1
|
Xu L, Yang M, Wei A, Wei Z, Qin Y, Wang K, Li B, Chen K, Liu C, Li C, Wang T. Aerobic exercise-induced HIF-1α upregulation in heart failure: exploring potential impacts on MCT1 and MPC1 regulation. Mol Med 2024; 30:83. [PMID: 38867145 PMCID: PMC11167843 DOI: 10.1186/s10020-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The terminal stage of ischemic heart disease develops into heart failure (HF), which is characterized by hypoxia and metabolic disturbances in cardiomyocytes. The hypoxic failing heart triggers hypoxia-inducible factor-1α (HIF-1α) actions in the cells sensitized to hypoxia and induces metabolic adaptation by accumulating HIF-1α. Furthermore, soluble monocarboxylic acid transporter protein 1 (MCT1) and mitochondrial pyruvate carrier 1 (MPC1), as key nodes of metabolic adaptation, affect metabolic homeostasis in the failing rat heart. Aerobic exercise training has been reported to retard the progression of HF due to enhancing HIF-1α levels as well as MCT1 expressions, whereas the effects of exercise on MCT1 and MPC1 in HF (hypoxia) remain elusive. This research aimed to investigate the action of exercise associated with MCT1 and MPC1 on HF under hypoxia. METHODS The experimental rat models are composed of four study groups: sham stented (SHAM), HF sedentary (HF), HF short-term exercise trained (HF-E1), HF long-term exercise trained (HF-E2). HF was initiated via left anterior descending coronary artery ligation, the effects of exercise on the progression of HF were analyzed by ventricular ultrasound (ejection fraction, fractional shortening) and histological staining. The regulatory effects of HIF-1α on cell growth, MCT1 and MPC1 protein expression in hypoxic H9c2 cells were evaluated by HIF-1α activatort/inhibitor treatment and plasmid transfection. RESULTS Our results indicate the presence of severe pathological remodelling (as evidenced by deep myocardial fibrosis, increased infarct size and abnormal hypertrophy of the myocardium, etc.) and reduced cardiac function in the failing hearts of rats in the HF group compared to the SHAM group. Treadmill exercise training ameliorated myocardial infarction (MI)-induced cardiac pathological remodelling and enhanced cardiac function in HF exercise group rats, and significantly increased the expression of HIF-1α (p < 0.05), MCT1 (p < 0.01) and MPC1 (p < 0.05) proteins compared to HF group rats. Moreover, pharmacological inhibition of HIF-1α in hypoxic H9c2 cells dramatically downregulated MCT1 and MPC1 protein expression. This phenomenon is consistent with knockdown of HIF-1α at the gene level. CONCLUSION The findings propose that long-term aerobic exercise training, as a non- pharmacological treatment, is efficient enough to debilitate the disease process, improve the pathological phenotype, and reinstate cardiac function in HF rats. This benefit is most likely due to activation of myocardial HIF-1α and upregulation of MCT1 and MPC1.
Collapse
Affiliation(s)
- Longfei Xu
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Miaomiao Yang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Kun Wang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Bin Li
- No. 950 Hospital of the Chinese People's Liberation Army, Yecheng, 844999, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chen Liu
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chao Li
- Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Guo B, Qi M, Luo X, Guo L, Xu M, Zhang Y, Li Z, Li M, Wu R, Guan T, Liu M, Liu Y. GIP attenuates neuronal oxidative stress by regulating glucose uptake in spinal cord injury of rat. CNS Neurosci Ther 2024; 30:e14806. [PMID: 38887182 PMCID: PMC11183929 DOI: 10.1111/cns.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
AIM Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, Medical SchoolNantong UniversityNantongChina
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, Medical SchoolNantong UniversityNantongChina
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| |
Collapse
|
4
|
Li FG, Shi XY, Yang L, Lu X, Qi Y, Li P, Yang H, Gao W. Quantitative proteomics based bioactive proteins discovery and quality control of medicinal leeches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117117. [PMID: 37659761 DOI: 10.1016/j.jep.2023.117117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leech, a classical traditional Chinese medicine for promoting blood circulation and removing blood stasis, is mainly used in the clinical treatment of cardiovascular and cerebrovascular diseases. The discovery of activity proteins or peptides in the dead and dried medicinal leech is an important task with great challenges. AIM OF THE STUDY The aim of this study was to provide a basic proteome profile and help further discover active proteins and quality control for medicinal leeches, which would also provide insight into the research of animal medicines. MATERIALS AND METHODS Seventeen batches of dried medicinal leeches covering three species were collected from medicinal markets, which were authenticated by DNA barcoding. Then the proteome of different species leeches was profiled to reveal the significantly different proteins using label-free proteomics. The characteristic peptides were screened out based on biological pathways analysis, which were further absolutely quantified using the developed stable isotope-labeled based parallel reaction monitoring method. RESULTS Seventeen batches of leech materials were Whitmania pigra Whitman (WP), Whitmania laevis Whitman (WL) and Poecilobdella manillensis Lesson (PM), respectively. A total of 1,035 proteins (452 in WP, 425 in WL and 158 in PM) were identified. Among them, 90 overlapping proteins were mainly concentrated in diverse metabolic pathways and primarily localized in the cytoplasm and mitochondrial inner membrane, which mainly related to ATP binding, catalytic activity and structural molecular activity. In total