1
|
Wang L, Mo S, Zhang G, Yue X, Qu Y, Sun X, Wang K. Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice. Eur J Pharmacol 2025:177264. [PMID: 39805487 DOI: 10.1016/j.ejphar.2025.177264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice. However, the molecular mechanism underlying the action of forsythoside A remains unclear. Here, we report that the alleviation of androgenetic alopecia by natural phenylethanoid glycoside forsythiaside A involves the selective inhibition of warmth-sensitive Ca2+-permeable transient receptor potential vanilloid-3 (TRPV3) channels. TRPV3 mRNA and protein expressions are upregulated in the skin of a mouse model of androgenetic alopecia induced by DHT. Ablation of the Trpv3 gene or subcutaneous injection of forsythoside A alleviates DHT-induced hair regrowth inhibition. In whole-cell patch clamp recordings, forsythoside A selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 40.1 ± 4.8 μM. At the single-channel level, forsythoside A also reduces the channel open probability and open frequency without significantly altering the channel unitary conductance. Molecular docking combined with site-directed mutagenesis reveals two residues T636 and T665 critical for forsythoside A-mediated inhibition of TRPV3. Taken together, our findings demonstrate that TRPV3 inhibition is an important a mechanism by which natural forsythoside A ameliorates DHT-induced hair regrowth. Topical TRPV3 inhibitors may hold promise as a new therapeutic approach for treating androgenetic alopecia.
Collapse
Affiliation(s)
- Liqin Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Shilun Mo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Guoji Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Xinying Yue
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Xiaoying Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Mao X, Hu W, Wu M, Jin Y, Zhao J, Xu Y, Li B, Wang W, Wu Y, Zhang J, Pang A, Jin Y, Zhang T, Huang W, Che J, Gao J, Dong X. Discovery of a Novel Non-invasive AR PROTAC Degrader for the Topical Treatment of Androgenetic Alopecia. J Med Chem 2024; 67:22218-22244. [PMID: 39641607 DOI: 10.1021/acs.jmedchem.4c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Elevated expression levels and enhanced activity of androgen receptor (AR) proteins are key factors in the development of androgenetic alopecia (AGA). AR proteolysis-targeting chimera (PROTAC) degraders have shown therapeutic potential, but their poor skin permeability requires invasive delivery methods. In this study, we conducted a structure feature analysis to investigate the effects of different linkers and E3 ligands of AR PROTACs on skin retention properties and degradation potency. Among these, compound C6 was discovered with excellent skin retention properties and nanomolar level AR degradation. By degrading AR, C6 regulated the expression levels of downstream paracrine factors associated with AGA. Additionally, after non-invasive topical application, C6 demonstrated excellent skin accumulation and achieved hair regeneration in an AGA mouse model. Overall, the development of non-invasive C6 offers a promising new strategy for AGA treatment and highlights the potential for using PROTACs in treating other skin diseases.
Collapse
Affiliation(s)
- Xinfei Mao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mingfei Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuyuan Jin
- Center of Safety Evaluation and Research, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310059, P.R. China
| | - Jingyi Zhao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Bizhi Li
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wentao Wang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yiquan Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingyu Zhang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao Pang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuheng Jin
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wenhai Huang
- Center of Safety Evaluation and Research, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310059, P.R. China
| | - Jinxin Che
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310009, P.R. China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Xiaowu Dong
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310009, P.R. China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| |
Collapse
|
3
|
Zhang X, Hao J, Lu T, Dong Y, Sun Y, Yu Y, Li S, Yu S, Hu H. Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies. Int J Nanomedicine 2024; 19:13875-13900. [PMID: 39735326 PMCID: PMC11681813 DOI: 10.2147/ijn.s477820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation. Drugs with antioxidant and anti-inflammatory effects could potentially restore microenvironment homeostasis, offering a promising strategy for alopecia treatment. Methods Resveratrol (RES), a potent antioxidant and anti-inflammatory agent, was selected as the model drug and encapsulated into an active carrier-PPD-Lip to create PPD-Lip@RES. The efficacy of PPD-Lip@RES was comprehensively evaluated in both in vitro and in vivo aspects, and its underlying mechanism was also primarily explored. Results PPD-Lip@RES promoted the proliferation and migration of dermal papilla cells, up-regulated the expression of positive hair growth regulators, and facilitated angiogenesis. It also activated hair follicle stem cells by increasing the expression of Ki67, K5, β-catenin, CD31, and CK19. In the telogen effluvium model, PPD-Lip@RES resulted in more robust hair regeneration, with less hair shedding compared to the minoxidil group. Furthermore, it showed significant therapeutic effects in severe androgenetic alopecia, outperforming finasteride and even the healthy control group. Conclusion The results suggested that PPD-Lip@RES, as a systemic intervention strategy, could effectively facilitate hair growth by targeting both the pathological and physiological processes involved in hair loss. Its superior performance in both telogen effluvium and androgenetic alopecia models indicates its potential as an advanced treatment option for alopecia.
