1
|
Zhao Y, Zhang J, Lu F, Xu W, Ma Q, Hu J. The therapeutic potential of Honeysuckle in cardiovascular disease: an anti-inflammatory intervention strategy. Am J Transl Res 2024; 16:7262-7277. [PMID: 39822489 PMCID: PMC11733370 DOI: 10.62347/njmj7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 01/19/2025]
Abstract
Honeysuckle is a conventional Chinese medicine with several therapeutic applications. With the advancement of modern scientific technologies, Honeysuckle's pharmacological effects and medicinal properties have been investigated more thoroughly. Studies demonstrate that the bioactive compounds in Honeysuckle possess anti-inflammatory effects via several mechanisms, protecting the cardiovascular system. This article provides a reference for the clinical use of Honeysuckle by reviewing research on the therapeutic impact of Honeysuckle and its active constituents on cardiovascular diseases, such as coronary atherosclerotic heart disease (CHD), myocardial ischemia-reperfusion (MI/R), acute myocardial infarction (AMI), hypertension, arrhythmia, and heart failure, through the inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Yue Zhao
- Changchun University of Chinese MedicineChangchun, Jilin, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Fei Lu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyang, Liaoning, China
| | - Weiming Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Qingxiao Ma
- China National Health Development Research CenterBeijing, China
| | - Jingqing Hu
- Changchun University of Chinese MedicineChangchun, Jilin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Tianjin University of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
2
|
Aldayel TS, Kilany OE, El-Hak HNG, Abdelrazek HMA, Abdallah O, Omar DE. Clinicopathological Studies on the Impact of Grape Seed Extract and L-Carnitine as Cardioprotective Agents Against Doxorubicin-Induced Toxicity in Rats. Life (Basel) 2024; 14:1656. [PMID: 39768363 PMCID: PMC11728420 DOI: 10.3390/life14121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Doxorubicin (DOX) cancer therapy induces serious cardiotoxicity as a side effect. This study aimed to investigate the cardioprotective effects of grape seed extract (GSE) and L-Carnitine (L-CA) against DOX-induced cardiac toxicity in male rats. Six groups of male albino rats were used: G1 (control); G2 (GSE), given grape seed extract (100 mg/kg b.wt.) orally for 35 days; G3 (L-CA) (150 mg/kg b.wt.); Group 4 (DOX-induced cardiotoxicity), given DOX (10 mg/kg b.wt., i.p.) on the 28th day of the experiment; G5 (GSE + DOX), given GSE and DOX as previously mentioned; and G6 (L-CA + DOX), given L-CA and DOX as previously mentioned. Electrocardiographic evaluation, lipid profile, lipid peroxidation and antioxidants, serum cardiac markers, and inflammatory markers were estimated. Histopathological evaluation of cardiac tissue was also examined. Key findings showed that DOX induced ECG abnormalities lipid peroxidation, reduced antioxidants, and elevated cardiac and inflammatory markers. GSE and L-CA significantly ameliorated ECG abnormalities, reduced lipid peroxidation, improved antioxidant enzymes and serum cardiac markers, and reduced inflammation. These findings suggest that GSE and L-CA exhibit substantial cardioprotective effects in DOX-induced cardiotoxicity via their antioxidant and anti-inflammatory potentials.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Omnia E. Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; (O.E.K.); (O.A.)
| | - Heba Nageh Gad El-Hak
- Depatrment of Zoology, Faculty of Sciences, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Osama Abdallah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; (O.E.K.); (O.A.)
| | - Donia E. Omar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; (O.E.K.); (O.A.)
| |
Collapse
|
3
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Pavlova A, Maleeva K, Moskalenko IV, Belyaev V, Zhukov MV, Kirilenko D, Bogdanov KV, Smirnov E. Self-Assembled Gold Nanoparticles as Reusable SERS Substrates for Polyphenolic Compound Detection. Int J Mol Sci 2024; 25:12785. [PMID: 39684508 DOI: 10.3390/ijms252312785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Natural polyphenolic compounds play a pivotal role in biological processes and exhibit notable antioxidant activity. Among these compounds, chlorogenic acid stands out as one of the most widespread and important polyphenols. The accurate detection of chlorogenic acid is crucial for ensuring the quality and classification of the raw materials used in its extraction, as well as the final products in the food, pharmaceutical, and cosmetics industries that contain this bioactive compound. Raman spectroscopy emerges as a powerful analytical tool, particularly in field applications, due to its versatility and sensitivity, offering both qualitative and quantitative analyses. By using the self-assembly of gold nanoparticles at liquid-liquid interfaces and the developed "aqua-print" process, we propose a facile and inexpensive route to fabricate enhanced substrates for surface-enhanced Raman spectroscopy with high reproducibility. To ensure substrate reliability and accurate molecule detection in SERS experiments, a benchmarking procedure was developed. This process involved the use of non-resonant rhodamine 6G dye in the absence of charge transfer and was applied to all synthesized nanoparticles and fabricated substrates. The latter revealed the highest enhancement factor of 4 × 104 for 72 nm gold nanoparticles among nanoparticle diameters ranging from 14 to 99 nm. Furthermore, the enhanced substrate was implemented in the detection of chlorogenic acid with a concentration range from 10 μM to 350 μM, demonstrating high accuracy (R2 > 99%). Raman mapping was employed to validate the good uniformity of the signal (the standard deviation was below 15%). The findings of this study were also supported by DFT calculations of the theoretical Raman spectra, demonstrating the formation of the chlorogenic acid dimer. The proposed method is strategically important for the development of the class of in-field methods to detect polyphenolic compounds in raw materials such as plants, extracted plant proteins, and polyphenolic compounds.