of 51 uniquely expressed proteins (21 in WP, 23 in WL and 7 in PM), associated with multiple key signaling pathways, including Rap1, cGMP-PKG, PI3K-Akt, Wnt and HIF-1, etc., relevant to treating cardiovascular diseases, diabetes, cancer and even a variety of neurodegenerative diseases. Three proteins with potential bioactivities, including Neurohemerythrin, Hirudin and Eglin C, were selected as the quality makers and then quantified based on the characteristic peptides. CONCLUSIONS This work profiled the proteome of three species of leeches, and addressed potential active proteins of the medicinal leech, which would help to provide the potential molecular mechanisms involved in disease treatment. The proteomics-based approach developed in this work is not only useful for the discovery of proteins with potential bioactivities but also helpful for the bioactivity relevant quality control of animal medicines.
Collapse
Affiliation(s)
- Fu-Gui Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin-Yue Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Qi
- Yangshengtang Pharmaceutical Co., Ltd, Hangzhou, 310000, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Pan J, Zhang L, Li D, Li Y, Lu M, Hu Y, Sun B, Zhang Z, Li C. Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. Eur J Pharmacol 2024; 963:176277. [PMID: 38123007 DOI: 10.1016/j.ejphar.2023.176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bowen Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266000, China.
| |
Collapse
|
6
|
Huang B, Chen N, Chen Z, Shen J, Zhang H, Wang C, Sun Y. HIF-1α Contributes to Hypoxia-induced VSMC Proliferation and Migration by Regulating Autophagy in Type A Aortic Dissection. Adv Biol (Weinh) 2024; 8:e2300292. [PMID: 37786269 DOI: 10.1002/adbi.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Type A aortic dissection (AD) is a catastrophic cardiovascular disease. Hypoxia-inducible factor-1α (HIF-1α) and autophagy are reported to be upregulated in the AD specimens. However, the interaction between HIF-1α and autophagy in the pathogenesis of AD remains to be explored. HIF-1α and LC3 levels are evaluated in 10 AD and 10 normal aortic specimens. MDC staining, autophagic vacuoles, and autophagic flux are detected in human aortic smooth muscle cells (HASMCs) under hypoxia treatment. CCK-8, transwell, and wound healing assay are used to identify proliferation and migration under hypoxia treatment. Furthermore, 3-MA is used to inhibit autophagy in hypoxia-treated HASMCs. This study reveals that AD tissues highly express HIF-1α and the LC3. Autophagy is induced under hypoxia in a time-dependent manner, and autophagy is positively related to HIF-1α in HASMCs. Moreover, the proliferation and migration of HASMCs are enhanced by hypoxia, whereas the knockdown of HIF-1α attenuates this effect. Additionally, inhibiting autophagy with 3-MA ameliorates hypoxia-induced proliferation and migration of HASMCs. In summary, the above results indicate that HIF-1α facilitates HASMC proliferation and migration by upregulating autophagy in a hypoxic microenvironment. Thus, inhibition of autophagy may be a novel therapeutic target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Nan Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Hao Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| |
Collapse
|
7
|
Bruschi M, Biancucci F, Masini S, Piacente F, Ligi D, Bartoccini F, Antonelli A, Mannello F, Bruzzone S, Menotta M, Fraternale A, Magnani M. The influence of redox modulation on hypoxic endothelial cell metabolic and proteomic profiles through a small thiol-based compound tuning glutathione and thioredoxin systems. Biofactors 2023; 49:1205-1222. [PMID: 37409789 DOI: 10.1002/biof.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Reduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O2 (<5%), fail to support functional HSC maintenance due to oxidative environment. Therefore, changes in EC redox status induced by antioxidant molecules may lead to alterations in the cellular response to hypoxia likely favoring HSC self-renewal. To evaluate the impact of redox regulation, HUVEC, exposed for 1, 6, and 24 h to 3% O2 were treated with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152). Metabolomic analyses revealed that I-152 increased glutathione levels and influenced the metabolic profiles interconnected with the glutathione system and the redox couples NAD(P)+/NAD(P)H. mRNA analysis showed a lowered gene expression of HIF-1α and VEGF following I-152 treatment whereas TRX1 and 2 were stimulated. Accordingly, the proteomic study revealed the redox-dependent upregulation of thioredoxin and peroxiredoxins that, together with the glutathione system, are the main regulators of intracellular ROS. Indeed, a time-dependent ROS production under hypoxia and a quenching effect of the molecule were evidenced. At the secretome level, the molecule downregulated IL-6, MCP-1, and PDGF-bb. These results suggest that redox modulation by I-152 reduces oxidative stress and ROS level in hypoxic ECs and may be a strategy to fine-tune the environment of an in vitro BM niche able to support functional HSC maintenance.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Sofia Masini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, Genoa, GE, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, Genoa, GE, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, GE, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| |
Collapse
|
8
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Jiang Y, Ping J, Lu H, Zhang H, Liu M, Li Y, Zhou G. Associations between high-altitude adaptation and risk of cardiovascular diseases: a bidirectional Mendelian randomization study. Mol Genet Genomics 2023; 298:1007-1021. [PMID: 37233799 DOI: 10.1007/s00438-023-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