Collapse
Affiliation(s)
- Xuefei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan Province, People’s Republic of China
| | - Jiabao Hao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Tianli Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yingjun Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuxuan Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
Li Y, Dong T, Yang F, Jin S, Xiong R, Song X, Guan C. MitoQ enhances CYP19A1 expression to stimulate WNT/β-catenin signaling pathway for promoting hair growth in androgenetic alopecia. Eur J Pharmacol 2024; 985:177094. [PMID: 39547405 DOI: 10.1016/j.ejphar.2024.177094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Increased sensitivity to androgens and androgen receptors is the underlying cause of androgenetic alopecia (AGA), a hereditary disease. Our study investigated the preventive effects of MitoQ on dihydrotestosterone (DHT)-induced mitochondrial dysfunction and subsequent hair loss from three perspectives: in vivo, in vitro, and network pharmacology. A mouse model of AGA was used to assess the effectiveness of MitoQ intervention. Seventy-five drug targets and 367 disease targets were identified through network pharmacology analysis. Molecular docking analysis revealed that the androgen receptor (AR) and CYP19A1, which are key targets of MitoQ, may play a role in AGA treatment. CYP19A1 expression was downregulated in lesions from patients with AGA compared to healthy scalp tissue, while AR expression was upregulated. Cellular tests of human dermal papilla cells (DPCs) treated with MitoQ revealed that the mRNA and protein expression of AR remained unchanged, but the mRNA expression of CYP19A1 was upregulated. Our experiments also confirmed that CYP19A1 overexpression prevented DHT-induced apoptosis and upregulated the expression levels of WNT3A and β-catenin, whereas increased apoptosis levels and the downregulation of WNT3A and β-catenin due to CYP19A1 knockdown were reduced by MitoQ. We verified that MitoQ enhanced hair growth in DHT-induced hair loss model mice and reversed DHT-induced apoptosis by enhancing the expression of CYP19A1 in DPCs and that MitoQ may act by mediating the WNT/β-catenin pathway. These findings indicate that MitoQ could be a promising intervention for AGA and that CYP19A1 may serve as a valuable therapeutic target for AGA.
Collapse
Affiliation(s)
- Yujie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Fenglan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shiyu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Renxue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Thuangtong R, Suthakorn J. Design, proof-of-concept of single robotic hair transplant mechanisms for both harvest and implant of hair grafts. Comput Struct Biotechnol J 2024; 24:31-45. [PMID: 38162956 PMCID: PMC10755542 DOI: 10.1016/j.csbj.2023.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
The design and development of a prototype for a singular robotic hair transplant system capable of harvesting and implanting hair grafts were executed in this study. To establish a proof-of-concept for hair transplant procedures involving harvesting and implantation, a test system using a spherical phantom of the scalp was selected. The developed prototype of the robotic hair transplant system demonstrates the potential to reduce the duration that grafts remain without a blood supply, thereby minimizing hair graft damage. Additionally, the overall operation time for follicular unit extraction is comparatively shorter than that of conventional systems. Results from the robot vision tests indicate an 89.6% accuracy for hair graft detection with a 4 mm hair length phantom and 97.4% for a 2 mm hair length phantom. In the robot position control test, the root mean square error was found to be 1.268°, with a standard error of the mean of 0.203°. These outcomes suggest that the proposed system performs effectively under the conditions of a spherical phantom with a 2 mm hair length and a 5 mm distance between harvests.
