1
|
Udom GJ, Abdulyekeen BR, Osakwe MO, Ezejiofor AN, Orish CN, Orish FC, Frazzoli C, Orisakwe OE. Reconsideration of the health effects of monosodium glutamate: from bench to bedside evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-31. [PMID: 39435965 DOI: 10.1080/26896583.2024.2415202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Monosodium glutamate (MSG) is a food additive that enhances the palatability of foods, thus its frequent use both domestically and industrially. Based on the dose-factor, frequency, and duration of exposure, MSG may provoke adverse health outcomes both in animals and humans. The present report aims at providing a comprehensive analysis of the scientifically proven untoward health effects of MSG. To achieve our aim, we adopted the PRISMA guidelines and checklist and searched four databases (Scopus, Web of Science, PubMed, and Google Scholar) from 2014 to 2024. Retrieved research papers were critically appraised for quality using the ARRIVE and Joanna Briggs (JB) checklists and data analysis was conducted via the narrative synthesis method. Our analysis reveals that though MSG is generally considered safe at low doses; however, high doses and repeated exposure to MSG are associated with embryotoxicity and teratogenicity, obesity, cardiotoxicity, hepatotoxicity, kidney toxicity, neurotoxicity, endothelial dysfunction, reproductive toxicities, alteration of lipid, and glucose metabolism. Thus, chronic exposure to MSG may be of human pathological importance. The findings of the present narrative synthesis provide a rationale for informed decisions on the use and labeling of this widely used food additive.
Collapse
Affiliation(s)
- Godswill J Udom
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Ishaka, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Nigeria
| | - Babatunde R Abdulyekeen
- African Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Choba, Nigeria
| | - Maryann O Osakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | | | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Mersin, Turkey
| |
Collapse
|
2
|
Rotimi DE, Iyobhebhe M, Oluwayemi ET, Olajide OP, Akinsanola BA, Evbuomwan IO, Asaleye RM, Ojo OA. Energy metabolism and spermatogenesis. Heliyon 2024; 10:e38591. [PMID: 39397940 PMCID: PMC11470522 DOI: 10.1016/j.heliyon.2024.e38591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Infertility has become a significant health burden around the globe as it is believed that 15 % of married couples struggle with infertility, with half of the problem accrued to the male. The issue of male infertility could be traced to insufficient or absence of spermatozoa. Glucose metabolism is essential for continued spermatogenesis and for the reproductive potential of sperm cells. Appropriate nutrition is critical in maintaining reproductive function as caloric restriction along with weight reduction, excessive food consumption and obesity are harmful to reproductive function. The link between metabolism and reproduction is tied to metabolic hormones like insulin, leptin and thyroid, extracellular environment, mitochondria function, nutrient substrate, availability, and environmental stressors. Although matured spermatozoa utilize glucose directly, it is not the preferred energy substrate for germ cells as they rely on Sertoli cells to supply lactate. The reproductive potential of sperm cells depends on certain modifications like hyperactivated motility, which is mainly dependent on glucose metabolism. Without other energy sources, spermatozoa utilize their internal lipid stores. The uptake and metabolism of glucose by sperm are essential endpoints for determining the potential fertility of male individuals. The biological energy in sperm cells fuels all the physiological processes they engage in, from their deposition in the female reproductive tract to the point where they fertilize an egg. This article thus reviews facts pertinent to the energy metabolism of male germ cells and Sertoli cells.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Elizabeth Temidayo Oluwayemi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | | | | | - Rotdelmwa Maimako Asaleye
- Department of Life and Consumer Sciences University of South Africa Private Bag X06, Florida, 1710, South Africa
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, 232101, Nigeria
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria
| |
Collapse
|
3
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
4
|