High-altitude adaptation (HAA) was reported to be significantly associated with reduced risks for multiple cardiovascular diseases (CVDs). However, the causality and direction of the associations are largely uncharacterized. We aimed to examine the potential causal relationships between HAA and six types of CVD, including coronary artery disease (CAD), cerebral aneurysm, ischemic stroke, peripheral artery disease, arrhythmia and atrial fibrillation. We obtained the summary data from largest available genome-wide association study of HAA and six types of CVD. Two-sample bidirectional Mendelian randomization (MR) analyses were performed to infer the causality between them. In the sensitivity analyses, MR-Egger regression analyses and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global analyses were used to assess the pleiotropic effects; Cochran's Q tests were used to test the heterogeneity by inverse variance-weighted (IVW) and MR-Egger methods; and the leave-one-out analyses were used to examine whether some single nucleotide polymorphisms (SNPs) could influence the results independently. The MR main analyses showed that the genetically instrumented HAA was significantly causally associated with the reduced risks of CAD (odds ratio [OR] = 0.029; 95% confidence interval [CI] = 0.004-0.234; P = 8.64 × 10-4). In contrast, there was no statistically significant relationship between CVDs and HAA. Our findings provide evidence for the causal effects of HAA on the reduced risks of CAD. However, there is no causality of CVDs on HAA. These findings might be helpful in developing the prevention and intervention strategies for CAD.
Collapse
Affiliation(s)
- Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China
| | - Jie Ping
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao Lu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Haoxiang Zhang
- The No. 954 Hospital of PLA, Shannan City, 856100, People's Republic of China
| | - Mengyu Liu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yuanfeng Li
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Gangqiao Zhou
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China.
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
10
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
11
|
Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24098376. [PMID: 37176083 PMCID: PMC10179092 DOI: 10.3390/ijms24098376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Atherosclerosis is a complex pathological condition marked by the accumulation of lipids in the arterial wall, leading to the development of plaques that can eventually rupture and cause thrombotic events. In recent years, hydrogen sulfide (H2S) has emerged as a key mediator of cardiovascular homeostasis, with potential therapeutic applications in atherosclerosis. This systematic review highlights the importance of understanding the complex interplay between H2S, oxygen homeostasis, and atherosclerosis and suggests that targeting H2S signaling pathways may offer new avenues for treating and preventing this condition. Oxygen homeostasis is a critical aspect of cardiovascular health, and disruption of this balance can contribute to the development and progression of atherosclerosis. Recent studies have demonstrated that H2S plays an important role in maintaining oxygen homeostasis by regulating the function of oxygen-sensing enzymes and transcription factors in vascular cells. H2S has been shown to modulate endothelial nitric oxide synthase (eNOS) activity, which plays a key role in regulating vascular tone and oxygen delivery to tissues. The comprehensive analysis of the current understanding of H2S in atherosclerosis can pave the way for future research and the development of new therapeutic strategies for this debilitating condition. PROSPERO ID: 417150.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iași, 700454 Iași, Romania
- Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), 041915 Bucharest, Romania
| |
Collapse
|
12
|
Sant’Ana PG, de Tomasi LC, Murata GM, Vileigas DF, Mota GAF, de Souza SLB, Silva VL, de Campos LP, Okoshi K, Padovani CR, Cicogna AC. Hypoxia-Inducible Factor 1-Alpha and Glucose Metabolism during Cardiac Remodeling Progression from Hypertrophy to Heart Failure. Int J Mol Sci 2023; 24:ijms24076201. [PMID: 37047174 PMCID: PMC10094437 DOI: 10.3390/ijms24076201] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
In pathological cardiac hypertrophy, the heart is more dependent on glucose than fatty acids. This shift in energy metabolism occurs due to several factors, including the oxygen deficit, which activates hypoxia-inducible factor-1α (HIF-1α), a critical molecule related to glucose metabolism. However, there are gaps regarding the behavior of key proteins in the glycolytic pathway and HIF-1α during the transition from hypertrophy to heart failure (HF). This study assesses the hypothesis that there is an early change and enhancement of HIF-1α and the glycolytic pathway, as well as an association between them during cardiac remodeling. Sham and aortic stenosis Wistar rats were analyzed at 2, 6, and 18 weeks and in HF (n = 10–18). Cardiac structure and function were investigated by echocardiogram. Myocardial glycolysis, the aerobic and anaerobic pathways and glycogen were analyzed by enzymatic assay, Western blot, and enzyme-linked immunosorbent assay (ELISA). The following were observed: increased left ventricular hypertrophy; early diastolic function change and severe systolic and diastolic dysfunction in HF; increased HIF-1α in the 2nd week and in HF; precocious alteration and intensification of glycolysis with a shift to anaerobic metabolism from the 6th week onwards; association between HIF-1α, glycolysis, and the anaerobic pathway. Our hypothesis was confirmed as there was an early change and intensification in glucose metabolism, alteration in HIF-1α, and an association between data during the progression from hypertrophy to heart failure.