Collapse
Affiliation(s)
- Rattapon Thuangtong
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology, Faculty of Engineering, Mahidol University, Salaya, Thailand
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology, Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
6
|
Yan W, Liu J, Xie X, Jin Q, Yang Y, Pan Y, Zhang Y, Zhang F, Wang Y, Liu J, Jin L. Restoration of follicular β-catenin signaling by mesenchymal stem cells promotes hair growth in mice with androgenetic alopecia. Stem Cell Res Ther 2024; 15:439. [PMID: 39563459 PMCID: PMC11575167 DOI: 10.1186/s13287-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is recognized as a promising strategy for the treatment of androgenetic alopecia (AGA). However, the underlying mechanism remains to be explored. Here, we evaluated the therapeutic effects and potential mechanisms of the use of human umbilical cord mesenchymal stem cells (hUCMSCs) in dihydrotestosterone (DHT)-induced AGA models in vivo and in vitro. METHODS Intradermal transplantation of hUCMSCs was performed in AGA model mice and therapeutic effects were evaluated using histological and immunofluorescence staining. Transwell assays were used for co-culture of hUCMSCs and dermal papilla cells (DPCs), and communication was assessed using RT-qPCR, immunofluorescence, and apoptosis analysis. Interactions between DPCs and hair follicle stem cells (HFSCs) were investigated using RT-qPCR, EdU assays, and cell cycle analysis. RESULTS Treatment of AGA mice with hUCMSCs promoted hair growth, HFs density, skin thickness, and anagen phase activation, while inhibiting DPCs apoptosis, and promoting HFSCs proliferation. In vitro, hUCMSCs activated Wnt/β-catenin signaling in DPCs via Wntless (Wls), while stimulating growth factor secretion and HFSCs proliferation. Blocking β-catenin degradation with MSAB increased DPCs apoptosis, reduced growth factor secretion, and retarded HFSCs proliferation. CONCLUSION hUCMSCs promoted hair regeneration in AGA model mice. This was found to be dependent on reducing DPCs apoptosis, thereby relieving the inhibitory effects of DPCs on the growth of HFSCs. The activation of the Wnt/β-catenin signaling pathway was shown to play a crucial role in the promotion of hair growth by hUCMSCs in AGA mice.
Collapse
Affiliation(s)
- Wenjing Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiakun Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuedong Xie
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qianqian Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Wang
- Nanjing Ailote Cell Technology Research Institute Co., Ltd, Nanjing, 211103, China
| | - Jianxing Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Kamar SA, Naiem Hamdy K, El-Nefiawy NE, Mohammed H, Fetouh MA. Exploring Mesenchymal Stem Cells versus Minoxidil for Androgenic Alopecia Treatment: A Detailed Animal-Based Histological and Morphometric Study. Cells Tissues Organs 2024:1-17. [PMID: 39527940 DOI: 10.1159/000542547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Androgenic alopecia (AGA), a hair loss condition caused by dihydrotestosterone binding to hair follicle receptors, negatively impacts quality of life for both men and women. Current treatments like minoxidil and finasteride have limitations, highlighting the need for alternative therapies, such as human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs). METHODS In this study, forty-eight adult male Wistar albino rats (3 months old) were used. The control group (Group I) received no treatment, while the other rats underwent AGA induction via daily subcutaneous testosterone injections (100 mg/kg). These rats developed alopecia and were divided into three groups: AGA (Group II), AGA plus daily minoxidil spray (Group III), and AGA plus a single intradermal injection of HUCB-MSCs (1 mL containing 1 × 105 cells, Group IV). After 4 weeks, the rats were sacrificed, and skin specimens were prepared for histological analysis using H&E, Masson's trichrome, and immunohistochemical staining for CK 19, vascular endothelial growth factor (VEGF), and TUNEL antibodies. RESULTS It was shown that HUCB-MSC treatment reversed structural damage to hair and follicles, normalizing conditions within 1-week post-injection. The treatment enhanced the anagen phase, suppressed telogen and catagen phases, reduced apoptosis, and increased VEGF and CK 19 immune reactions. Observational follow-up for Groups III and IV revealed that while the minoxidil group experienced significant hair loss after 37 days, the stem cell group exhibited dense and long hair covering the treated area. CONCLUSION HUCB-MSC therapy demonstrated superior efficacy over minoxidil with no observed side effects, indicating its potential as a promising alternative for AGA treatment.