Collapse
Affiliation(s)
- Arina Pavlova
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| | - Ksenia Maleeva
- International Research and Educational Center for Physics of Nanostructures, ITMO University, Birzhevaya Liniya, 14, 197101 St. Petersburg, Russia
| | - Ivan V Moskalenko
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| | - Vadim Belyaev
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| | - Mikhail V Zhukov
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| | - Demid Kirilenko
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| | - Kirill V Bogdanov
- International Research and Educational Center for Physics of Nanostructures, ITMO University, Birzhevaya Liniya, 14, 197101 St. Petersburg, Russia
| | - Evgeny Smirnov
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia
| |
Collapse
|
5
|
Hoseinynejad K, Abdi MM, Ahangarpour A, Mard SA. Chlorogenic acid improves urogenital dysfunction induced by exposure to ambient particulate matter. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03388-x. [PMID: 39531043 DOI: 10.1007/s00210-024-03388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024]
Abstract
Oxidative stress is a well-known underlying mechanism for several diseases in response to environmental pollution. Although there is a lack of evidence on the relationship between air pollution and an established risk factor for urogenital dysfunction. The aim of this study was to investigate the mechanism of particulate matter (PM) on urogenital function and evaluate the potential efficacy of chlorogenic acid (CGA) in preventing urogenital damage in rats. Forty Wistar rats were divided into five groups (n = 8): control, particulate matter exposure (animals were exposed to fine dust in an inhalation chamber for 4 weeks, 3 days a week, for 3 h, PM10 concentration adjusted to 500-2000 µg/m3), and particulate matter plus 3 concentrations of chlorogenic acid (100, 200, and 400 mg/kg, gavage, 4 weeks, 3 days a week). At the end of the study, kidney biomarkers, oxidative stress markers, antioxidant enzymes, the oxidation resistance 1 (OXR1) and its downstream gene expression, sperm count, gonadotropin hormones, and the structure of the kidney, epididymis, and seminal vesicle were evaluated in response to PM exposure and CGA treatment in all groups. The data obtained from the current study showed that PM exposure led to kidney dysfunction and inhibition of oligospermia through oxidative stress, as evidenced by an increase in MDA and a decrease in TAC, SOD, CAT, and GSH concentration levels in blood samples. These results were consistent with the down-regulation of OXR1, Nrf2, and P21 gene expression. In contrast, CGA improved urogenital biomarkers and histopathology structures of the kidney, epididymis, and seminal vesicle by enhancing antioxidant defense system enzymes and modulating the OXR1 signaling pathway. Our findings suggest that environmental air pollution contributes to kidney dysfunction and urogenital damage. Modulation of oxidative stress through the OXR1, P21, and Nrf2 signaling pathways may be the underlying mechanism. Furthermore, chlorogenic acid supplementation could be recommended as a new protective or treatment strategy to safeguard urogenital function against exposure to particulate matter.
Collapse
Affiliation(s)
- Khojasteh Hoseinynejad
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Mehdi Abdi
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Akram Ahangarpour
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Giurranna E, Nencini F, Bettiol A, Borghi S, Argento FR, Emmi G, Silvestri E, Taddei N, Fiorillo C, Becatti M. Dietary Antioxidants and Natural Compounds in Preventing Thrombosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:11457. [PMID: 39519009 PMCID: PMC11546393 DOI: 10.3390/ijms252111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive oxygen species (ROS) contribute to endothelial dysfunction, platelet activation, and coagulation abnormalities, promoting thrombus formation. Given the growing interest in non-pharmacological approaches to modulate oxidative stress, we examine the potential of various dietary interventions and antioxidant supplementation in reducing oxidative damage and preventing thrombotic events. Key dietary patterns, such as the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and ketogenic diets, as well as antioxidant-rich supplements like curcumin, selenium, and polyphenols, demonstrate promising effects in improving oxidative stress markers, lipid profiles, and inflammatory responses. This review highlights recent advances in the field, drawing from in vitro, ex vivo, and clinical studies, and underscores the importance of integrating dietary strategies into preventive and therapeutic approaches for managing thrombosis and cardiovascular health. Further research is needed to better understand long-term effects and personalize these interventions for optimizing patient outcomes.
Collapse
Affiliation(s)
- Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Giacomo Emmi
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| |
Collapse
|
7
|
Liaudanskas M, Šedbarė R, Janulis V. Determination of Biologically Active Compounds and Antioxidant Capacity In Vitro in Fruit of Small Cranberries ( Vaccinium oxycoccos L.) Growing in Natural Habitats in Lithuania. Antioxidants (Basel) 2024; 13:1045. [PMID: 39334704 PMCID: PMC11428458 DOI: 10.3390/antiox13091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of flavonols, proanthocyanidins, anthocyanins, triterpene compounds, and chlorogenic acid in small cranberry fruit samples collected in natural habitats in Lithuania and variation in the antioxidant capacity of cranberry fruit extracts was determined. This study showed that in the flavonol group, hyperoside and myricetin-3-O-galactoside predominated in cranberry fruit samples; in the anthocyanin group, the predominant compounds were cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, peonidin-3-O-galactoside, and peonidin-3-O-arabinoside, and in the group of triterpene compounds, ursolic acid was predominant. The highest total amounts of flavonols and anthocyanins were found in the samples collected in Čepkeliai State Strict Nature Reserve (2079.44 ± 102.99 μg/g and 6993.79 ± 350.22 μg/g, respectively). Cluster analysis of the chemical composition of small cranberry fruit samples revealed trends in the accumulation of bioactive compounds in cranberry fruit. Cranberry fruit samples collected in central Lithuania had higher levels of triterpene compounds. Statistical correlation analysis showed the strongest correlation between the quantitative composition of cyanidin-3-O-arabinoside and peonidin-3-O-arabinoside and the reducing capacity of the ethanolic extracts of the cranberry fruit samples assessed in vitro by the FRAP assay (r = 0.882, p < 0.01 and r = 0.805, p < 0.01, respectively). Summarizing the results, the geographical factor affects the variation of the quantitative composition of biologically active compounds in cranberry fruit samples.
Collapse
Affiliation(s)
- Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
8
|
Liu T, Zhuang XX, Tang YY, Gao YC, Gao JR. Mechanistic insights into Qiteng Xiaozhuo Granules' regulation of autophagy for chronic glomerulonephritis treatment: Serum pharmacochemistry, network pharmacology, and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117819. [PMID: 38286158 DOI: 10.1016/j.jep.2024.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiteng Xiaozhuo Granules (QTXZG), a traditional Chinese medicine prescription, is widely acknowledged for its therapeutic efficacy and lack of discernible toxicity in clinical practice, substantiating its potential in the treatment of chronic glomerulonephritis (CGN). Nevertheless, the specific effectiveness and underlying mechanisms of QTXZG remain insufficiently explored. AIM OF THE STUDY The purpose of this study was to explore the mechanism of the QTXZG in the treatment of CGN via targeting autophagy based on serum pharmacochemistry, network pharmacology, and experimental validation. METHODS Serum samples from SD rats orally administered QTXZG were analyzed using UPLC-QE/MS to identify contained compounds. Network and functional enrichment analyses elucidated QTXZG's targets and biological mechanisms. Reliability was ensured through molecular docking, in vivo and in vitro experiments. RESULTS After oral administration of QTXZG, 39 enriched compounds in serum samples collected 1 h later were identified as potential active agents, with 508 potential targets recognized as QTXZG-specific targets. Through integration of various databases, intersection analysis of QTXZG targets, CGN-related genes, and autophagy-related targets identified 10 core autophagy-related targets for QTXZG in CGN. GO and KEGG analyses emphasized their roles in autophagy, inflammation, and immune processes, particularly emphasizing the enrichment of the AMPK/mTOR signaling pathway. Molecular docking results demonstrated strong binding affinities between QTXZG's key compounds and the predicted core targets. In animal experiments, QTXZG was found to ameliorate renal tissue damage in CGN model mice, significantly reducing serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Importantly, both animal and cell experiments revealed QTXZG's ability to decrease excessive ROS and inflammatory factor release in mesangial cells. Furthermore, in vitro and in vivo experiments confirmed QTXZG's capacity to upregulate Beclin1 and LC3II/I expression, decrease p62 expression, and induce CGN autophagy through modulation of the AMPK/mTOR pathway. CONCLUSIONS This study indicated that QTXZG can induce autophagy in CGN by affecting the AMPK/mTOR pathway, and induction of autophagy may be one of the possible mechanisms of QTXZG's anti-CGN.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China.