Collapse
Affiliation(s)
- Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Loreta Casquel de Tomasi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Gilson Masahiro Murata
- Laboratory of Medical Investigation (LIM-29), Division of Nephrology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Vitor Loureiro Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Livia Paschoalino de Campos
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
- Correspondence:
| |
Collapse
|
13
|
Lupu M, Coada CA, Tudor DV, Baldea I, Florea A, Toma VA, Lupsor A, Moldovan R, Decea N, Filip GA. Iron chelation alleviates multiple pathophysiological pathways in a rat model of cardiac pressure overload. Free Radic Biol Med 2023; 200:1-10. [PMID: 36822542 DOI: 10.1016/j.freeradbiomed.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Iron dysmetabolism affects a great proportion of heart failure patients, while chronic hypertension is one of the most common risk factors for heart failure and death in industrialized countries. Serum data from reduced ejection fraction heart failure patients show a relative or absolute iron deficiency, whereas cellular myocardial analyses field equivocal data. An observed increase in organellar iron deposits was incriminated to cause reactive oxygen species formation, lipid peroxidation, and cell death. Therefore, we studied the effects of iron chelation on a rat model of cardiac hypertrophy. Suprarenal abdominal aortic constriction was achieved surgically, with a period of nine weeks to accommodate the development of chronic pressure overload. Next, deferiprone (100 mg/kg/day), a lipid-permeable iron chelator, was administered for two weeks. Pressure overload resulted in increased inflammation, fibrotic remodeling, lipid peroxidation, left ventricular hypertrophy and mitochondrial iron derangements. Deferiprone reduced cardiac inflammation, lipid peroxidation, mitochondrial iron levels, and hypertrophy, without affecting circulating iron levels or ejection fraction. In conclusion, metallic molecules may pose ambivalent effects within the cardiovascular system, with beneficial effects of iron redistribution, chiefly in the mitochondria.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Camelia Alexandra Coada
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Molecular Sciences, 400394, Cluj-Napoca, Romania; University of Bologna, Department of Medical and Surgical Sciences (DIMEC), 40138, Bologna, Italy
| | - Diana-Valentina Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Ioana Baldea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Adrian Florea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Cell and Molecular Biology, Cluj-Napoca, Romania.
| | - Vlad-Alexandru Toma
- Babeș-Bolyai University, Department of Molecular Biology and Biotechnologies, Clinicilor Street No. 4-6, 400000, Cluj-Napoca, Cluj County, Romania; Institute of Biological Research, Republicii Street No. 48, 400015, Cluj-Napoca, Cluj County, Romania
| | - Ana Lupsor
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Remus Moldovan
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Nicoleta Decea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Tarhriz V, Abkhooie L, Sarabi MM. Regulation of HIF-1 by MicroRNAs in Various Cardiovascular Diseases. Curr Cardiol Rev 2023; 19:51-56. [PMID: 37005512 PMCID: PMC10518879 DOI: 10.2174/1573403x19666230330105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 04/04/2023] Open
Abstract
Today, we see an increase in death due to cardiovascular diseases all over the world, which has a lot to do with the regulation of oxygen homeostasis. Also, hypoxia-inducing factor 1 (HIF-1) is considered a vital factor in hypoxia and its physiological and pathological changes. HIF- 1 is involved in cellular activities, including proliferation, differentiation, and cell death in endothelial cells (ECs) and cardiomyocytes. Similar to HIF-1α, which acts as a protective element against various diseases in the cardiovascular system, the protective role of microRNAs (miRNAs) has also been proved using animal models. The number of miRNAs identified in the regulation of gene expression responsive to hypoxia and the importance of investigating the involvement of the non-coding genome in cardiovascular diseases is increasing, which shows the issue's importance. In this study, the molecular regulation of HIF-1 by miRNAs is considered to improve therapeutic approaches in clinical diagnoses of cardiovascular diseases.