Collapse
Affiliation(s)
- Sherif A Kamar
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Khaled Naiem Hamdy
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Heba Mohammed
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa A Fetouh
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Mao Y, Liu P, Wei J, Xie Y, Zheng Q, Hu X, Yao J, Meng W. Exosomes derived from Umbilical cord mesenchymal stem cell promote hair regrowth in C57BL6 mice through upregulation of the RAS/ERK signaling pathway. J Transl Int Med 2024; 12:478-494. [PMID: 39513036 PMCID: PMC11538887 DOI: 10.1515/jtim-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background and Objectives Androgenetic alopecia is one of the common types of hair loss and has become a medical and social problem due to its increasingly young onset. Existing therapies, although effective, have serious side effects and therefore better treatments need to be sought. The aim of this study was to evaluate the efficacy of umbilical cord mesenchymal stem cell-derived exosomes in the treatment of androgenetic alopecia and to investigate the mechanism of exosome regulation of hair growth. Methods First, we randomly divided 20 C57BL/6J mice into blank group, model group, positive control group and exosomal hydrogel group, and mice were treated with hair removal on the back. The mice were injected intraperitoneally with dihydrotestosterone solution except for the blank group. At the end of the experiment, new hairs were collected and the differences in length, diameter and number of hair follicles were compared among the groups; the histopathological changes of hair follicles were observed by HE staining; the expression of androgen receptor mRNA and protein in skin tissues were compared; and the skin tissues were analyzed by real-time PCR, western blotting, immunofluorescence staining and transcriptome sequencing. Finally, the results of transcriptome sequencing experiments were verified by real-time PCR, western blotting and other techniques for the corresponding genes and proteins. Results Compared with the blank group, mice in the model group had shorter hair length and reduced hair diameter, and pathological observation showed that the total number of hair follicles was significantly reduced and the hair follicles were miniaturized; compared with the model group, mice in the positive control and exosome groups had longer hair length, larger hair diameter and more hair follicles; the androgen receptor mRNA content and protein expression in the skin tissue of mice in the model group were significantly higher than those in the blank group, and the protein expression in the exosome gel group was lower than that in the model group. Similarly, compared with the model group, the expression of stemness-related proteins K15 and CD200 in the skin tissues of mice in the exosome group increased, and the expression of PCNA, a protein related to cell proliferation, increased. The KEGG data showed that the differential genes were mainly enriched in the RAS/ERK pathway. Conclusions In this study, we demonstrated the therapeutic effect of umbilical cord MSC-derived exosomes on androgenetic alopecia and verified that exosomes regulate hair follicle stem cell stemness through the RAS/ERK pathway to promote hair proliferation and thus hair growth in mice with androgenetic alopecia, providing a potential therapeutic strategy for androgenetic alopecia.
Collapse
Affiliation(s)
- Yongcui Mao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Pinyan Liu
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Jiayun Wei
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Ye Xie
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Qiuxia Zheng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jia Yao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| | - Wenbo Meng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Kim HR, Park JU, Lee SH, Park JY, Lee W, Choi KM, Kim SY, Park MH. Hair Growth Effect and the Mechanisms of Rosa rugosa Extract in DHT-Induced Alopecia Mice Model. Int J Mol Sci 2024; 25:11362. [PMID: 39518915 PMCID: PMC11545796 DOI: 10.3390/ijms252111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Rosa rugosa is a medicinal plant known for its potential anti-inflammatory, antioxidant, anti-cancer, and antimicrobial benefits. The pharmacological effects of Rosa rugosa extract on hair loss have not yet been documented. This research sought to assess the inhibitory effects and mechanisms of action of Rosa rugosa water extract (RWE) in a mouse model of dihydrotestosterone (DHT)-induced alopecia. The study was conducted using C57BL/6 mice, which were assigned to five groups: control, DHT-treated, Rosa rugosa water extract (RWE) at doses of 25 mg/kg and 100 mg/kg body weight, and bicalutamide-treated. To induce hair loss, dihydrotestosterone (1 mg/day per body weight) was administered via intraperitoneal injections, and dorsal hair removal was timed to align with the telogen phase. Each group received oral treatments for a period of 23 days. In this study, we assessed hair growth activity, examined histological changes, and performed immunoblot analysis. We noted improvements in hair length and thickness. Additionally, the protein expression of growth factors associated with hair growth, including vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and insulin-like growth factor-1 (IGF-1), showed significant increases in the group treated with RWE. Additionally, treatment with RWE suppressed the protein expression of hair growth inhibitory factors, including dickkopf WNT signaling pathway inhibitor 1 (DKK1) and interleukin (IL)-6. Moreover, hair growth regulatory pathway related factors, including ERK, AKT, and GSK-3β, were activated. These findings indicate that RWE could serve as a promising natural therapy for preventing hair loss by enhancing the production of factors that promote hair growth while inhibiting those that suppress it.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jung Up Park