Rotimi DE, Ojo OA, Adeyemi OS. Atrazine exposure caused oxidative stress in male rats and inhibited brain-pituitary-testicular functions. J Biochem Mol Toxicol 2024; 38:e23579. [PMID: 37926918 DOI: 10.1002/jbt.23579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Exposure to the herbicide atrazine has been shown to have deleterious effects on human and animal reproduction. To determine whether atrazine influences the brain-pituitary-testicular axis directly or indirectly, the present study examined the toxic effects of atrazine on fertility potential by assessing gonadal hormones, testicular function indices, sperm quality, and oxido-inflammatory markers in rats. Twelve animals were grouped into two groups; control and atrazine. The control group received oral administration of olive oil (2 mL/kg), while the atrazine group received 120 mg/kg of atrazine. Treatments were daily and lasted for 7 days. Upon treatment cessation, rats were necropsied for biochemical and histopathological analyses. The biochemical function indices in the rat brain, testis, and epididymis decreased significantly in the atrazine group. Atrazine exposure led to decreases in gonadal hormonal concentrations, semen quality parameters, and testicular function indices compared with the control. Furthermore, there was a marked increase in oxidative stress and inflammatory markers as well as degeneration of the histo-architecture in atrazine-treated rats. Overall, atrazine exposure impaired sperm quality, led to increased inflammation and oxidative stress, and decreased the activity of the brain-pituitary-testicular axis via endocrine disruption.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi A Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University, Iwo, Nigeria
| | - Oluyomi S Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Laboratory of Medicinal Biochemistry & Biochemical Toxicology, Bowen University, Iwo, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| |
Collapse
|
5
|
Kesherwani R, Bhoumik S, Kumar R, Rizvi SI. Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats. Indian J Clin Biochem 2024; 39:101-109. [PMID: 38223009 PMCID: PMC10784434 DOI: 10.1007/s12291-022-01077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.
Collapse
Affiliation(s)
- Rashmi Kesherwani
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Sukanya Bhoumik
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
6
|
Moldovan OL, Vari CE, Tero-Vescan A, Cotoi OS, Cocuz IG, Tabaran FA, Pop R, Fülöp I, Chis RF, Lungu IA, Rusu A. Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients 2023; 15:4436. [PMID: 37892513 PMCID: PMC10610236 DOI: 10.3390/nu15204436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Monosodium glutamate (MSG) is the sodium salt of glutamic acid (GLA), used as a flavour enhancer. MSG is considered a controversial substance. It is incriminated in disturbing the antioxidant system, but also has beneficial effects, as GLA metabolism plays a crucial role in homeostasis. This study highlights which positive or negative aspects of MSG sub-chronic consumption are better reflected in subjects potentially affected by advanced age. Daily doses of MSG were administered to four groups of two-year-old Wistar rats for 90 days: (I) 185 mg/kg bw, (II) 1500 mg/kg bw, (III) 3000 mg/kg bw and (IV) 6000 mg/kg bw, compared to a MSG non-consumer group. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, direct and total bilirubin, total cholesterol, triglycerides, creatinine and urea levels were analysed; stomach, liver and kidney samples were subjected to histopathological analysis. Although, in most cases, there were no statistical differences, interesting aspects of the dose-effect relationship were observed. After MSG sub-chronic consumption, the positive aspects of GLA seem to be reflected better than the negative ones. The hormesis effect, with low-level reactive oxygen species' protective effects and GLA metabolism, may represent the hypothesis of a potential defence mechanism triggered by MSG sub-chronic consumption in ageing rats.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Iuliu Gabriel Cocuz
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Flaviu Alexandru Tabaran
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Romelia Pop
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Ibolya Fülöp
- Toxicology and Biopharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Rafael Florin Chis
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
7
|
Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK. The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon 2023; 9:e19675. [PMID: 37809920 PMCID: PMC10558944 DOI: 10.1016/j.heliyon.2023.e19675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most popular food additives in the world and is often ingested with commercially processed foods. It can be described as a sodium salt of glutamic acid with the IUPAC name - Sodium 2-aminopentanedioate and is ionized by water to produce free sodium ions and glutamic acid. MSG use has significantly increased over the past 30 years, its global demand stands huge at over three million metric tons which is worth over $4.5 billion. Asia was responsible for more than three quarter of world MSG consumption with the country China also leading in global consumption as well as production and export to other countries. Prior to year 2020, global demand for MSG increased by almost four percent each year with the highest significant increase in demand for MSG predicted to rise in Thailand, Indonesia, Vietnam and China, followed by Brazil and Nigeria. However, several researches featured in this review has identified