1
|
Yuan LH, Zhang LJ. Effects of CSF1R/p-ERK1/2 signaling pathway on RF/6A cells under high glucose conditions. Eur J Ophthalmol 2024; 34:1165-1173. [PMID: 38099815 DOI: 10.1177/11206721231219717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVE This study analyzed how high glucose affects CSF1R and p-ERK1/2 expression in RF/6A cells. METHODS The cells were cultured as high glucose (HG) and normal control (C) groups, and CSF1R shRNA was introduced. Real time PCR was used to detect the expression of CSF1R and p-ERK1/2 mRNA. Western blot was used to detect the expression of CSF1R and p-ERK1/2 proteins. Cell Counting Kit 8 (CCK-8) method was used to detect cell proliferation, while flow cytometry was used to detect apoptosis in HREC. RESULTS Real-time PCR showed significantly raised CSF1R mRNA expression in HG. CSF1R inhibition lowered HG + LV shCSF1R CSF1R mRNA levels. Western blotting revealed higher CSF1R and p-ERK1/2 protein expression in HG than in C. Their expression level dropped after CSF1R inhibition. The number of tube-forming cells was higher in HG than in C, which reduced after CSF1R suppression. Inhibiting CSF1R also decreased cell proliferation and raised apoptosis. CONCLUSION Overall, under high glucose, CSF1R and p-ERK1/2 were highly expressed, leading to reduced cellular activity, and CSF1R inhibition helped alleviate this effect.
Collapse
Affiliation(s)
- Lin Hui Yuan
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Li Jun Zhang
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Role of CSF1R 550th-tryptophan in kusunokinin and CSF1R inhibitor binding and ligand-induced structural effect. Sci Rep 2024; 14:12531. [PMID: 38822100 PMCID: PMC11143223 DOI: 10.1038/s41598-024-63505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Binding affinity is an important factor in drug design to improve drug-target selectivity and specificity. In this study, in silico techniques based on molecular docking followed by molecular dynamics (MD) simulations were utilized to identify the key residue(s) for CSF1R binding affinity among 14 pan-tyrosine kinase inhibitors and 15 CSF1R-specific inhibitors. We found tryptophan at position 550 (W550) on the CSF1R binding site interacted with the inhibitors' aromatic ring in a π-π way that made the ligands better at binding. Upon W550-Alanine substitution (W550A), the binding affinity of trans-(-)-kusunokinin and imatinib to CSF1R was significantly decreased. However, in terms of structural features, W550 did not significantly affect overall CSF1R structure, but provided destabilizing effect upon mutation. The W550A also did not either cause ligand to change its binding site or conformational changes due to ligand binding. As a result of our findings, the π-π interaction with W550's aromatic ring could be still the choice for increasing binding affinity to CSF1R. Nevertheless, our study showed that the increasing binding to W550 of the design ligand may not ensure CSF1R specificity and inhibition since W550-ligand bound state did not induce significantly conformational change into inactive state.
Collapse
Affiliation(s)
- Chompunud Chompunud Na Ayudhya
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
- Bioactivity Testing Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand.
- Bioactivity Testing Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand.
| |
Collapse
|
3
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
4
|
Rattanaburee T, Chompunud Na Ayudhya C, Thongpanchang T, Tipmanee V, Graidist P. Trans-(±)-TTPG-B Attenuates Cell Cycle Progression and Inhibits Cell Proliferation on Cholangiocarcinoma Cells. Molecules 2023; 28:7342. [PMID: 37959760 PMCID: PMC10650166 DOI: 10.3390/molecules28217342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
This research aimed to determine the target protein and molecular mechanism of trans-(±)-kusunokinin ((±)-KU) derivatives (trans-(±)-ARC and trans-(±)-TTPG-B). Molecular docking was used to predict potential synthesized (±)-KU targets among 22 proteins. The (±)-TTPG-B bound HSP90α better than EC44, native (±)-KU and (-)-KU, and (±)-KU and (-)-ARC. In contrast, (-)-ARC bound PI3K more strongly than any other test compound. CSF1R and AKR1B1 were not supposed to be the target of (±)-TTPG-B and (±)-ARC, unlike native (±)-KU. The (±)-TTPG-B bound Tyr139 and Trp162 of HSP90α. Moreover, (-)-ARC bound PI3K via hydrogen bonds and π-π stacking at distinct amino acids, which was different from the other tested compounds. Using half of the IC50 concentration, (±)-TTPG-B, (±)-KU and (±)-ARC enhanced cell cycle arrest at the G0/G1 phase after 12 h and 24 h on KKU-M213 (CCA) cells. The (±)-TTPG-B showed a stronger inhibitory effect than (±)-ARC and (±)-KU on HSP90α, PI3K, HSP90β, c-Myc, AKT, MEK1, CyclinB1, CyclinD1, and CDK1 for 24 and 48 h after treatment with the same concentration (0.015 µM). Thus, trans-(±)-TTPG-B, a newly synthesized compound, has pharmacological potential for development as a target therapy for CCA treatment.