Collapse
Affiliation(s)
- Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
15
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
16
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
17
|
Yu T, Zhang YX, Liu XJ, Chen DQ, Wang DD, Zhu GQ, Gao Q. Investigation of the pharmacological effect and mechanism of mountain-cultivated ginseng and garden ginseng in cardiovascular diseases based on network pharmacology and zebrafish experiments. Front Pharmacol 2022; 13:920979. [PMID: 36120313 PMCID: PMC9474728 DOI: 10.3389/fphar.2022.920979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Mey) is a kind of perennial herb of the Panax genus in the Araliaceae family. The secondary metabolites of mountain-cultivated ginseng (MCG) and garden ginseng (GG) vary greatly due to their different growth environments. To date, the differences in their pharmacological effects on cardiovascular diseases (CVDs) and their clinical applications remain unclear. To distinguish between the components of MCG and GG, ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. Next, the relationship between the expression of metabolites and the categories of the sample were analyzed using supervised partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis. A network-based pharmacology approach was developed and applied to determine the underlying mechanism of different metabolites in CVD. In the present study, the role of MCG and GG in angiogenesis and their protective effects on damaged blood vessels in a vascular injury model of zebrafish were investigated. Using UPLC-Q-TOF/MS, 11 different metabolites between MCG and GG were identified. In addition, 149 common target genes associated with the metabolites and CVD were obtained; these targets were related to tumor protein P53, proto-oncogene tyrosine-protein kinase Src, human ubiquitin-52 amino acid fusion protein, ubiquitin-40S ribosomal protein S27a, polyubiquitin B, signal transducer and activator of transcription 3, isocitrate dehydrogenase 1, vascular endothelial growth factor A, glycose synthase kinase-3B, and coagulation factor II and were associated with the regulation of the phosphoinositide 3-kinase-Akt signaling pathway, the tumor necrosis factor signaling pathway, and the hypoxia-inducible factor-1 (HIF-1) signaling pathway, which play important roles in the curative effect in CVD treatment. Both types of ginseng can promote the growth of the subintestinal vessel plexus and protect injured intersegmental vessels through the HIF-1α/vascular endothelial growth factor signaling pathway in a dose-dependent manner. In addition, MCG has a stronger impact than GG. This is the first time metabolomics and network pharmacology methods were combined to study the difference between MCG and GG on CVDs, which provides a significant theoretical basis for the clinical treatment of CVD with two kinds of ginseng.
Collapse
Affiliation(s)
- Ting Yu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Xin Zhang
- SPH XingLing Sci&Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Xin-Juan Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan-Qing Chen
- Shanghai SPH Shenxiang Health Medicine Co., Ltd., Shanghai, China
| | - Dan-Dan Wang
- SPH XingLing Sci&Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Guo-Qin Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- SPH XingLing Sci&Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Qi Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- SPH XingLing Sci&Tech. Pharmaceutical Co., Ltd., Shanghai, China
- *Correspondence: Qi Gao,
| |
Collapse
|
18
|
Oknińska M, Mackiewicz U, Zajda K, Kieda C, Mączewski M. New potential treatment for cardiovascular disease through modulation of hemoglobin oxygen binding curve: Myo-inositol trispyrophosphate (ITPP), from cancer to cardiovascular disease. Biomed Pharmacother 2022; 154:113544. [PMID: 35988421 DOI: 10.1016/j.biopha.2022.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The human body is a highly aerobic organism, which needs large amount of oxygen, especially in tissues characterized by high metabolic demand, such as the heart. Inadequate oxygen delivery underlies cardiovascular diseases, such as coronary artery disease, heart failure and pulmonary hypertension. Hemoglobin, the oxygen-transport metalloprotein in the red blood cells, gives the blood enormous oxygen carrying capacity; thus oxygen binding to hemoglobin in the lungs and oxygen dissociation in the target tissues are crucial points for oxygen delivery as well as potential targets for intervention. Myo-inositol trispyrophosphate (ITPP) acts as an effector of hemoglobin, shifting the oxygen dissociation curve to the right and increasing oxygen release in the target tissues, especially under hypoxic conditions. ITPP has been successfully used in cancer studies, demonstrating anti-cancer properties due to prevention of tumor hypoxia. Currently it is being tested in phase 2 clinical trials in humans with various tumors. First preclinical evidence also indicates that it can successfully alleviate myocardial hypoxia and prevent adverse left ventricular and right ventricular remodeling in post-myocardial infarction heart failure and pulmonary hypertension. The aim of the article is to summarize the current knowledge on ITTP, as well as to determine the prospects for its potential use in the treatment of many cardiovascular disorders.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland; Center for Molecular Biophysics, UPR 4301 CNRS, Orleans, France
