1
|
Herrera-Bravo J, Belén LH, Reyes ME, Silva V, Fuentealba S, Paz C, Loren P, Salazar LA, Sharifi-Rad J, Calina D. Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8259-8284. [PMID: 38847831 DOI: 10.1007/s00210-024-03196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 10/30/2024]
Abstract
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victor Silva
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Soledad Fuentealba
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Sciences, Faculty of Medicine, Center CEBIM, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
2
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
3
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
4
|
Radice M, Durofil A, Buzzi R, Baldini E, Martínez AP, Scalvenzi L, Manfredini S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101602. [PMID: 36295037 PMCID: PMC9605662 DOI: 10.3390/life12101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
Alpha-phellandrene is a very common cyclic monoterpene found in several EOs, which shows extensive biological activities. Therefore, the main focus of the present systematic review was to provide a comprehensive and critical analysis of the state of the art regarding its biological activities and pharmaceutical and food applications. In addition, the study identified essential oils rich in alpha-phellandrene and summarized their main biological activities as a preliminary screening to encourage subsequent studies on their single components. With this review, we selected and critically analyzed 99 papers, using the following bibliographic databases: PubMed, SciELO, Wiley and WOS, on 8 July 2022. Data were independently extracted by four authors of this work, selecting those studies which reported the keyword "alpha-phellandrene" in the title and/or the abstract, and avoiding those in which there was not a clear correlation between the molecule and its biological activities and/or a specific concentration from its source. Duplication data were removed in the final article. Many essential oils have significant amounts of alpha-phellandrene, and the species Anethum graveolens and Foeniculum vulgare are frequently cited. Some studies on the above-mentioned species show high alpha-phellandrene amounts up to 82.1%. There were 12 studies on alpha-phellandrene as a pure molecule showed promising biological functions, including antitumoral, antinociceptive, larvicidal and insecticidal activities. There were 87 research works on EOs rich in alpha-phellandrene, which were summarized with a focus on additional data concerning potential biological activities. We believe this data is a useful starting point to start new research on the pure molecule, and, in particular, to distinguish between the synergistic effects of the different components of the OEs and those due to alpha-phellandrene itself. Toxicological data are still lacking, requiring further investigation on the threshold values to distinguish the boundary between beneficial and toxic effects, i.e., mutagenic, carcinogenic and allergenic. All these findings offer inspiration for potential applications of alpha-phellandrene as a new biopesticide, antimicrobial and antitumoral agent. In particular, we believe our work is of interest as a starting point for further studies on the food application of alpha-phellandrene.
Collapse
Affiliation(s)
- Matteo Radice
- Faculty of Earth Sciences, Universidad Estatal Amazónica, Puyo 160150, Ecuador
- Correspondence:
| | - Andrea Durofil
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | | | - Laura Scalvenzi
- Faculty of Earth Sciences, Universidad Estatal Amazónica, Puyo 160150, Ecuador
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Costa EV, de Souza CAS, Galvão AFC, Silva VR, Santos LDS, Dias RB, Rocha CAG, Soares MBP, da Silva FMA, Koolen HHF, Bezerra DP. Duguetia pycnastera Sandwith (Annonaceae) Leaf Essential Oil Inhibits HepG2 Cell Growth In Vitro and In Vivo. Molecules 2022; 27:molecules27175664. [PMID: 36080430 PMCID: PMC9458038 DOI: 10.3390/molecules27175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Duguetia pycnastera Sandwith (Annonaceae) is a tropical tree that can be found in the Guyanas, Bolivia, Venezuela, and Brazil. In Brazil, it is popularly known as “ata”, “envira”, “envira-preta”, and “envira-surucucu”. In the present work, we investigated the in vitro and in vivo HepG2 cell growth inhibition capacity of D. pycnastera leaf essential oil (EO). The chemical composition of the EO was determined by GC−MS and GC−FID analyses. The alamar blue assay was used to examine the in vitro cytotoxicity of EO in cancer cell lines and non-cancerous cells. In EO-treated HepG2 cells, DNA fragmentation was measured by flow cytometry. The in vivo antitumor activity of the EO was assessed in C.B-17 SCID mice xenografted with HepG2 cells treated with the EO at a dosage of 40 mg/kg. Chemical composition analysis displayed the sesquiterpenes α-gurjunene (26.83%), bicyclogermacrene (24.90%), germacrene D (15.35%), and spathulenol (12.97%) as the main EO constituents. The EO exhibited cytotoxicity, with IC50 values ranging from 3.28 to 39.39 μg/mL in the cancer cell lines SCC4 and CAL27, respectively. The cytotoxic activity of the EO in non-cancerous cells revealed IC50 values of 16.57, 21.28, and >50 μg/mL for MRC-5, PBMC, and BJ cells, respectively. An increase of the fragmented DNA content was observed in EO-treated HepG2 cells. In vivo, EO displayed tumor mass inhibition activity by 47.76%. These findings imply that D. pycnastera leaf EO may have anti-liver cancer properties.