MSG consumption as a major contributor to the development and progression of some metabolic disorders such as obesity, which is a risk factor for other metabolic syndromes like hypertension, diabetes mellitus and cancer initiation. The mechanism by which MSG induce obesity involves induction of hypothalamic lesion, hyperlipidemia, oxidative stress, leptin resistance and increased expression of peroxisome proliferator-activated receptors (PPARs) Gamma and Alpha. Similarly for induction of diabetes mellitus, MSG consumption resulted in decreased pancreatic beta cell mass, increased oxidative stress and metabolic rates, reduced glucose and insulin transport to adipose tissue and skeletal muscles, insulin insensitivity, reduced insulin receptors and induced severe hyperinsulinemia. Dietary salt, an active component of MSG is also found to be a major risk factor for high blood pressure (which may lead to hypertension). MSG is used to enhance the taste of tobacco, causing smokers to consume the product in excess and thereby increasing the risk of cancer development. Depending on the amount consumed, MSG has both positive and negative effects. Despite the controversy surrounding MSG's safety and its probable contribution to risk of development and progression of metabolic disorders, its global consumption is still very high. Therefore, this article will sensitize the public on the need for cautious use of MSG in foods and also aid regulatory agencies to further review the daily MSG consumption limit based on metabolic toxicities observed at the varied dosages reported in this review.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| | - Jemilat A Bello
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Jamiu A Oguntola
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Anatomy, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Daniel K Olukoya
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| |
Collapse
|
8
|
Yu H, Wang R, Zhao Y, Song Y, Sui H, Wu Y, Miao H, Lyu B. Monosodium Glutamate Intake and Risk Assessment in China Nationwide, and a Comparative Analysis Worldwide. Nutrients 2023; 15:nu15112444. [PMID: 37299405 DOI: 10.3390/nu15112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The sixth Total Diet Study (TDS) of China included a countrywide study to assess the health effects of MSG (monosodium glutamate). MSG detection, consumption analysis, and risk assessment were conducted on 168 samples from seven food categories of the most typical Chinese daily diet. The highest value of MSG in the daily diet of the Chinese population was 8.63 g/kg. An MSG intake of 17.63 mg/kg bw/d for the general population of China was obtained from content measurements combined with food consumption, while the data from the apparent consumption survey alone gave 40.20 mg/kg bw/d. The apparent consumption did not consider the loss of MSG during food cooking, resulting in an overestimate. To offer a global perspective, MSG content, food category contributions, and ingestion levels across nations were summarized and thoroughly investigated. A realistic, logical, and precise risk assessment protocol for MSG daily intake was developed in this article.
Collapse
Affiliation(s)
- Hangyu Yu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yunfeng Zhao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yan Song
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Haixia Sui
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| |
Collapse
|
9
|
Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: A mini review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:130-135. [PMID: 36717303 DOI: 10.1016/j.joim.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
Male infertility has become a problem worldwide, and recent research has emphasized the development of more effective therapy options. Among natural compounds, rutin has been widely studied for its potential to treat dysfunction related to male infertility, including a reduction in sperm quality, spermatogenesis disruption and structural disruption in the testis. A thorough review of scientific literature published in several databases, including Google Scholar, PubMed/MEDLINE and Scopus, was used to synthesize the present state of research on the role of rutin in male reproductive health. Rutin has been shown to possess antiapoptotic, antioxidant and anti-inflammatory activities, among others, which are crucial in the management of male infertility. Numerous investigations have shown that rutin protects against male infertility and have explored the underlying mechanisms involved. The present review, therefore, assesses the therapeutic mechanisms involved in male infertility treatment using rutin. Rutin was able to mitigate the induced oxidative stress, apoptosis, inflammation, and related physiological processes that can cause testicular dysfunction. Please cite this article as: Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: a mini review. J Integr Med. 2022; Epub ahead of print.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Osun State, Nigeria.