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| | - Yong Yan Tang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China.
| | - Ya Chen Gao
- Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
9
|
Izu GO, Mfotie Njoya E, Tabakam GT, Nambooze J, Otukile KP, Tsoeu SE, Fasiku VO, Adegoke AM, Erukainure OL, Mashele SS, Makhafola TJ, Sekhoacha MP, Chukwuma CI. Unravelling the Influence of Chlorogenic Acid on the Antioxidant Phytochemistry of Avocado ( Persea americana Mill.) Fruit Peel. Antioxidants (Basel) 2024; 13:456. [PMID: 38671904 PMCID: PMC11047442 DOI: 10.3390/antiox13040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress is pivotal in the pathology of many diseases. This study investigated the antioxidant phytochemistry of avocado (Persea americana Mill.) peel. Different solvent extracts (dichloromethane, ethyl acetate, methanol, and water) of avocado peel were subjected to total phenol and flavonoid quantification, as well as in vitro radical scavenging and ferric reducing evaluation. The methanol extract was subjected to gradient column chromatographic fractionation. Fraction 8 (eluted with hexane:chloroform:methanol volume ratio of 3:6.5:0.5, respectively) was subjected to LC-MS analysis. It was assessed for cellular inhibition of lipid peroxidation and lipopolysaccharide (LPS)-induced ROS and NO production. The DPPH radical scavenging mechanism of chlorogenic acid was investigated using Density Functional Theory (DFT). The methanol extract and fraction 8 had the highest phenol content and radical scavenging activity. Chlorogenic acid (103.5 mg/mL) and 1-O-caffeoylquinic acid (102.3 mg/mL) were the most abundant phenolics in the fraction. Fraction 8 and chlorogenic acid dose-dependently inhibited in vitro (IC50 = 5.73 and 6.17 µg/mL) and cellular (IC50 = 15.9 and 9.34 µg/mL) FeSO4-induced lipid peroxidation, as well as LPS-induced ROS (IC50 = 39.6 and 28.2 µg/mL) and NO (IC50 = 63.5 and 107 µg/mL) production, while modulating antioxidant enzyme activity. The fraction and chlorogenic acid were not cytotoxic. DFT analysis suggest that an electron transfer, followed by proton transfer at carbons 3'OH and 4'OH positions may be the radical scavenging mechanism of chlorogenic acid. Considering this study is bioassay-guided, it is logical to conclude that chlorogenic acid strongly influences the antioxidant capacity of avocado fruit peel.
Collapse
Affiliation(s)
- Gloria O. Izu
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| | - Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| | - Gaetan T. Tabakam
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| | - Jennifer Nambooze
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa; (J.N.); (K.P.O.)
| | - Kgalaletso P. Otukile
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa; (J.N.); (K.P.O.)
| | - Seiso E. Tsoeu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa;
| | - Victoria O. Fasiku
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa; (V.O.F.); (A.M.A.)
| | - Ayodeji M. Adegoke
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa; (V.O.F.); (A.M.A.)
| | - Ochuko L. Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Samson S. Mashele
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| | - Mamello P. Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa; (V.O.F.); (A.M.A.)
| | - Chika I. Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (G.O.I.); (E.M.N.); (G.T.T.); (S.S.M.); (T.J.M.)
| |
Collapse
|
10
|
Zhang X, Zhang Q, Yu M, Zhang Y, He T, Qiu Z, Qiu Y, Wang W. Integrating serum pharmacochemistry and network pharmacology to explore the molecular mechanisms of Acanthopanax senticosus (Rupr. & Maxim.) Harms on attenuating doxorubicin-induced myocardial injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117349. [PMID: 38380572 DOI: 10.1016/j.jep.2023.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1β), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Menghan Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yanfei Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin Medical University, Jilin, 132013, China.
| | - Tianzhu He
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
11
|
Wang Q, Liu T, Koci M, Wang Y, Fu Y, Ma M, Ma Q, Zhao L. Chlorogenic Acid Alleviated AFB1-Induced Hepatotoxicity by Regulating Mitochondrial Function, Activating Nrf2/HO-1, and Inhibiting Noncanonical NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:2027. [PMID: 38136147 PMCID: PMC10740517 DOI: 10.3390/antiox12122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 μM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 μM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Tianxu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| |
Collapse
|
12
|
Yang P, Yang Q, Yang Y, Tian Q, Zheng Z. miR-221-3p targets Ang-2 to inhibit the transformation of HCMECs to tip cells. J Cell Mol Med 2023; 27:3247-3258. [PMID: 37525394 PMCID: PMC10623524 DOI: 10.1111/jcmm.17892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2 ). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.