Collapse
Affiliation(s)
- Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.)
- Biochemistry Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand
| | - Chompunud Chompunud Na Ayudhya
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.)
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.)
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.)
| |
Collapse
|
5
|
Pattaranggoon NC, Daduang S, Rungrotmongkol T, Teajaroen W, Tipmanee V, Hannongbua S. Computational model for lipid binding regions in phospholipase (Ves a 1) from Vespa venom. Sci Rep 2023; 13:10652. [PMID: 37391452 PMCID: PMC10313747 DOI: 10.1038/s41598-023-36742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
The Thai banded tiger wasp (Vespa affinis) is a dangerous vespid species found in Southeast Asia, and its stings often result in fatalities due to the presence of lethal phospholipase A[Formula: see text], known as Vespapase or Ves a 1. Developing anti-venoms for Ves a 1 using chemical drugs, such as chemical drug guide, remains a challenging task. In this study, we screened 2056 drugs against the opening conformation of the venom using the ZINC 15 and e-Drug 3D databases. The binding free energy of the top five drug candidates complexed with Ves a 1 was calculated using 300-ns-MD trajectories. Our results revealed that voxilaprevir had a higher binding free energy at the catalytic sites than other drug candidates. Furthermore, the MD simulation results indicated that voxilaprevir formed stable conformations within the catalytic pocket. Consequently, voxilaprevir could act as a potent inhibitor, opening up avenues for the development of more effective anti-venom therapeutics for Ves a 1.
Collapse
Affiliation(s)
- Nawanwat C Pattaranggoon
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Withan Teajaroen
- Faculty of Associated Medical Sciences, Center for Innovation and Standard for Medical Technology and Physical Therapy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Supot Hannongbua
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Vaishali M. Patil. Role of CSF1R Inhibitor Pexidartinib for the Treatment of Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Anticancer Activity of (±)-Kusunokinin Derivatives towards Cholangiocarcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238291. [PMID: 36500383 PMCID: PMC9735782 DOI: 10.3390/molecules27238291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the cytotoxicity and anticancer activity of (±)-kusunokinin derivatives ((±)-TTPG-A and (±)-TTPG-B). The cytotoxicity effect was performed on human cancer cells, including breast cancer, cholangiocarcinoma, colon and ovarian cancer-cells, compared with normal cells, using the MTT assay. Cell-cycle arrest and apoptosis were detected using flow-cytometry analysis. We found that (±)-TTPG-B exhibited the strongest cytotoxicity on aggressive breast-cancer (MDA-MB-468 and MDA-MB-231) and cholangiocarcinoma (KKU-M213), with an IC50 value of 0.43 ± 0.01, 1.83 ± 0.04 and 0.01 ± 0.001 µM, respectively. Interestingly, (±)-TTPG-A and (±)-TTPG-B exhibited less toxicity than (±)-kusunokinin (9.75 ± 0.39 µM) on L-929 cells (normal fibroblasts). Moreover, (±)-TTPG-A predominated the ell-cycle arrest at the S phase, while (±)-TTPG-B caused cell arrest at the G0/G1 phase, in the same way as (±)-kusunokinin in KKU-M213 cells. Both (±)-TTPG-A and (±)-TTPG-B induced apoptosis and multi-caspase activity more than (±)-kusunokinin. Taken together, we conclude that (±)-TTPG-A and (±)-TTPG-B have a strong anticancer effect on cholangiocarcinoma. Moreover, (±)-TTPG-B could be a potential candidate compound for breast cancer and cholangiocarcinoma in the future.