| |
Collapse
|
10
|
Rotimi DE, Adeyemi OS. Plantain-based diet decreases oxidative stress and inflammatory markers in the testes of rats exposed to atrazine. Mol Cell Biochem 2023:10.1007/s11010-022-04639-2. [PMID: 36609901 DOI: 10.1007/s11010-022-04639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Exposure to the herbicide atrazine (ATZ) has deleterious effects on male fertility. This fact underscores the need for measures to protect against the detrimental impact of atrazine exposure on male fertility. The study assessed the protective effects of plantain-based diet (PBD) on rat testes exposed to ATZ by exploring oxid-inflammatory homeostasis. The study evaluated the preventive and therapeutic effects of PBD in a two-phased experiment. Male rats were randomized into seven groups for therapeutic model (Control, ATZ only, ATZ recovery, ATZ + 50% PBD, ATZ + 25% PBD, ATZ + 12.5% PBD and ATZ + quercetin-QUE) while the preventive model had ten groups (Control, ATZ, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ and QUE + ATZ). The oxidative stress parameters (DNA fragmentation and MDA level), purinergic activity (ATPase), acetylcholine esterase, and inflammatory markers (NO level, MPO activity, and TNF-α) were increased while the Nrf2 levels were decreased by the ATZ treatment. However, the PBD was able to restore the oxido-inflammatory parameters in the rat testes. The chemical fingerprint of the diet revealed that the diets contained 16 bioactive compounds with quercetin being the most prominent compound. Overall, treatment with PBD was able to protect and prevent the toxicity caused by ATZ by modulating the redox and inflammatory status as well as purinergic activity in the rat testes.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria. .,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria. .,Laboratory of Sustainable Animal Environmental Systems, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.
| |
Collapse
|
11
|
Koohpeyma F, Gholizadeh F, Hafezi H, Hajiaghayi M, Siri M, Allahyari S, Maleki MH, Asmarian N, Bayat E, Dastghaib S. The protective effect of L-carnitine on testosterone synthesis pathway, and spermatogenesis in monosodium glutamate-induced rats. BMC Complement Med Ther 2022; 22:269. [PMID: 36229797 PMCID: PMC9563446 DOI: 10.1186/s12906-022-03749-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 04/07/2024] Open
Abstract
Background Monosodium glutamate (MSG) is a food ingredient that is increasingly used commercially. MSG leads to oxidative stress, consequently suppressing steroid hormone production that causes defects in male reproductive system. This study aimed to evaluate the effect of L-carnitine as an antioxidant on testicular damage in MSG-induced male rats. Methods Sixty adult male Spargue-Dawley rats were randomly divided into six groups of ten as follows: control (water), sham (normal saline), L-carnitine (200 mg/kg b.w), MSG (3 g/kg b.w), MSG + L-carnitine 100 (3 g/kg b.w of MSG and 100 mg/kg b.w of L-carnitine), and MSG + L-carnitine 200 (3 g/kg b.w of MSG and 200 mg/kg b.w of L-carnitine). The treatment was administered by oral gavage for six months. Serum levels of Malondialdehyde (MDA), Total Anti-oxidant Capacity (TAC), LH, FSH, testosterone, and mRNA expressions of Star, Cyp11a1, and Hsd17b3 genes, and histological and stereological changes were assessed. Results L-carnitine led to a significant decrease in the level of MDA and a significant rise in the serum levels of TAC, LH, FSH, and mRNA expression of Star and Cyp11a1 compared to the MSG group (p < 0.05). Furthermore, stereological results indicated a significant increment in the number of sexual lineage cells, the total volume of the testis, length, diameter, and volume of seminiferous tubules, the height of the germinal epithelium, sperm count, and sperm motility (p < 0.05) in MSG + L-carnitine 200 compare to MSG group. Conclusion The study’s findings demonstrated that L-carnitine due to its anti-oxidant properties, ameliorated the reproductive abnormalities in the male rats exposed to MSG.