Collapse
Affiliation(s)
- Peng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qing Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Yiheng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qingshan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Zhenzhong Zheng
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
- Jiangxi Hypertension Research InstituteNanchangChina
| |
Collapse
|
13
|
Chai X, Liang Z, Zhang J, Ding J, Zhang Q, Lv S, Deng Y, Zhang R, Lu D. Chlorogenic acid protects against myocardial ischemia-reperfusion injury in mice by inhibiting Lnc Neat1/NLRP3 inflammasome-mediated pyroptosis. Sci Rep 2023; 13:17803. [PMID: 37853132 PMCID: PMC10584886 DOI: 10.1038/s41598-023-45017-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing evidences demonstrate that chlorogenic acid (CGA), a polyphenol with multiple effects such as anti-inflammatory and anti-oxidation, protects against myocardial ischemia-reperfusion injury (MIRI) in vitro and in vivo. But its detailed cardiac protection mechanism is still unclear. The MIRI mice model was established by ligating the left anterior descending branch (LAD) of the left coronary artery in C57BL/6 mice. Sixty C57BL/6 mice were randomly divided into four groups. CGA group and CGA + I/R group (each group n = 15) were gavaged with 30 mg/kg/day CGA for 4 weeks. Sham group and I/R group mice (each group n = 15) were administered equal volumes of saline. In vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. The results showed that CGA pretreatment reduced myocardial infarction size and cTnT contents in serum, simultaneously reduced the levels of Lnc Neat1 expression and attenuated NLRP3 inflammasome-mediated pyroptosis in myocardial tissue. Consistent with in vivo results, the pretreatment of 0.2 μM and 2 μM CGA for 12 h in HL-1 cardiomyocytes depressed hypoxia/reoxygenation-induced Lnc Neat1 expression, NLRP3 inflammasome activation and pyroptosis. Lnc Neat1 shRNA transfection mediated by lentivirus in HL-1 cardiomyocytes significantly reduced activation of NLRP3 inflammasome and pyroptosis. Our findings suggest that CGA protects against MIRI by depressing Lnc Neat1 expression and NLRP3 inflammasome-mediated pyrotosis. Inhibiting the levels of Lnc Neat1 expression may be a therapeutic strategy for MIRI.
Collapse
Affiliation(s)
- Xin Chai
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Zhengwei Liang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Junshi Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Jing Ding
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Sha Lv
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Yazhu Deng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Rongrui Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Deqin Lu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
14
|
Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol 2023; 14:1218015. [PMID: 37781708 PMCID: PMC10534970 DOI: 10.3389/fphar.2023.1218015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Chlorogenic acid is a bioactive compound ubiquitously present in the natural realm, lauded for its salient anti-inflammatory and antioxidant attributes. It executes its anti-inflammatory function by moderating the synthesis and secretion of inflammatory mediators, namely, TNF-α, IL-1β, IL-6, IL-8, NO, and PGE2. Concurrently, it modulates key signaling pathways and associated factors, including NF-κB, MAPK, Nrf2, and others, bestowing protection upon cells and tissues against afflictions such as cardio-cerebrovascular and diabetes mellitus. Nevertheless, the inherent low bioavailability of chlorogenic acid poses challenges in practical deployments. To surmount this limitation, sophisticated delivery systems, encompassing liposomes, micelles, and nanoparticles, have been devised, accentuating their stability, release mechanisms, and bioactivity. Given its innate anti-inflammatory prowess and safety profile, chlorogenic acid stands as a promising contender for advanced biomedical investigations and translational clinical endeavors.
Collapse
Affiliation(s)
- Jianhuan Huang
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Mingxiang Xie
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Song
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianze Cao
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
16
|
Farag A, Mandour AS, Kaneda M, Elfadadny A, Elhaieg A, Shimada K, Tanaka R. Effect of trehalose on heart functions in rats model after myocardial infarction: assessment of novel intraventricular pressure and heart rate variability. Front Cardiovasc Med 2023; 10:1182628. [PMID: 37469485 PMCID: PMC10353053 DOI: 10.3389/fcvm.2023.1182628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Background Myocardial infarctions remain a leading cause of global deaths. Developing novel drugs to target cardiac remodeling after myocardial injury is challenging. There is an increasing interest in exploring natural cardioprotective agents and non-invasive tools like intraventricular pressure gradients (IVPG) and heart rate variability (HRV) analysis in myocardial infarctions. Trehalose (TRE), a natural disaccharide, shows promise in treating atherosclerosis, myocardial infarction, and neurodegenerative disorders. Objectives The objective of this study was to investigate the effectiveness of TRE in improving cardiac functions measured by IVPG and HRV and reducing myocardial remodeling following myocardial infarction in rat model. Methods Rats were divided into three groups: sham, myocardial infarction (MI), and trehalose-treated MI (TRE) groups. The animals in the MI and TRE groups underwent permanent ligation of the left anterior descending artery. The TRE group received 2% trehalose in their drinking water for four weeks after the surgery. At the end of the experiment, heart function was assessed using conventional echocardiography, novel color M-mode echocardiography for IVPG evaluation, and HRV analysis. After euthanasia, gross image scoring, histopathology, immunohistochemistry, and quantitative real-time PCR were performed to evaluate inflammatory reactions, oxidative stress, and apoptosis. Results The MI group exhibited significantly lower values in multiple IVPG parameters. In contrast, TRE administration showed an ameliorative effect on IVPG changes, with results comparable to the sham group. Additionally, TRE improved HRV parameters, mitigated morphological changes induced by myocardial infarction, reduced histological alterations in wall mass, and suppressed inflammatory reactions within the infarcted heart tissues. Furthermore, TRE demonstrated antioxidant, anti-apoptotic and anti-fibrotic properties. Conclusion The investigation into the effect of trehalose on a myocardial infarction rat model has yielded promising outcomes, as evidenced by improvements observed through conventional echocardiography, histological analysis, and immunohistochemical analysis. While minor trends were noticed in IVPG and HRV measurements. However, our findings offer valuable insights and demonstrate a correlation between IVPG, HRV, and other traditional markers of echo assessment in the myocardial infarction vs. sham groups. This alignment suggests the potential of IVPG and HRV as additional indicators for future research in this field.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
17
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
18
|
Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, Tsarouhas K, Tsatsakis A, Taghizadehghalehjoughi A. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med 2023; 13:jpm13040649. [PMID: 37109035 PMCID: PMC10140899 DOI: 10.3390/jpm13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Dragana Nikitovic, Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiac Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
19
|
Wang XB, Wang ML, Chu YJ, Zhou PP, Zhang XY, Zou J, Zuo LH, Shi YY, Kang J, Li B, Cheng WB, Sun Z, Zhang XJ, Du SZ. Integrated pharmacokinetics and pharmacometabolomics to reveal the synergistic mechanism of a multicomponent Chinese patent medicine, Mailuo Shutong pills against thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154709. [PMID: 36774843 DOI: 10.1016/j.phymed.2023.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Mailuo Shutong Pills (MLST) have displayed pharmacological activity against thromboangiitis obliterans (TAO). However, the active ingredients and therapeutic mechanism of MLST against TAO remained to be further clarified. PURPOSE The aim of this study was to explore the active components of MLST and their synergistic mechanism against TAO by integrating pharmacokinetics (PK) and pharmacometabolomics (PM). METHODS TAO model rats were established by sodium laurate solution. Firstly, the efficacy of MLST was evaluated by gangrene score, blood flow velocity, and hematoxylin-eosin (H&E) staining. Secondly, PK research was conducted on bioavailable components to characterize their dynamic behaviors under TAO. Thirdly, multiple plasma and urine metabolic biomarkers for sodium laurate-induced TAO rats were found by untargeted metabolomics, and then variations in TAO-altered metabolites following MLST treatment were analyzed utilizing multivariate and bioinformatic analysis. Additionally, metabolic pathway analysis was performed using MetaboAnalyst. Finally, the dynamic link between absorbed MLST-compounds and TAO-associated endogenous metabolites was established by correlation analysis. RESULTS MLST significantly alleviated gangrene symptoms by improving the infiltration of inflammatory cells and blood supply in TAO rats. Significant differences in metabolic profiles were found in 17 differential metabolites in plasma and 24 in urine between Sham and TAO rats. The 10 bioavailable MLST-compounds, such as chlorogenic acid and paeoniflorin, showed positive or negative correlations with various TAO-altered metabolites related to glutamate metabolism, histidine metabolism, arachidonic acid metabolism and so on. CONCLUSION This study originally investigated the dynamic interaction between MLST and the biosystem, providing unique insight for disclosing the active components of MLST and their synergistic mechanisms against TAO, which also shed light on new therapeutic targets for TAO and treatment.