Collapse
|
8
|
Tanawattanasuntorn T, Rattanaburee T, Thongpanchang T, Graidist P. Trans-(±)-Kusunokinin Binding to AKR1B1 Inhibits Oxidative Stress and Proteins Involved in Migration in Aggressive Breast Cancer. Antioxidants (Basel) 2022; 11:antiox11122347. [PMID: 36552555 PMCID: PMC9774946 DOI: 10.3390/antiox11122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Synthetic trans-(±)-kusunokinin ((±)KU), a potential anticancer substance, was revealed to have an inhibitory effect on breast cancer. According to the computational modeling prediction, AKR1B1, an oxidative stress and cancer migration protein, could be a target protein of trans-(-)-kusunokinin. In this study, we determined the binding of (±)KU and AKR1B1 on triple-negative breast and non-serous ovarian cancers. We found that (±)KU exhibited a cytotoxic effect that was significantly stronger than zopolrestat (ZP) and epalrestat (EP) (known AKR1B1 inhibitors) on breast and ovarian cancer cells. (±)KU inhibited aldose reductase activity that was stronger than trans-(-)-arctiin ((-)AR) but weaker than ZP and EP. Interestingly, (±)KU stabilized AKR1B1 on SKOV3 and Hs578T cells after being heated at 60 and 75 °C, respectively. (±)KU decreased malondialdehyde (MDA), an oxidative stress marker, on Hs578T cells in a dose-dependent manner and the suppression was stronger than EP. Furthermore, (±)KU downregulated AKR1B1 and its downstream proteins, including PKC-δ, NF-κB, AKT, Nrf2, COX2, Twist2 and N-cadherin and up-regulated E-cadherin. (±)KU showed an inhibitory effect on AKR1B1 and its downstream proteins, similar to siRNA-AKR1B1. Interestingly, the combination of siRNA-AKR1B1 with EP or (±)KU showed a greater effect on the suppression of AKR1B1, N-cadherin, E-cadherin and NF-κB than single treatments. Taken together, we concluded that (±)KU-bound AKR1B1 leads to the attenuation of cellular oxidative stress, as well as the aggressiveness of breast cancer cell migration.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-45-1184
| |
Collapse
|
9
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
10
|
Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Molecules 2022; 27:molecules27134194. [PMID: 35807438 PMCID: PMC9268608 DOI: 10.3390/molecules27134194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer cell proliferation and migration are inhibited by naturally extracted trans-(−)-kusunokinin. However, three additional enantiomers of kusunokinin have yet to be investigated: trans-(+)-kusunokinin, cis-(−)-isomer and cis-(+)-isomer. According to the results of molecular docking studies of kusunokinin isomers on 60 breast cancer-related proteins, trans-(−)-kusunokinin was the most preferable and active component of the trans-racemic mixture. Trans-(−)-kusunokinin targeted proteins involved in cell growth and proliferation, whereas the cis-(+)-isomer targeted proteins involved in metastasis. Trans-(−)-kusunokinin targeted CSF1R specifically, whereas trans-(+)-kusunokinin and both cis-isomers may have bound AKR1B1. Interestingly, the compound’s stereoisomeric effect may influence protein selectivity. CSF1R preferred trans-(−)-kusunokinin over trans-(+)-kusunokinin because the binding pocket required a ligand planar arrangement to form a π-π interaction with a selective Trp550. Because of its large binding pocket, EGFR exhibited no stereoselectivity. MD simulation revealed that trans-(−)-kusunokinin, trans-(+)-kusunokinin and pexidartinib bound CSF1R differently. Pexidartinib had the highest binding affinity, followed by trans-(−)-kusunokinin and trans-(+)-kusunokinin, respectively. The trans-(−)-kusunokinin-CSF1R complex was found to be stable, whereas trans-(+)-kusunokinin was not. Trans-(±)-kusunokinin, a potential racemic compound, could be developed as a selective CSF1R inhibitor when combined.