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Wonwoo Lee
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Kyung-Min Choi
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| |
Collapse
|
10
|
Kuş MM, Düzenli ZB, Öztürk P, Kurutas EB. Evaluation of the relationship between serum G protein-coupled estrogen receptors (GPER-1) levels and the severity and duration of the disease in patients with androgenetic alopecia: A case-control study. Arch Dermatol Res 2024; 316:658. [PMID: 39369050 DOI: 10.1007/s00403-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
There are studies revealing the effects of estrogen receptors alpha (α) and beta (β) on hair follicles. However, the effects of G protein-coupled estrogen receptors (GPER-1) on hair follicles have not been elucidated. This study aims to evaluate the relationship between serum GPER-1 levels and the severity and duration of the disease in patients with androgenetic alopecia (AGA). The study included 81 patients with AGA aged 18 to 50 years (22 men and 19 women with an onset of AGA more than 5 years, and 20 men and 20 women with an onset of AGA less than 5 years) and 40 healthy controls (20 men, 20 women). The mean age of participants with AGA was 29.12 ± 8.15 (18-50), and the mean age of the control group was 25.21± 4.71 (19-42). Serum GPER-1 levels were measured, and the relationship between GPER-1 levels and duration of the disease, severity of the disease, and sex was statistically evaluated. The serum level of GPER-1 was significantly higher in patients with AGA as compared to the control group (p < 0.001). A negative correlation was found between serum GPER-1 levels and the duration of the disease in both men and women (p < 0.001, r = 0.793; p < 0.001, r = 0.711, respectively). There was a significant relationship between serum GPER-1 levels and the severity of the disease in both men and women (p = 0.003; p = 0.002, respectively). Additionally, a significant difference in GPER-1 levels was noted between male and female patients with AGA (p = 0.001). However, no statistically significant relationship was identified between GPER-1 levels and estrogen levels (p = 0.097). The higher levels of GPER-1 in patients with AGA compared to the control group, and the significant relationship between GPER-1 levels and both the duration and severity of the disease, suggest an estrogen-independent role of GPER-1 in the pathogenesis of AGA. The fact that GPER-1 levels are high in the early stages of AGA when inflammation is prominent suggests that treatments targeting these receptors may be effective at this stage.
Collapse
Affiliation(s)
- Mine Müjde Kuş
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey.
| | - Zahide Beril Düzenli
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Perihan Öztürk
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Ergul Belge Kurutas
- Kahramanmaraş Sütçü İmam University School of Medicine, Department of Biochemistry, Kahramanmaras, 46100, Turkey
| |
Collapse
|
11
|
Oh HG, Jung M, Jeong SY, Kim J, Han SD, Kim H, Lee S, Lee Y, You H, Park S, Kim EA, Kim TM, Kim S. Improvement of androgenic alopecia by extracellular vesicles secreted from hyaluronic acid-stimulated induced mesenchymal stem cells. Stem Cell Res Ther 2024; 15:287. [PMID: 39256806 PMCID: PMC11389250 DOI: 10.1186/s13287-024-03906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/β-catenin signaling pathway (β-catenin and phosphorylated GSK3β) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/β-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-β, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/β-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by β-catenin stabilization and an increase in phosphorylated GSK3β. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular β-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hyun Geun Oh
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Minyoung Jung
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Seon-Yeong Jeong
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Jimin Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Sang-Deok Han
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Hongduk Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea
| | - Seulki Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Yejin Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Haedeun You
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Somi Park
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Eun A Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Tae Min Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
| | - Soo Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea.