Collapse
Affiliation(s)
- Xiao-Bao Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Meng-Li Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Yao-Juan Chu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Pei-Pei Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiang-Yu Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jing Zou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Hua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Ying-Ying Shi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jian Kang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wen-Bo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Xiao-Jian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Shu-Zhang Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Pan Y, Lin H, Jiao H, Zhao J, Wang X. Effects of in ovo feeding of chlorogenic acid on antioxidant capacity of postnatal broilers. Front Physiol 2023; 14:1091520. [PMID: 36726849 PMCID: PMC9885134 DOI: 10.3389/fphys.2023.1091520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, chlorogenic acid (CGA) was injected into the amniotic cavity of chicken embryos to study the effects of in ovo feeding of CGA on the antioxidant capacity of postnatal broilers. On the 17th day of embryonic age, a total of 300 healthy broiler fertile eggs with similar weights were randomly subjected to five groups as follows; in ovo injection with 0.5 ml CGA at 4 mg/egg (4CGA) or 7 mg/egg (7CGA) or 10 mg/egg (10CGA), or sham-injection with saline (positive control, PC) or no injection (negative control, NC). Each group had six replicates of ten embryos. Six healthy chicks with similar body weights hatched from each replicate were selected and reared until heat stress treatment (35°C ± 1°C, 8 h/d) at 28-42 days of age. The results showed that there was no significant difference in the hatching rate between the groups (p > 0.05). After heat stress treatment, 4CGA group showed an improved intestinal morphology which was demonstrated by a higher villus height in the duodenum and a higher villus height/crypt depth ratio in the jejunum, compared with the NC group (p < 0.05). The antioxidant capacity of chickens was improved by in ovo feeding of CGA since 4CGA decreased the plasma content of malondialdehyde (MDA) (p < 0.05), whereas, it increased the superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities compared with NC group (p < 0.05). Also, the MDA content of the different injection groups had a quadratic effect, with the 4CGA group having the lowest MDA content (P quadratic < 0.05). In the duodenum, 4CGA injection significantly increased the mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (H O -1), glutathione synthetase (GSS), and SOD1 compared to the NC and PC groups (p < 0.05). The mRNA expressions of glutathione reductase (GSR) and GPX7 were significantly increased in all CGA-treated groups compared with the PC group (p < 0.05), while the mRNA expression of CAT was significantly increased by 4CGA group than the NC group (p < 0.05). The mRNA expressions of epigenetic-related genes, ten eleven translocation 1 and 2 (Tet1 and Tet2), and DNA-methyltransferase 3 alpha (DNMT3A) in the duodenum of 4CGA injected group was significantly increased compared with the NC and PC groups (p < 0.05). The mRNA expressions of Nrf2, SOD1, and Tet2 showed a significant quadratic effects with the 4CGA group having the highest expression (P quadratic < 0.05). In conclusion, in ovo feeding of CGA alleviated heat stress-induced intestinal oxidative damage. Injection with CGA of 4 mg/egg is considered most effective due to its actions in improving intestinal antioxidant capacity, especially in the duodenum. The antioxidant effects of in ovo CGA on postnatal heat-stressed broilers may be related to its regulation of epigenetic mechanisms. Thus, this study provides technical knowledge to support the in ovo feeding of CGA to alleviate oxidative stress in postnatal heat-stressed broilers.
Collapse
Affiliation(s)
- Yali Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China,*Correspondence: Xiaojuan Wang,
| |
Collapse
|
21
|
Shi J, Hou J, Sun Y, Jia Z, Zhou Y, Wang C, Zhao H. Chaihujialonggumulitang shows psycho-cardiology therapeutic effect on acute myocardial infarction with comorbid anxiety by the activation of Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis. Biomed Pharmacother 2022; 153:113437. [PMID: 36076489 DOI: 10.1016/j.biopha.2022.113437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anxiety is a common comorbidity of cardiovascular diseases, which deteriorated cardiac function. Chaihujialonggumulitang (BFG) was reported to have antioxidant properties, alleviate myocardial ischemia injury and improve anxiety-like behavior. The Nuclear factor erythroid 2-related factor 2 (Nrf2) /heme oxygenase-1 (HO-1) pathway is the main mechanism to defend against oxidative stress, and improve cardiac function. This study was to investigate the possible mechanism of BFG in the treatment of psycho-cardiology. METHODS AMI with comorbid anxiety rat model was established by ligation of the left anterior descending coronary artery combined with uncertain empty bottle stimulation, followed by the administration of BFG (1 mL/100 g/d by gavage) or Dimethyl fumarate (DMF, 10 mg/kg/d by intraperitoneal injection) for 6 days. Echocardiography, myocardial injury markers, H&E, and Masson staining were employed to evaluate cardiac function. Behavioral tests and hippocampus neurotransmitters were applied to record anxiety-like behavior. We employed immunohistochemistry, RT-PCR, western blotting, and biochemical analysis to detect the protein and gene expression of Nrf2/HO-1 pathway-related factors, and oxidative stress and apoptosis parameters. RESULTS Rats in the AMI and complex groups showed cardiac function deterioration, as well as anxiety-like behavior. BFG improved echocardiography indicators, reduced myocardial injury markers, and attenuated myocardial pathological changes. BFG also ameliorated anxiety-like behaviors and elevated neurotransmitters levels. BFG promoted the activation of Nrf2/HO-1 pathway, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. DMF showed therapeutic effects and molecular mechanisms similar to BFG. CONCLUSION BFG may possess a psycho-cardiology therapeutic effect on AMI with comorbid anxiety by the activation of the Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jinyu Shi
- Beijing University of Chinese Medicine, Beijing 100029, China; The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jiqiu Hou
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zihao Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wang
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Haibin Zhao
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
22
|