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
19
|
Ogata R, Soda H, Senju H, Fujioka M, Shimada M, Yamashita K, Irifune S, Tagawa R, Dotsu Y, Iwasaki K, Taniguchi H, Takemoto S, Fukuda Y, Mukae H. Immunosuppressive tumor microenvironment in extraskeletal myxoid chondrosarcoma: A case of pleural metastases. Thorac Cancer 2022; 13:2812-2816. [PMID: 35974707 PMCID: PMC9527174 DOI: 10.1111/1759-7714.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Extraskeletal myxoid chondrosarcoma (EMCS) is an undifferentiated mesenchymal malignancy; however, its immune microenvironment remains to be elucidated. The case of a 34-year-old woman who developed EMCS metastasizing to the pleura is presented here. The pleural EMCS showed hypervascularity, absent PD-L1 expression, and a lack of tumor mutational burden and pathogenic variants. Immunohistological examination of the pleural lesions showed predominant M2 macrophages and sparse CD8+ T cells. EMCS and the tumor stroma were positive for transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF). In contrast, a small number of the stromal vessels were positive for hypoxia inducible factor-1α (HIF-1α). TGF-β1 and VEGF in the tumor stroma and low antigenicity of the tumor cells may help explain how EMCS induced the immunosuppressive microenvironment. These findings may encourage investigators to explore novel combined immunotherapy for EMCS, such as TGF-β1 and VEGF inhibitors, and specific therapy for enhancing tumor antigens.
Collapse
Affiliation(s)
- Ryosuke Ogata
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Hiroshi Soda
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan.,Department of Respiratory Medicine, Senju Hospital, Nagasaki, Japan
| | - Masaki Fujioka
- Department of Plastic and Reconstructive Surgery, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Midori Shimada
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koki Yamashita
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Satoshi Irifune
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Ryuta Tagawa
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Yosuke Dotsu
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Keisuke Iwasaki
- Department of Pathology, Sasebo City General Hospital, Nagasaki, Japan
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
20
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
21
|
Syukri A, Budu, Hatta M, Amir M, Rohman MS, Mappangara I, Kaelan C, Wahyuni S, Bukhari A, Junita AR, Primaguna MR, Dwiyanti R, Febrianti A. Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Ann Med Surg (Lond) 2022; 76:103501. [PMID: 35340325 PMCID: PMC8943401 DOI: 10.1016/j.amsu.2022.103501] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX) is a commonly used treatment for cancer and the mechanism of DOX-induced cardiomyocyte damage in cardiovascular disease is not fully understood. High-mobility group box 1 (HMGB1), strong induce proinflammatory cytokines via damage associated molecular pattern (DAMP) which its interaction with the receptor of advanced glycation end products (RAGE), that affect cytokine release, and angiogenesis via the role of HMBG1, HIF-1α and VEGF as an important regulator in these cardiac failure processes. Hypoxia-inducible factor-1α (HIF-1α) is plays an important role in the cellular response to systemic oxygen levels of cells and VEGF is an angiogenic factor and can stimulate cellular responses on the surface of endothelial cells will be described Objective The aim of this article is to comprehensively review the role of HMGB1, HIF-1α, and VEGF in DOX-induced Cardiovascular Disease and its molecular mechanisms. Methods The data in this study were collect by search the keyword combinations of medical subject headings (MeSH) of “HMGB1”, “HIF-1 α”, “VEGF”, “DOX” and “Cardiovascular disease” and relevant reference lists were manually searched in PubMed, EMBASE and Scopus database. All relevant articles in data base above were included and narratively discussed in this review article. Results Several articles were revealed that molecular mechanisms of the DOX in cardiomyocyte damage and related to HMGB1, HIF-1α and VEGF and may potential treatment and prevention to cardiovascular disease in DOX intervention. Conclusion HMGB1, HIF-1α and VEGF has a pivotal regulator in DOX-induce cardiomyocyte damage and predominantly acts through different pathways. The role of HMGB1 in DOX-induced myocardial damage suggests that HMGB1 is a mediator of DOX-induced damage. In addition, DOX can inhibit HIF-1α activity where DOX can decrease HIF-1α expression and HIF-1α is also responsible for upregulation of several angiogenic factors, including VEGF. VEGF plays an important role in angiogenesis and anti-angiogenesis both in vitro and in vivo and reduces the side effects of DOX markedly. In addition, the administration of anti-angiogenesis will show an inhibitory effect on angiogenesis mediated by the VEGF signaling pathway and triggered by DOX in cells. The effect of Doxorubicin (DOX) induced cardiovascular damage via several pathways. Cardiovascular damage can involve HMGB1, HIF-1α, and VEGF. HMGB1, HIF-1α, and VEGF as a pivotal regulator in DOX-induce cardiomyocyte damage. HMGB1, HIF-1α, and VEGF in cardiovascular diseases will be predominantly acting through different pathways.