| |
Collapse
|
12
|
Ru Q, Huang K, Yu R, Wu X, Shen J. Effects of Camellia oleifera seed shell polyphenols and 1,3,6-tri-O-galloylglucose on androgenic alopecia via inhibiting 5a-reductase and regulating Wnt/β-catenin pathway. Fitoterapia 2024; 177:106116. [PMID: 38977254 DOI: 10.1016/j.fitote.2024.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/β-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/β-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.
Collapse
Affiliation(s)
- Qi Ru
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Huang
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 217, Reading RG6 6AH, United Kingdom
| | - Ruining Yu
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqin Wu
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianfu Shen
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Kim J, An J, Lee YK, Ha G, Ban H, Kong H, Lee H, Song Y, Lee CK, Kim SB, Kim K. Hair Growth Promoting Effects of Solubilized Sturgeon Oil and Its Correlation with the Gut Microbiome. Pharmaceuticals (Basel) 2024; 17:1112. [PMID: 39338277 PMCID: PMC11434952 DOI: 10.3390/ph17091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Androgenetic alopecia is a common disease that occurs in both men and women. Several approved medications have been used to treat this condition, but they are associated with certain side effects. Therefore, use of extracts derived from natural products, such as Siberian sturgeon (Acipenser baerii), and the regulation of the gut microbiota have become important topics of research. Sturgeon is known for its high nutritional value and anti-inflammatory properties; however, its effects on androgenetic alopecia and gut microbiota remain uncharacterized. Here, we aimed to investigate whether solubilized sturgeon oil (SSO) promotes hair growth and regulates the gut microbiome. C57BL/6 mice were divided into four groups. Three groups received topical applications of distilled water, SSO, or minoxidil, and one group was orally administered SSO. Each treatment was administered over 4 weeks. Histopathological analysis revealed a significant increase in follicle number (p < 0.001) and follicle diameter (p < 0.05). Immunohistochemical analysis revealed upregulation of β-catenin and ERK-1, markers involved in hair growth-promoting pathways. Furthermore, microbiome analysis revealed that the reduced gut microbiota was negatively correlated with these markers. Our findings indicate that oral administration of SSO promotes hair growth and regulates the abundance of hair growth-promoting gut microbiota.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Jinho An
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Yong-kwang Lee
- Sturgeon Bio Co., Ltd., Cheongju 28581, Republic of Korea;
| | - Gwangsu Ha
- Department of Animal Life Resources, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Hamin Ban
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Hyunseok Kong
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Heetae Lee
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Youngcheon Song
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Chong-kil Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Sang Bum Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Kyungjae Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| |
Collapse
|
14
|
Zhang H, Qing R, Li W, Yuan Y, Pan Y, Tang N, Huang Q, Wang B, Hao S. Rational Design of Human Hair Keratin-Driven Proteins for Hair Growth Promotion. Adv Healthc Mater 2024:e2401378. [PMID: 39132773 DOI: 10.1002/adhm.202401378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Keratins, the most abundant proteins in human hair, are excellent hair nutrients for growth. However, the complex components of keratin extract hinder their mechanism investigation, and the pure recombinant keratin with poor solubility limited its hair growth promotion efficiency. Here, the water-soluble recombinant keratins (RKs) of K31 and K81 are rationally designed through QTY Code methodology, which are then used to fabricate the microneedles to study the effect of keratin on hair growth. Interestingly, it is discovered that more than 40% of the hair follicles (HFs) in the RK81QTY group entered the anagen on day 12 and the diameter of new hair is 15.10 ± 2.45 µm, which significantly promoted growth and development of HFs and improved new hair quality compared to RK31QTY. Water-soluble RKs significantly enhanced HFs activity and de novo regeneration of robust hairs compared to extract and minoxidil by upregulating the PI3K/AKT/Nf-κB signaling axis. These findings highlight the potential of designing solubilized recombinant keratins with distinct properties to improve therapeutical effects and open new avenues to designing keratin-based proteins.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ni Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qiulan Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