Collapse
Affiliation(s)
- Farhad Koohpeyma
- grid.412571.40000 0000 8819 4698Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| | - Fatemeh Gholizadeh
- grid.410319.e0000 0004 1936 8630Department of Biology, Concordia University, Montreal, QC Canada
| | - Hannaneh Hafezi
- grid.412571.40000 0000 8819 4698Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| | - Mehri Hajiaghayi
- grid.410319.e0000 0004 1936 8630Department of Biology, Concordia University, Montreal, QC Canada
| | - Morvarid Siri
- grid.412571.40000 0000 8819 4698Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hasan Maleki
- grid.412571.40000 0000 8819 4698Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naeimehossadat Asmarian
- grid.412571.40000 0000 8819 4698Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Bayat
- grid.412571.40000 0000 8819 4698Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- grid.412571.40000 0000 8819 4698Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| |
Collapse
|
12
|
Exploring Nrf2 as a therapeutic target in testicular dysfunction. Cell Tissue Res 2022; 390:23-33. [PMID: 35788899 DOI: 10.1007/s00441-022-03664-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Testicular dysfunction, a major contributory factor to infertility, has received a lot of attention over the recent years. Several studies have linked abnormal sperm function and morphology with an enhanced generation of reactive oxygen species (ROS) and oxidative stress. The nuclear factor erythroid-derived 2 (Nrf2) is a transcriptional response to cellular stresses (intrinsic or extrinsic) that regulates the oxidative status, mitochondrial dysfunction, inflammation, and proteostasis. In this review, the therapeutic role of Nrf2 was explored. To do so, scientific data were retrieved from databases such as Elsevier, Wiley, Web of Science, Springer, PubMed, Taylor and Francis, and Google Scholar using search terms such as "Nrf2" and "testis," "sperm," "testicular function," and "testosterone." It has been noted that Nrf2 influences the physiology and pathology of testicular dysfunction, especially in the spermatogenic process, by regulating cellular resistance to oxidative stress, inflammation, and environmental toxicants. However, numerous compounds serve as activators and inhibitors of testicular Nrf2. Nrf2 activators might play a therapeutic role in the prevention and treatment of testicular dysfunction, while molecules that inhibit Nrf2 might induce dysfunction in testis components. Nrf2 activators protect cells against oxidative damage and activate Nrf2/KEAP1 signaling which promotes its movement to the nucleus, and increased Nrf2 function and expression, along with their downstream antioxidant gene. Nrf2 inhibitors facilitate oxidative stress via interfering with the Nrf2 signal pathway. The Nrf2 activation could serve as a promising therapeutic target for testicular dysfunction. This review explored the effect of Nrf2 on testicular function while highlighting potential activators and inhibitors of Nrf2.
Collapse
|
13
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Rotimi DE, Olaolu TD, Adeyemi OS. Pharmacological action of quercetin against testicular dysfunction: A mini review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:396-401. [PMID: 35850969 DOI: 10.1016/j.joim.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
The testis is an immune-privileged organ susceptible to oxidative stress and inflammation, two major factors implicated in male infertility. A reduction in the concentration and activities of testicular function biomarkers has been shown to correlate with impaired hypothalamic-pituitary-testicular axis and oxidative stress. However, the use of natural products to ameliorate these oxidative stress-induced changes may be essential to improving male reproductive function. Quercetin possesses several pharmacological activities that may help to combat cellular reproduction-related assaults, such as altered sperm function and reproductive hormone dysfunction, and dysregulated testicular apoptosis, oxidative stress, and inflammation. Studies have shown that quercetin ameliorates testicular toxicity, largely by inhibiting the generation of reactive oxygen species, with the aid of the two antioxidant pharmacophores present in its ring structure. The radical-scavenging property of quercetin may alter signal transduction of oxidative stress-induced apoptosis, prevent inflammation, and increase sperm quality in relation to the hormonal concentration. In this review, the therapeutic potential of quercetin in mediating male reproductive health is discussed.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran 251101, Kwara State, Nigeria.