Feng Y, Gao S, Zhu T, Sun G, Zhang P, Huang Y, Qu S, Du X, Mou D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front Nutr 2022; 9:936229. [PMID: 35990322 PMCID: PMC9384962 DOI: 10.3389/fnut.2022.936229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context Hyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage. Objective The present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism. Materials and methods Sprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR. Results This study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway. Conclusion HFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ting Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peisen Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dehua Mou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
23
|
Yu H, Fu J, Guo HH, Pan LB, Xu H, Zhang ZW, Hu JC, Yang XY, Zhang HJ, Bu MM, Lin Y, Jiang JD, Wang Y. Metabolites Analysis of Anti-Myocardial Ischemia Active Components of Saussurea involucrata Based on Gut Microbiota-Drug Interaction. Int J Mol Sci 2022; 23:7457. [PMID: 35806462 PMCID: PMC9267203 DOI: 10.3390/ijms23137457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022] Open
Abstract
Saussurea involucrata has been reported to have potential therapeutic effects against myocardial ischemia. The pharmacological effects of oral natural medicines may be influenced by the participation of gut microbiota. In this study, we aimed to investigate the bidirectional regulation of gut microbiota and the main components of Saussurea involucrata. We first established a quantitative method for the four main components (chlorogenic acid, syringin, acanthoside B, rutin) which were chosen by fingerprint using liquid chromatography tandem mass spectrometry (LC-MS/MS), and found that gut microbiota has a strong metabolic effect on them. Meanwhile, we identified five major rat gut microbiota metabolites (M1-M5) using liquid chromatography tandem time-of-flight mass spectrometry (LC/MSn-IT-TOF). The metabolic properties of metabolites in vitro were preliminarily elucidated by LC-MS/MS for the first time. These five metabolites of Saussurea involucrata may all have potential contributions to the treatment of myocardial ischemia. Furthermore, the four main components (10 μg/mL) can significantly stimulate intestinal bacteria to produce short chain fatty acids in vitro, respectively, which can further contribute to the effect in myocardial ischemia. In this study, the therapeutic effect against myocardial ischemia of Saussurea involucrata was first reported to be related to the intestinal flora, which can be useful in understanding the effective substances of Saussurea involucrata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| |
Collapse
|
24
|
Lei W, Yan Y, Ma Y, Jiang M, Zhang B, Zhang H, Li Y. Notoginsenoside R1 Regulates Ischemic Myocardial Lipid Metabolism by Activating the AKT/mTOR Signaling Pathway. Front Pharmacol 2022; 13:905092. [PMID: 35814216 PMCID: PMC9257227 DOI: 10.3389/fphar.2022.905092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Ischemic heart diseases are responsible for more than one-third of all deaths worldwide. Radix notoginseng is widely used to treat ischemic heart disease in China and other Asian countries, and notoginsenoside R1 (NGR1) is its characteristic and large-amount ingredient. However, the potential molecular mechanisms of NGR1 in improving ischemic heart diseases are unclear. In this study, we combined pharmacological evaluation with network pharmacology, myocardial proteomics, and conventional molecular dynamics (MD) simulation to explore the cardio-protection mechanisms of NGR1. Our results revealed that NGR1 improved the echocardiographic, tissue pathological, and serum biochemical perturbations in myocardial ischemic rats. The network pharmacology studies indicated that NGR1 mainly regulated smooth muscle cell proliferation, vasculature development, and lipid metabolism signaling, especially in the PI3K/AKT pathway. Myocardial proteomics revealed that the function of NGR1 was focused on regulating metabolic and energy supply processes. The research combined reverse-docked targets with differential proteins and demonstrated that NGR1 modulated lipid metabolism in ischemic myocardia by interacting with mTOR and AKT. Conventional MD simulation was applied to investigate the influence of NGR1 on the structural stabilization of the mTOR and AKT complex. The results suggested that NGR1 can strengthen the affinity stabilization of mTOR and AKT. Our study first revealed that NGR1 enhanced the affinity stabilization of mTOR and AKT, thus promoting the activation of the AKT/mTOR pathway and improving lipid metabolic abnormity in myocardial ischemic rats.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaolei Ma
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Boli Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Li,
| |
Collapse
|
25
|
Chlorogenic Acid Prevents Microglia-Induced Neuronal Apoptosis and Oxidative Stress under Hypoxia-Ischemia Environment by Regulating the MIR497HG/miR-29b-3p/SIRT1 Axis. DISEASE MARKERS 2022; 2022:1194742. [PMID: 35664431 PMCID: PMC9159818 DOI: 10.1155/2022/1194742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
Background Chlorogenic acid (CGA) is a polyphenolic compound with antioxidant and anti-inflammatory properties. CGA has been shown to improve neuroinflammation. This study is aimed at elucidating the exact mechanism by which CGA reduces neuroinflammation. Methods Oxygen and glucose deprivation (OGD) was utilized to treat BV2 microglia and HT-22 hippocampal neurons to engineer an in vitro model of hypoxic ischemia reperfusion. The levels of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and IL-10) and oxidative stress factors (MDA, SOD, and GSH-PX) in microglia were determined by ELISA kits. The neuron proliferation was assessed by CCK-8 assay, and LDH kit was used to determine LDH release in neurons. The fluorescent dye DCF-DA was employed to measure ROS levels in neurons. Correlation of MIR497HG, miR-29b-3p, and SIRT1/NF-κB in neurons and microglia was determined by qRT-PCR. Expressions of inflammatory proteins (COX2, iNOS), oxidative stress pathways (Nrf2, HO-1), and apoptosis-related proteins (Bcl-2, Bax, caspase3, caspase8, and caspase9) in microglia or neurons were determined by western blot. The interactions between MIR497HG and miR-29b-3p, as well as between miR-29b-3p and SIRT1, were determined by dual luciferase assay and RIP assay. Results CGA attenuated OGD-mediated inflammation and oxidative stress in microglia and inhibited microglia-mediated neuronal apoptosis. CGA increased the levels of MIR497HG and SIRT1 and suppressed the levels of miR-29b-3p in BV2 and HT-22 cells. MIR497HG knockdown, miR-29b-3p upregulation, and SIRT1 inhibition inhibited CGA-mediated anti-inflammatory and neuronal protective functions. There is a targeting correlation between MIR497HG, miR-29b-3p, and Sirt1. MIR497HG sponges miR-29b-3p to regulate SIRT1 expression in an indirect manner. Conclusion CGA upregulates MIR497HG to curb miR-29b-3p expression, hence initiating the SIRT1/NF-κB signaling pathway and repressing OGD-elicited inflammation, oxidative stress, and neuron apoptosis.