Collapse
|
11
|
Almajali B, Johan MF, Al-Wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-Tawarah NM, Ibrahim WN, Al-Rawashde FA, Al-Jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15030307. [PMID: 35337104 PMCID: PMC8948818 DOI: 10.3390/ph15030307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Nafe M. Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar;
| | - Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
12
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
13
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
14
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|
15
|
Rattanaburee T, Tanawattanasuntorn T, Thongpanchang T, Tipmanee V, Graidist P. Trans-(-)-Kusunokinin: A Potential Anticancer Lignan Compound against HER2 in Breast Cancer Cell Lines? Molecules 2021; 26:molecules26154537. [PMID: 34361688 PMCID: PMC8348432 DOI: 10.3390/molecules26154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
Trans-(−)-kusunokinin, an anticancer compound, binds CSF1R with low affinity in breast cancer cells. Therefore, finding an additional possible target of trans-(−)-kusunokinin remains of importance for further development. Here, a computational study was completed followed by indirect proof of specific target proteins using small interfering RNA (siRNA). Ten proteins in breast cancer were selected for molecular docking and molecular dynamics simulation. A preferred active form in racemic trans-(±)-kusunokinin was trans-(−)-kusunokinin, which had stronger binding energy on HER2 trans-(+)-kusunokinin; however, it was weaker than the designed HER inhibitors (03Q and neratinib). Predictively, trans-(−)-kusunokinin bound HER2 similarly to a reversible HER2 inhibitor. We then verified the action of (±)-kusunokinin compared with neratinibon breast cancer cells (MCF-7). (±)-Kusunokinin exhibited less cytotoxicity on normal L-929 and MCF-7 than neratinib. (±)-Kusunokinin and neratinib had stronger inhibited cell proliferation than siRNA-HER2. Moreover, (±)-kusunokinin decreased Ras, ERK, CyclinB1, CyclinD and CDK1. Meanwhile, neratinib downregulated HER, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1. Knocking down HER2 downregulated only HER2. siRNA-HER2 combination with (±)-kusunokinin suppressed HER2, c-Myc, CyclinB1, CyclinD and CDK1. On the other hand, siRNA-HER2 combination with neratinib increased HER2, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1 to normal levels. We conclude that trans-(±)-kusunokinin may bind HER2 with low affinity and had a different action from neratinib.
Collapse
Affiliation(s)
- Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| |
Collapse
|
16
|
Sahu RK, Aboulthana WM, Mehta DK. Phyto-Phospholipid Complexation as a Novel Drug Delivery System for Management of Cancer with Better Bioavailability: Current Perspectives and Future Prospects. Anticancer Agents Med Chem 2021; 21:1403-1412. [PMID: 33176666 DOI: 10.2174/1871520620999201110191741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the foremost cause of death, and it supports the need for the identification of novel anticancer drugs to improve the efficacy of current-therapy. While the synthetic anticancer drug is associated with numerous side effects. Hence the plant active or phytoconstituents are in high demand for the treatment of cancer due to minimum side effects. But the polar nature of phytoconstituents hindered the absorption of the drug and lowered the therapeutic efficacy. The plant activity incorporated into Phyto-phospholipid Complexation can enhance bioavailability and improved therapeutic efficacy. In this review article, advantages, limitation and application of Phyto-phospholipid complexes have been illustrated. The article highlights the application of Phyto-phospholipid complexes as a promising drug carrier system to treat cancer.
Collapse
Affiliation(s)
- Ram K Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam, 788011, India
| | - Wael M Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Dinesh K Mehta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana-Ambala (HR), 133207, India
| |
Collapse
|
17
|
Tanawattanasuntorn T, Thongpanchang T, Rungrotmongkol T, Hanpaibool C, Graidist P, Tipmanee V. (-)-Kusunokinin as a Potential Aldose Reductase Inhibitor: Equivalency Observed via AKR1B1 Dynamics Simulation. ACS OMEGA 2021; 6:606-614. [PMID: 33458512 PMCID: PMC7807751 DOI: 10.1021/acsomega.0c05102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 05/14/2023]
Abstract
(-)-Kusunokinin performed its anticancer potency through CFS1R and AKT pathways. Its ambiguous binding target has, however, hindered the next development phase. Our study thus applied molecular docking and molecular dynamics simulation to predict the protein target from the pathways. Among various candidates, aldo-keto reductase family 1 member B1 (AKR1B1) was finally identified as a (-)-kusunokinin receptor. The predicted binding affinity of (-)-kusunokinin was better than the selected aldose reductase inhibitors (ARIs) and substrates. The compound also had no significant effect on AKR1B1 conformation. An intriguing AKR1B1 efficacy, with respect to the known inhibitors (epalrestat, zenarestat, and minalrestat) and substrates (UVI2008 and prostaglandin H2), as well as a similar interactive insight of the enzyme pocket, pinpointed an ARI equivalence of (-)-kusunokinin. An aromatic ring and a γ-butyrolactone ring shared a role with structural counterparts in known inhibitors. The modeling explained that the aromatic constituent contributed to π-π attraction with Trp111. In addition, the γ-butyrolactone ring bound the catalytic His110 using hydrogen bonds, which could lead to enzymatic inhibition as a consequence of substrate competitiveness. Our computer-based findings suggested that the potential of (-)-kusunokinin could be furthered by in vitro and/or in vivo experiments to consolidate (-)-kusunokinin as a new AKR1B1 antagonist in the future.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department
of Chemistry, Faculty of Science and Center of Excellence for Innovation
in Chemistry, Mahidol University, Bangkok 10400, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Chonnikan Hanpaibool
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Potchanapond Graidist
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
18
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|