Collapse
|
22
|
Choromańska B, Myśliwiec P, Kozłowski T, Łuba M, Wojskowicz P, Dadan J, Myśliwiec H, Choromańska K, Makarewicz K, Zalewska A, Maciejczyk M. Cross-Talk Between Nitrosative Stress, Inflammation and Hypoxia-Inducible Factor in Patients with Adrenal Masses. J Inflamm Res 2021; 14:6317-6330. [PMID: 34876829 PMCID: PMC8643214 DOI: 10.2147/jir.s337910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Adrenal masses are the most common of all human tumors. The role of nitrosative stress and inflammation in cancer development has already been demonstrated. However, it is not known whether they are involved in the pathogenesis of adrenal tumors. The aim of the study was to investigate a cross-talk between nitrosative stress, inflammation and hypoxia-inducible factor (HIF-1α) in 75 patients with different types of adrenal masses (non-functional incidentaloma, pheochromocytoma and Cushing's/Conn's adenoma). Methods The plasma concentrations of total nitric oxide (NO), S-nitrosothiols, peroxynitrite nitrotyrosine and the activity of serum myeloperoxidase (MPO) were measured spectrophotometrically, whereas concentrations of interleukin 1 beta (IL-1β), tumor necrosis factor α (TNF-α) and hypoxia-inducible factor 1 alpha (HIF-1α) were measured using commercial ELISA kits. The control group consisted of 50 healthy people matched by age and sex to the study group. The number of subjects was determined a priori based on our previous experiment (power of the test = 0.9; α = 0.05). Results We found significantly higher nitrosative stress (↑nitric oxide, ↑peroxynitrite, ↑S-nitrosothiols and ↑nitrotyrosine) in the plasma of patients with adrenal tumors, which was accompanied by increased inflammatory (↑myeloperoxidase, ↑interleukin 1 beta and ↑tumor necrosis factor α) and hypoxia (HIF-1α) biomarkers. Peroxynitrite and nitrotyrosine were positively correlated with aldosterone level. Nitrosative stress was also associated with inflammation and HIF-1α. Interestingly, plasma nitrotyrosine and serum MPO differentiated patients with adrenal tumor from healthy individuals with high sensitivity and specificity. Moreover, using multivariate regression analysis, we showed that ONOO- and IL-1β depended on cortisol level, while ONOO-, nitrotyrosine and HIF-1α were associated with aldosterone. Unfortunately, none of the assessed biomarkers differentiated between tumor types studied, suggesting that the severity of nitrosative damage and inflammation are similar in patients with incidentaloma, pheochromocytoma, and Cushing's or Conn's adenoma. Conclusion Adrenal tumors are associated with increased protein nitration/S-nitrosylation and inflammation.
Collapse
Affiliation(s)
- Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Myśliwiec
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kozłowski
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Łuba
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wojskowicz
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Dadan
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
23
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
24
|
Yan J, Ruan P, Ge Y, Gao J, Tan H, Xiao C, Gao Q, Zhang Z, Gao Y. Mechanisms and Molecular Targets of Compound Danshen Dropping Pill for Heart Disease Caused by High Altitude Based on Network Pharmacology and Molecular Docking. ACS OMEGA 2021; 6:26942-26951. [PMID: 34693115 PMCID: PMC8529605 DOI: 10.1021/acsomega.1c03282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 05/30/2023]
Abstract
Compound Danshen dropping pill (CDDP), a famous Chinese medicine formula, has been widely used to treat high-altitude heart disease in China. However, its molecular mechanisms, potential targets, and bioactive ingredients remain elusive. In this study, network pharmacology, molecular docking, and validation experiments were combined to investigate the effective active ingredients and molecular mechanisms of CDDP in the treatment of high-altitude heart disease. Tan IIA may be the main active component of CDDP in the treatment of high-altitude heart disease via HIF-1/PI3K/Akt pathways.