Collapse
|
26
|
Chadni M, Isidore E, Diemer E, Ouguir O, Brunois F, Catteau R, Cassan L, Ioannou I. Optimization of Extraction Conditions to Improve Chlorogenic Acid Content and Antioxidant Activity of Extracts from Forced Witloof Chicory Roots. Foods 2022; 11:foods11091217. [PMID: 35563940 PMCID: PMC9102191 DOI: 10.3390/foods11091217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chlorogenic acids are major phenolic constituents in many herbal medicines and exhibit various bioactivities that explain the growing interest in extracting chlorogenic acids from biomass. In this context, the present study aims to maximize 3-O-Caffeoylquinic acid (3-CQA) and 3,5-O-di-caffeoylquinic acid (3,5-diCQA) contents from forced witloof chicory roots and to analyze the extraction kinetic modelling. First, the solid–liquid ratio, ethanol concentration, extraction time and temperature were studied. The extraction conditions were optimized to maximize the extraction of these compounds. The maximum yields reached 5 ± 0.11 and 5.97 ± 0.30 mg/g dry matter (DM) for 3-O-Caffeoylquinic acid and 3,5-O-di-caffeoylquinic acid, respectively, in less than 6 min at 70 °C. Extraction with water as a solvent was assessed with the aim of proposing a second greener and less-expensive solvent. This extraction is very fast from 90 °C, with a maximum of 6.22 ± 0.18 mg/gDM of 3-O-Caffeoylquinic acid, and instantaneous for 3,5-O-di-caffeoylquinic acid with a maximum of 6.44 ± 0.59 mg/gDM. In the second step, response surface methodology was employed to optimize the ultrasound-assisted extraction of antioxidants. The higher antioxidant activities were found at temperatures from 40 °C and at percentages of ethanol in the range of 35–70%.
Collapse
Affiliation(s)
- Morad Chadni
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
- Correspondence: ; Tel.: +33-(0)352620467
| | - Emilie Isidore
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
| | - Etienne Diemer
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
- Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche Royallieu, Université de Technologie de Compiègne, Sorbonne University Association, CS 60 319, CEDEX, 60203 Compiègne, France
| | - Otmane Ouguir
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
| | - Fanny Brunois
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
| | - Régis Catteau
- Association des Producteurs d’Endives de France (APEF), 2 Rue des Fleurs, 62000 Arras, France; (R.C.); (L.C.)
| | - Laurent Cassan
- Association des Producteurs d’Endives de France (APEF), 2 Rue des Fleurs, 62000 Arras, France; (R.C.); (L.C.)
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles, AgroParisTech, CEBB, 51110 Pomacle, France; (E.I.); (E.D.); (O.O.); (F.B.); (I.I.)
| |
Collapse
|
27
|
Wang F, Zhang J, Niu G, Weng J, Zhang Q, Xie M, Li C, Sun K. Apigenin inhibits isoproterenol‐induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR‐122‐5p/155‐5p expressions. Drug Dev Res 2022; 83:1003-1015. [PMID: 35277868 DOI: 10.1002/ddr.21928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Apigenin, a flavonoid isolated from Apium graveolens, is an effective natural active ingredient that inhibits transforming growth factor-β1 (TGF-β1)-induced cardiac fibroblasts (CFs) differentiation and collagen synthesis. However, its effects on isoproterenol-induced myocardial fibrosis in mice remain unknown. This study aimed to examine the effect of apigenin in the prevention of myocardial fibrosis. A mouse model of myocardial fibrosis induced by isoproterenol was established, and the mice were given apigenin 75-300 mg/kg orally for 40 days. The results showed that the heart weight coefficient, myocardial hydroxyproline, collagen accumulation, and malondialdehyde levels in the apigenin-treated groups were significantly reduced. In contrast, the activity of myocardial superoxide dismutase and glutathione peroxidase were significantly enhanced. The results of real-time quantitative polymerase chain reaction and western blot assays showed that apigenin could significantly upregulate the expressions of myocardial microRNA-122-5p (miR-122-5p), c-Ski, and Smad7 and downregulate the expressions of myocardial miR-155-5p, α-smooth muscle actin, collagen I/III, NF-κB, TGF-β1, hypoxia-inducible factor-1α (HIF-1α), Smad2/3, and p-Smad2/3. In vitro, the differentiation and extracellular matrix production, as well as TGF-β1/Smads axis, were further reduced after treatment of miR-122-5p mimic or miR-155-5p inhibitor-transfected and TGF-β1-stimulated CFs with apigenin. These results suggested that apigenin increased the expression of miR-122-5p and decreased the expression of miR-155-5p, which subsequently downregulated and upregulated the target genes HIF-1α and c-Ski, respectively. Furthermore, apigenin administration downregulated TGF-β1-induced Smad2/3 and upregulated Smad7. In addition, it reduced the NF-κB/TGF-β1 signaling pathway axis by increasing antioxidant ability to exert the antifibrotic effects.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanghao Niu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Jiayi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meilin Xie
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu, China
| | - Chunjian Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Nwafor EO, Lu P, Zhang Y, Liu R, Peng H, Xing B, Liu Y, Li Z, Zhang K, Zhang Y, Liu Z. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol 2021; 15:101294. [PMID: 34861551 PMCID: PMC8640119 DOI: 10.1016/j.tranon.2021.101294] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis and cancer is described by some epidemiological studies as chronic stages of different disease conditions typically characterized by uncontrolled accumulation of extra-cellular matrix (ECM), thereby leading to inflammation of tissues and organ (lungs, heart, liver and kidney) dysfunction. It is highly prevalent, and contributes to increased mortality rate worldwide. Currently, the therapeutical approaches involving selected medications (bemcentinib, pirfenidone and nintedanib) obtained synthetically, and used in clinical practices for fibrosis and cancer management and treatment has shown to be unsatisfactorily, especially during progressive stages of the disease. With regards to finding a more potent, effective, and promising curative for fibrosis and cancer, there is need for continuous experimental studies universally. However, phytochemical constituents’ particularly phenolic compounds [Chlorogenic acid (CGA)] obtained from coffee, and coffee beans have been predominantly utilized in experimental studies, due to its multiple pharmacological properties against various disease forms. Considering its natural source alongside minimal toxicity level, CGA, a major precursor of coffee have gained considerable attention nowadays from researchers worldwide, owing to its wide, efficacious and beneficial action against fibrosis and cancer. Interestingly, the safety of CGA has been proven. Furthermore, numerous experimental studies have also deduced massive remarkable outcomes in the use of CGA clinically, as a potential drug candidate against treatment of fibrosis and cancer. In the course of this review article, we systematically discussed the beneficial contributions of CGA with regards to its source, absorption, metabolism, mechanistic effects, and molecular mechanisms against different fibrosis and cancer categorization, which might be a prospective remedy in the future. Moreover, we also highlighted CGA (in vitro and in vivo analytical studies) defensive effects against various disorders.