Collapse
Affiliation(s)
- Emmanoel V. Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, AM, Brazil
- Correspondence: (E.V.C.); (D.P.B.); Tel./Fax: +55-92-3305-1181 (E.V.C.); +55-71-3176-2272 (D.P.B.)
| | - César A. S. de Souza
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, AM, Brazil
| | - Alexandre F. C. Galvão
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Valdenizia R. Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Luciano de S. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Rosane B. Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-909, BA, Brazil
| | - Clarissa A. Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-909, BA, Brazil
| | - Milena B. P. Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Felipe M. A. da Silva
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, AM, Brazil
| | - Hector H. F. Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus 690065-130, AM, Brazil
| | - Daniel P. Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Correspondence: (E.V.C.); (D.P.B.); Tel./Fax: +55-92-3305-1181 (E.V.C.); +55-71-3176-2272 (D.P.B.)
| |
Collapse
|
6
|
Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer. Molecules 2022; 27:molecules27144407. [PMID: 35889279 PMCID: PMC9319081 DOI: 10.3390/molecules27144407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Guatteria olivacea R. E. Fries (synonym Guatteria punctata (Aubl.) R.A. Howard) is a tree of 10–27 m tall popularly known as “envira-bobó”, “envira-fofa”, “envireira”, “embira”, “embira-branca”, “embira-preta”, envira-branca”, and “envira-preta”, which can be found in the Brazilian Amazon biome. In this study, we evaluated the cytotoxic and antitumor effects of the essential oil (EO) obtained from the leaves of G. olivacea against liver cancer using HepG2 cells as a model. EO was obtained using a hydrodistillation Clevenger-type apparatus and was qualitatively and quantitatively characterized using GC–MS and GC–FID, respectively. The alamar blue assay was used to assess the cytotoxic potential of EO in a panel of human cancer cell lines and human non-cancerous cells. In HepG2 cells treated with EO, YO-PRO-1/propidium iodide staining, cell cycle distribution, and reactive oxygen species (ROS) were examined. In C.B-17 SCID mice with HepG2 cell xenografts, the efficacy of the EO (20 and 40 mg/kg) was tested in vivo. GC–MS and GC–FID analyses showed germacrene D (17.65%), 1-epi-cubenol (13.21%), caryophyllene oxide (12.03%), spathulenol (11.26%), (E)-caryophyllene (7.26%), bicyclogermacrene (5.87%), and δ-elemene (4.95%) as the major constituents of G. olivacea leaf EO. In vitro cytotoxicity of EO was observed, including anti-liver cancer action with an IC50 value of 30.82 μg/mL for HepG2 cells. In HepG2 cells, EO treatment increased apoptotic cells and DNA fragmentation, without changes in ROS levels. Furthermore, the EO inhibited tumor mass in vivo by 32.8–57.9%. These findings suggest that G. olivacea leaf EO has anti-liver cancer potential.
Collapse
|
7
|
Liu CY, Sun YY, Wang SQ, Jia YQ, Wang HX, Pan LC, Zhu ZY. Dihydromyricetin from Ampelopsis grossedentata and its derivatives: Structural characterization and anti-hepatocellular carcinoma activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
de Oliveira FP, da C Rodrigues ACB, de Lima EJSP, Silva VR, de S Santos L, da Anunciação TA, Nogueira ML, Soares MBP, Dias RB, Gurgel Rocha CA, Duvoisin Junior S, Albuquerque PM, Lima ES, Gonçalves JFC, Bataglion GA, Costa EV, da Silva FMA, Koolen HHF, Bezerra DP. Essential Oil from Bark of Aniba parviflora (Meisn.) Mez (Lauraceae) Reduces HepG2 Cell Proliferation and Inhibits Tumor Development in a Xenograft Model. Chem Biodivers 2021; 18:e2000938. [PMID: 33508178 DOI: 10.1002/cbdv.202000938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
Aniba parviflora (Meisn.) Mez (Lauraceae) is an aromatic plant of the Amazon rainforest, which has a tremendous commercial value in the perfumery industry; it is popularly used as flavoring sachets and aromatic baths. In Brazilian folk medicine, A. parviflora is used to treat victims of snakebites. Herein, we analyzed the chemical composition of A. parviflora bark essential oil (EO) and its effect on the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. EO was obtained by hydrodistillation and characterized by GC-MS and GC-FID. The main constituents of EO were linalool (16.3±3.15), α-humulene (14.5±2.41 %), δ-cadinene (10.2±1.09 %), α-copaene (9.51±1.12 %) and germacrene B (7.58±2.15 %). Initially, EO's cytotoxic effect was evaluated against five cancer cell lines (HepG2, MCF-7, HCT116, HL-60 and B16-F10) and one non-cancerous one (MRC-5), using the Alamar blue method after 72 h of treatment. The calculated IC50 values were 9.05, 22.04, >50, 15.36, 17.57, and 30.46 μg/mL, respectively. The best selectivity was for HepG2 cells with a selective index of 3.4. DNA Fragmentation and cell cycle distribution were quantified in HepG2 cells by flow cytometry after a treatment period of 24 and 48 h. The effect of EO on tumor development in vivo was evaluated in a xenograft model using C.B-17 SCID mice engrafted with HepG2 cells. In vivo tumor growth inhibition of HepG2 xenograft at the doses of 40 and 80 mg/kg were 12.1 and 62.4 %, respectively.
