department of Orthopedics, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Yan Lou
- Orthopaedic Oncology Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, China
| | - Yue Zhang
- Orthopaedic Oncology Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, China
| | - Jia Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| | - Ming Qian
- Orthopaedic Oncology Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, China
| | - Haifeng Wei
- Orthopaedic Oncology Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, China
| | - Jianru Xiao
- Orthopaedic Oncology Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, China
| | - Youjia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Osteoporosis Institute, Soochow University, Suzhou, 215004, China
| |
Collapse
|
17
|
Ren Y, Zhang K, Wang J, Meng X, Du X, Shi Z, Xue Y, Hong W. HOTAIRM1 promotes osteogenic differentiation and alleviates osteoclast differentiation by inactivating the NF-κB pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:201-211. [PMID: 33404645 DOI: 10.1093/abbs/gmaa164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP), one of the most prevalent chronic progressive bone diseases, is caused by deficiency in bone formation by osteoblasts or excessive bone resorption by osteoclasts and subsequently increases the risk of bone fractures. Emerging evidence has indicated that long noncoding RNAs (lncRNAs) play key roles in many biological processes and various disorders. However, the role and mechanism of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), a myeloid-specific lncRNA, in osteoclast differentiation, osteogenic differentiation, and OP remain unclear. In this study, we found that HOTAIRM1 was upregulated during ossification of ligamentum flavum and osteogenic differentiation, while it was downregulated in osteoclast differentiation and in the bone and serum of human and mouse with OP. Further investigation revealed that silencing Hotairm1 decreased the expression of the osteogenic markers and attenuated osteogenesis. Moreover, forced Hotairm1 expression inhibited the expressions of the osteoclastogenesis markers and alleviated receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation. Mechanically, Hotairm1 repressed the phosphorylation of p65 and inhibitor of κBα (IκBα) and attenuated RANKL-mediated enhancement of phos-p65 and IκBα, suggesting that Hotairm1 inhibits RANKL-induced osteoclastogenesis through the NF-κB pathway. In conclusion, our data identified a crucial role of HOTAIRM1 in OP, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against OP.
Collapse
Affiliation(s)
- Yi Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Xue
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
18
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|
19
|
Zhu J, Wang H, Liu H. Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 529:35-42. [PMID: 32560816 DOI: 10.1016/j.bbrc.2020.05.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a frequent bone disorder responsible for an increased risk of disability to millions of individuals in the world. For identifying novel and effective targets to treat this disease, it is essential to explore the underlying molecular mechanisms. MicroRNAs (miRNAs) have been widely investigated due to their involvement in the pathophysiology of bone loss. In this study, we attempted to elucidate the role of miR-301-b in murine osteoclastogenesis. We found that miR-301-b expression was increased in the bone tissues from PMOP patients, along with up-regulated nuclear factor of activated T cells c1 (NFATC1), which were confirmed in ovariectomy (OVX)-induced mouse bone specimens and bone marrow-derived macrophages (BMMs). Osteoclastogenesis was found to be obviously suppressed by miR-301-b inhibitor, whereas being further promoted in BMMs transfected with miR-301-b mimic. The animal studies showed that osteoclastic miR-301-b knockout markedly up-regulated the bone mass by reducing osteoclastogenesis. Mechanistically, we found that cylindromatosis (CYLD) was a direct target of miR-301-b at the post-transcriptional level during osteoclastogenesis. The enhanced expression of CYLD led to a reduction of phosphorylated nuclear factor κB (NF-κB), along with remarkably decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Finally, osteoclastic miR-301-b ablation evidently inhibited OVX-induced osteoclastogenesis, exhibiting protective effects against bone loss in rodent animals. Therefore, results in the study reported an important mechanism for osteoclastogenesis progression regulated by miR-301-b/CYLD/NF-κB pathway, which may be an effective therapeutic target for PMOP treatment.
Collapse
Affiliation(s)
- Jungao Zhu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, 310030, China
| | - Haisheng Wang
- Department of Orthopedics, Division of Orthopedics, Hainan Hospital, Chinese PLA (people's Liberation Army) General Hospital, Sanya City, Hainan Province, 572014, China
| | - Huashun Liu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|
20
|
Wang Y, Zhu F, Zhang Y, Chen C, Lai Y, Sun J, Chen S, Qiu P, Gao J, Deng G. Shikonin suppresses trophoblast cell growth via regulation of GLI1, and p62 mediated caspase 8 activation. Reprod Toxicol 2020; 95:104-112. [PMID: 32461113 DOI: 10.1016/j.reprotox.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
Unruptured ectopic pregnancy (UEP) is a common cause of morbidity and, occasionally, of mortality in women of reproductive age. Pharmacological intervention is a common therapeutic approach for early-stage UEP. Herein, we investigated the cytotoxic effect and novel mechanism of shikonin, a natural naphthoquinone pigment purified from Lithospermum erythrorhizon, in human trophoblast cells. These data demonstrated that shikonin suppressed proliferation and induced apoptosis in a time-dependent manner in HTR-8/SVneo cells. Shikonin blocked autophagic flux and promoted p62 interaction with caspase 8, resulting in caspase 8 activation. Moreover, shikonin suppressed GLI1 expression, and GLI1 overexpression attenuated shikonin-induced cell apoptosis. Although silencing GLI1 slightly promoted cell apoptosis, p62 overexpression enhanced GLI1 silencing-induced cell apoptosis by activating caspase 8. Furthermore, rapamycin increased shikonin-induced cell apoptosis in HTR-8/SVneo cells, whereas 3-MA attenuated the cytotoxic effect of shikonin. In conclusion, shikonin suppressed trophoblast cell growth by silencing GLI1 and increasing p62 co-mediated activation of caspase 8, which suggested a potential novel therapeutic target for UEP.
Collapse
Affiliation(s)
- Yanxi Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fangfang Zhu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yingxuan Zhang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chunlin Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuling Lai
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianhua Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Si Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pin Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gaopi Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|