Collapse
Affiliation(s)
- Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Rui Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Kuibin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yukun Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China.
| |
Collapse
|
29
|
Ma JT, Li DW, Liu JK, He J. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:573-609. [PMID: 34595735 PMCID: PMC8599787 DOI: 10.1007/s13659-021-00319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 05/03/2023]
Abstract
Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Da-Wei Li
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
30
|
Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Antioxidants (Basel) 2021; 10:antiox10121915. [PMID: 34943017 PMCID: PMC8750628 DOI: 10.3390/antiox10121915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Guilin Fengpeng Bio-Tech Co., Ltd., Guilin 541199, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
31
|
Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Model. Processes (Basel) 2021. [DOI: 10.3390/pr9091589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In its prominent experimental studies salvianolic acid B (Sal B) is novel because of its well-defined, common physiological effects, which include anti-inflammatory, anti-depressant, cardioprotective, DNA protective, neuroprotective and hepatoprotective activity in experimental animals. Initially, Sal B was studied for its anti-inflammatory properties, used as a remedy for a wide range of disease conditions, but its specific efficacy on inflammatory bowel disease is still unclear. The aim of this current study was to understand the therapeutic potential of Sal B in an acetic acid (AA)—triggered experimental mouse colitis model. Colitis was triggered by intrarectal injection of 5% AA, and then laboratory animals were given Sal B (10, 20 and 40 μg/kg) for seven days. The ulcerated colonic mucosa was assessed by clinical experiment, macroscopical, biological and histopathological analysis. The results showed depleted SOD, CAT, GSH levels and consequential elevated MPO and MDA levels and aberrant crypt foci and mast cells were seen in the AA-induced colonic mucosa of experimental animals. The data obtained from this study demonstrate that a dose of 40 µg/kg showed an efficacious anti-ulcer effect against AA-induced experimental colitis. Based on its antioxidant efficacy, Sal B may therefore be useful as a therapeutic approach for ulcerative colitis.
Collapse
|
32
|
Chang B, Tang S, Chen R, Xiao N, Zhu J, Tian M, Jiang H, Li X, Jian Z, Han X, Gao Y, Yao Q. The Traditional Uses, Phytochemistry, Pharmacology, Toxicology, and Clinical Uses of Metagentiana Rhodantha (Franch.) T.N.Ho and S.W.Liu, an Ethnomedicine in Southwest China. Front Pharmacol 2021; 12:658628. [PMID: 33981236 PMCID: PMC8107381 DOI: 10.3389/fphar.2021.658628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Metagentiana rhodantha (Franch.) T.N.Ho and S.W.Liu (MR) belongs to Gentianales, and it is often called Hong-hua-long-dan in Chinese. Traditionally, it has been used to cure acute icteric hepatitis, sore throat, dysentery, acute gastritis, carbuncle, and furuncle based on traditional Chinese medicine (TCM) concepts. Aim of Study: This review manages to provide a critical and comprehensive analysis on the traditional uses, phytochemistry, pharmacology, toxicology, and clinical uses of MR and to evaluate the therapeutic potential of this plant. Methods: Relevant data mainly literatures on MR were selected from available database. All the papers reviewed provided evidence that the source herbs were reliably identified. Results: The heat-clearing and removing the phlegm, and purging fire and removing toxicity of MR contribute to its dispelling jaundice, and clearing lung heat and cough. The compounds isolated from this plant include iridoids and secoiridoids, phenolic acids, ketones, triterpenoids, flavonoids, benzophenone glycosides, and others. Mangiferin (MAF) is a characteristic substance from this plant. The pharmacological studies show that some extracts and compounds from MR exhibit anti-inflammatory, antinociceptive, antibacterial, hepatoprotective, cardioprotective, and other effects which are associated with the traditional uses of this plant. The toxicological studies suggest that MAF is less toxic in mice and dogs. Nowadays, Chinese patent drugs such as Feilike Jiaonang and Kangfuling Jiaonang containing MR have been used to cure cough, asthma, chronic bronchitis, dysmenorrhea, and appendagitis. Conclusion: Although the current studies provide related research information of MR, it is still necessary to systemically evaluate the chemistry, pharmacology, toxicity, and safety of the extracts or compounds from this plant before clinical trials in the future. In addition, except for lung infection-related diseases, analgesia, anti-tumor, and hypertriglycemia may be new and prior therapeutic scopes of this ethnomedicine in the future.
Collapse
Affiliation(s)
- Botao Chang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Songjiang Tang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nan Xiao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jingsong Zhu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mengxian Tian
- Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huizhong Jiang
- Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xi Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhonglu Jian
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xu Han
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Gao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qi Yao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
33
|
Inhibitory Effects of Porphyra tenera Extract on Oxidation and Inflammatory Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6650037. [PMID: 33868441 PMCID: PMC8034998 DOI: 10.1155/2021/6650037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
Porphyra tenera (laver) has long been a popular and traditional seaweed food in Korea, Japan, and China. Historically, it was known as a marine medicinal herb to treat hemorrhoids and cholera morbus in Donguibogam. We investigated the effects of P. tenera extract (PTE) for its antioxidant and anti-inflammatory activities. These activities were measured using assays for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging and its superoxide dismutase- (SOD-) like activity, and through the inhibitory production of inflammatory mediators (prostaglandin E2 (PGE2), NO, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6)) in lipopolysaccharide- (LPS-) stimulated Raw 264.7 cells. The antioxidant assay results showed that PTE displayed DPPH radical scavenging activity (46.44%), NO radical scavenging activity (67.14%), and SOD-like activity (80.29%) at a concentration of 5 mg/mL. In the anti-inflammatory assays, treatment with PTE (1 mg/mL) significantly inhibited expression levels of LPS-induced COX-2 and iNOS, as well as the production of PGE2, NO, TNF-α, and IL-6. These results show that PTE has antioxidant and anti-inflammatory properties and provide scientific evidence to explain the antioxidative and anti-inflammatory properties of PTE.
Collapse
|