Collapse
Affiliation(s)
- Jiayi Yan
- School
of Traditional Chinese Medicine, Guangdong
Pharmaceutical University, Guangzhou 510006, China
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Panpan Ruan
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- School
of Life Science, Heibei University, Baoding 071000, China
| | - Yunxuan Ge
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- College
of Life Science and Bioengineering, Beijing
University of Technology, Beijing 100124, China
| | - Jing Gao
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- School
of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hongling Tan
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Quansheng Gao
- Institute
of Enviromental and Operational Medicine, Academy of Military Medical
Sciences, Academy of Military Sciences, Tianjin 300381, China
| | - Zhuo Zhang
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- School
of Traditional Chinese Medicine, Guangdong
Pharmaceutical University, Guangzhou 510006, China
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
25
|
Li JM, Mu ZN, Zhang TT, Li X, Shang Y, Hu GH. Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6015702. [PMID: 34603472 PMCID: PMC8486536 DOI: 10.1155/2021/6015702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
METHODS Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.
Collapse
Affiliation(s)
- Jia Min Li
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhen Ni Mu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tian Tian Zhang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Li
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yan Shang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guo Heng Hu
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
26
|
Inhibition of hypoxia-inducible factor-1α alleviates acinar cell necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun 2021; 572:72-79. [PMID: 34358966 DOI: 10.1016/j.bbrc.2021.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1α (Hif1α) is activated in hypoxia and is closely related to oxidative stress, immunity and cell metabolism. Recently, it is reported that Hif1α is involved in atherosclerosis, ischemia-reperfusion (I/R) injury, alcoholic liver disease and pancreatic tumors. In this study, we found that Hif1 signal pathway is significantly changed in pancreas of acute pancreatitis (AP) mice. Meanwhile, we verified that the high expression of Hif1α injured pancreatic tissues of cerulean-induced AP mice, which prompting that Hif1α participated in the progress of histopathology on AP. We applied a Hif1α inhibitor PX478 and observed that it could alleviate histological injury of pancreas as well as the levels of serum amylase, lipase and proinflammatory cytokine in the murine model of AP induced by caerulein. In addition, PX478 could reduce the formation of necrosome (RIP3 and p-MLKL) and the generation of reactive oxygen species (ROS) in AP mice. Correspondingly, we further confirmed the effectiveness of PX478 in vitro and found that inhibiting Hif1α could mitigated the necrosis of pancreatic acinar cells via reducing the RIP3 and p-MLKL expression and the ROS production. In conclusion, inhibiting Hif1α could protect against acinar cells necrosis in AP, which may provide a new target for the prevention and treatment of AP clinically.
Collapse
|
27
|
Yap DYH, McMahon LP, Hao CM, Hu N, Okada H, Suzuki Y, Kim SG, Lim SK, Vareesangthip K, Hung CC, Nangaku M. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology (Carlton) 2020; 26:105-118. [PMID: 33222343 PMCID: PMC7898910 DOI: 10.1111/nep.13835] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Renal anaemia is a common and important complication in patients with chronic kidney disease (CKD). The current standard‐of‐care treatment for renal anaemia in CKD patients involves ensuring adequate iron stores and administration of erythropoietin stimulating agents (ESA). Hypoxia inducible factor (HIF) is a key transcription factor primarily involved in the cellular regulation and efficiency of oxygen delivery. Manipulation of the HIF pathway by the use of HIF‐prolyl hydroxylase inhibitors (HIF‐PHI) has emerged as a novel approach for renal anaemia management. Despite it being approved for clinical use in various Asia‐Pacific countries, its novelty mandates the need for nephrologists and clinicians generally in the region to well understand potential benefits and harms when prescribing this class of drug. The Asian Pacific society of nephrology HIF‐PHI Recommendation Committee, formed by a panel of 11 nephrologists from the Asia‐Pacific region who have clinical experience or have been investigators in HIF‐PHI studies, reviewed and deliberated on the clinical and preclinical data concerning HIF‐PHI. This recommendation summarizes the consensus views of the committee regarding the use of HIF‐PHI, taking into account both available data and expert opinion in areas where evidence remains scarce. The Asian Pacific society of nephrology HIF‐PHI Recommendation Committee summarizes the consensus views of the committee regarding the use of HIF‐PHI, taking into account both available data and expert opinion in areas where evidence remains scarce.
Collapse
Affiliation(s)
- Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lawrence P McMahon
- Department of Renal and Obstetric Medicine, Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Chuan-Ming Hao
- Divison of Nephrology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Nan Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, P. R. China
| | - Hirokazu Okada
- Department of Nephrology, Saitama Medical University, Irumagun, Saitama, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Seoul, South Korea
| | - Soo Kun Lim
- Division of Nephrology, Department of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Kriengsak Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
28
|
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21176421. [PMID: 32899304 PMCID: PMC7503689 DOI: 10.3390/ijms21176421] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Collapse
|