| | - Tomilola D Olaolu
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluyomi S Adeyemi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| |
Collapse
|
15
|
Kayode OT, Rotimi D, Okoh E, Iyobhebhe M, Kayode AAA, Ojo OA. Novel ketogenic diet formulation improves sucrose-induced insulin resistance in canton strain Drosophila melanogaster. J Food Biochem 2021; 45:e13907. [PMID: 34409649 DOI: 10.1111/jfbc.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022]
Abstract
This study investigates the antidiabetic effect of a ketogenic diet (KD) on sucrose-induced insulin resistance in the fruit fly model. The fruit flies were divided and grouped into four: Group A, B, C, and D, representing the control, high-sucrose diet (HSD), KD, and HSD + KD, respectively. The administration of the various treatments to the groups proceeded for 7 days. The flies were thereafter immobilized, homogenized, and the homogenates used for biochemical parameters determination. This includes glucose concentration, antioxidant status, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, total cholesterol (TC), triglycerides (TG), and protein concentration. There was a significant increase (p < .05) in weight gain, glucose concentration, TG, HMG-CoA reductase activity, TC, and lipid peroxidation status of the HSD group compared with the control and KD groups. The antioxidant enzymes measured (superoxide dismutase, catalase, and reduced glutathione) and protein concentrations were repressed significantly (p < .05) in the HD groups but significantly elevated (p < .05) in the KD, HSD + KD, and the control groups. The KD improved biochemical parameters altered during the onset of sucrose-induced insulin resistance. With further research on this, KD may emerge as the much-awaited treatment option for diabetes mellitus type 2 (T2DM) with almost reduced toxicity concerns. PRACTICAL APPLICATIONS: Novel KD are sources of dietary phytocompounds with proven antioxidant activities. The antidiabetic activity of the KD was investigated. The results showed that the KD proves to serve as a better effective antidiabetic option in Drosophila melanogaster. The observed results could provide the potential application of the KD as an alternative therapy for diabetes management.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Biochemistry Unit, Department of Biological Sciences, Mountain Top University, Prayercity, Ogun State, Nigeria
| | - Damilare Rotimi
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Elizabeth Okoh
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Matthew Iyobhebhe
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, Benjamin Carson School of Medicine, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
16
|
Moldovan OL, Rusu A, Tanase C, Vari CE. Glutamate - A multifaceted molecule: Endogenous neurotransmitter, controversial food additive, design compound for anti-cancer drugs. A critical appraisal. Food Chem Toxicol 2021; 153:112290. [PMID: 34023459 DOI: 10.1016/j.fct.2021.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
One of the most widely used flavour enhancers in the food industry is monosodium glutamate (MSG). MSG consumption has been on an upward trend, worrying in terms of potential toxic effects. This review is focused on the long-term toxicity of MSG and the experimental evidence that supports it. The article's primary purpose was to survey recently published data regarding the consumption of MSG within safe limits. The administered doses in animal models are very varied and have given rise to controversy. Also, the paper comprises pathways to lower MSG toxicity and highlight other underexploited biological effects, as anti-cancer potential. The administration of MSG, combined with various compounds, has been shown benefit against toxic effects. Several recent studies have identified a possible mechanism that recommends MSG and some derivatives as potential anti-cancer agents. New anti-cancer compounds based on the glutamic acid structure must be studied and further exploited. International regulations require harmonization of safe doses of MSG based on current scientific studies. Replacing MSG with other umami flavour enhancers may be a safer alternative for human health in the future. The biological consequences of MSG consumption or therapeutical administration have not been fully deciphered yet.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Camil-Eugen Vari
- Pharmacy and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| |
Collapse
|