Collapse
Affiliation(s)
- Felipe P de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | | | - Emilly J S P de Lima
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), 690065-130, Manaus, Amazonas, Brazil or
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Talita A da Anunciação
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or.,School of Medicine and School of Dentistry, Federal University of Bahia, 40301-155, Salvador, Bahia, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or.,School of Medicine and School of Dentistry, Federal University of Bahia, 40301-155, Salvador, Bahia, Brazil
| | - Sérgio Duvoisin Junior
- Laboratory of Applied Chemistry and Technology, Amazonas State University (UEA), 69050-020, Manaus, Amazonas, Brazil
| | - Patrícia M Albuquerque
- Laboratory of Applied Chemistry and Technology, Amazonas State University (UEA), 69050-020, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Faculty of Pharmacy, Federal University of Amazonas (UFAM), 69077-000, Manaus, Amazonas, Brazil
| | - José F C Gonçalves
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (INPA), 69011-970, Manaus, Amazonas, Brazil
| | - Giovana A Bataglion
- Department of Chemistry, Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Felipe M A da Silva
- Analytical Center, Multidisciplinary Support Center (CAM), Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), 690065-130, Manaus, Amazonas, Brazil or
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| |
Collapse
|
9
|
Anunciação TAD, Costa RGA, Lima EJSPD, Silva VR, Santos LDS, Soares MBP, Dias RB, Rocha CAG, Costa EV, Silva FMAD, Koolen HHF, Bezerra DP. In vitro and in vivo inhibition of HCT116 cells by essential oils from bark and leaves of Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae). JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113166. [PMID: 32730868 DOI: 10.1016/j.jep.2020.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae), popularly known in Brazil as "mucuíba", "ucuúba", "ucuúba-branca" or "ucuúba do igapó", is a medicinal plant used to treat a variety of diseases, including infections, inflammatory processes and cancer. AIM OF THE STUDY In the present work, we investigated the chemical constituents and the in vitro and in vivo inhibition of human colon carcinoma HCT116 cells by essential oils obtained from the bark (EOB) and leaves (EOL) of V. surinamensis. MATERIALS AND METHODS EOB and EOL were obtained by hydrodistillation and analyzed via gas chromatography with flame ionization detection and gas chromatography coupled to mass spectrometry. In vitro cytotoxic activity was determined in cultured cancer cells HCT116, HepG2, HL-60, B16-F10 and MCF-7 and in a non-cancerous cell line MRC-5 by the Alamar blue assay after 72 h of treatment. Annexin V/propidium iodide staining, mitochondrial transmembrane potential and cell cycle distribution were evaluated by flow cytometry in HCT116 cells treated with essential oils after 24 and 48 h of treatment. The cells were also stained with May-Grunwald-Giemsa to analyze cell morphology. In vivo antitumor activity was evaluated in C.B-17 SCID mice with HCT116 cells. RESULTS The main constituents in EOB were aristolene (28.0 ± 3.1%), α-gurjunene (15.1 ± 2.4%), valencene (14.1 ± 1.9%), germacrene D (7.5 ± 0.9%), δ-guaiene (6.8 ± 1.0%) and β-elemene (5.4 ± 0.6%). On the other hand, EOL displayed α-farnesene (14.5 ± 1.5%), β-elemene (9.6 ± 2.3%), bicyclogermacrene (8.1 ± 2.0%), germacrene D (7.4 ± 0.7%) and α-cubebene (5.6 ± 1.1%) as main constituents. EOB showed IC50 values for cancer cells ranging from 9.41 to 29.52 μg/mL for HCT116 and B16-F10, while EOL showed IC50 values for cancer cells ranging from 7.07 to 26.70 μg/mL for HepG2 and HCT116, respectively. The IC50 value for a non-cancerous MRC-5 cell was 34.7 and 38.93 μg/mL for EOB and EOL, respectively. Both oils induced apoptotic-like cell death in HCT116 cells, as observed by the morphological characteristics of apoptosis, externalization of phosphatidylserine, mitochondrial depolarization and fragmentation of internucleosomal DNA. At a dose of 40 mg/kg, tumor mass inhibition rates were 57.9 and 44.8% in animals treated with EOB and EOL, respectively. CONCLUSIONS These data indicate V. surinamensis as possible herbal medicine in the treatment of colon cancer.
Collapse
Affiliation(s)
- Talita A da Anunciação
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| | - Emilly J S P de Lima
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus, Amazonas, 690065-130, Brazil.
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Clinical Propaedeutics and Integrated Clinical, Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia, 40301-155, Brazil.
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Clinical Propaedeutics and Integrated Clinical, Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia, 40301-155, Brazil.
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69080-900, Brazil.
| | - Felipe M A da Silva
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69080-900, Brazil.
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus, Amazonas, 690065-130, Brazil.
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|