15
|
Magalhaes J, Lamas S, Portinha C, Logarinho E. Optimized Depilation Method and Comparative Analysis of Hair Growth Cycle in Mouse Strains. Animals (Basel) 2024; 14:2131. [PMID: 39061593 PMCID: PMC11273389 DOI: 10.3390/ani14142131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In mice, hair growth follows a mosaic or wavy patterning. Therefore, synchronization of the hair growth cycle is required to adequately evaluate any trichogenic interventions pre-clinically. Depilation is the established method for synchronizing the growth phase of mouse hair follicles. When attempting to reproduce procedures reported in the literature, C57BL/6J mice developed severe wounds. This led us not only to optimize the procedure, but also to test the procedure in other strains, namely Sv129 and the F1 generation from C57BL/6J crossed with Sv129 (B6129F1 mixed background), for which the hair growth cycle has not been ascertained yet. Here, we describe an optimized depilation procedure, using cold wax and an extra step to protect the animal skin that minimizes injury, improving experimental conditions and animal welfare in all strains. Moreover, our results show that, although hair cycle kinetics are similar in all the analyzed strains, Sv129 and B6129F1 skins are morphologically different from C57BL/6J skin, presenting an increased number and size of hair follicles in anagen, consistent to the higher hair density observed macroscopically. Altogether, the results disclose an optimized mouse depilation method that excludes the detrimental and confounding effects of skin injury in hair growth studies and reveals the hair cycle features of other mouse strains, supporting their use in hair growth pre-clinical studies.
Collapse
Affiliation(s)
- Joana Magalhaes
- Insparya Science and Clinical Institute, 4150-516 Porto, Portugal; (C.P.); (E.L.)
- Aging and Aneuploidy Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Portinha
- Insparya Science and Clinical Institute, 4150-516 Porto, Portugal; (C.P.); (E.L.)
| | - Elsa Logarinho
- Insparya Science and Clinical Institute, 4150-516 Porto, Portugal; (C.P.); (E.L.)
- Aging and Aneuploidy Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
16
|
Wang F, He G, Liu M, Sun Y, Ma S, Sun Z, Wang Y. Pilose antler extracts promotes hair growth in androgenetic alopecia mice by activating hair follicle stem cells via the AKT and Wnt pathways. Front Pharmacol 2024; 15:1410810. [PMID: 39045053 PMCID: PMC11263108 DOI: 10.3389/fphar.2024.1410810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background: Angrogenetic alopecia (AGA) is one of the most prevalent hair loss disorders worldwide. The hair follicle stem cell (HFSC) is closely related to the formation of hair follicle (HF) structure and HF self-renewal. The activation of HFSC in AGA is critical for hair growth. Pilose antler has been reported to have hair growth-promoting activity, but the mechanism of action on AGA and HFSC has not been reported. Methods: We previously extracted an active component from the pilose antler known as PAEs. In this study, we conducted experiments using AGA mice and HFSC. The effects of PAEs on hair growth in AGA mice were firstly detected, and then the mechanisms of PAEs for AGA were predicted by integrating network pharmacology and de novo transcriptomics data of pilose antler. Finally, biological experiments were used to validate the molecular mechanism of PAEs in treating AGA both in vivo and in vitro. Results: It was found that PAEs promoted hair regrowth by accelerating the activation of anagen, delaying the anagen-catagen transition. It also alleviated the morphological changes, such as hair shortening, thinning, miniaturization, and HF number reduction, and regulated the hair regeneration process of four subtypes of hair. We further found that PAEs could promote the proliferation of HFSC, outer root sheath (ORS) cells, and hair bulb cells in AGA mice. We then integrated network pharmacology and pilose antler transcriptomics data to predict that the mechanism of PAEs treatment in AGA mice is closely related to the PI3K-AKT/Wnt-β-Catenin pathways. Subsequently, it was also verified that PAEs could activate both pathways in the skin of AGA mice. In addition, we found that PAEs perhaps increased the number of blood vessels around dermal papilla (DP) in experiments in vivo. Meanwhile, the PAEs stimulated the HFSC proliferation in vitro and activated the AKT and Wnt pathways. However, the proliferative activity of HFSC was inhibited after blocking the Wnt pathway and AKT activity. Conclusion: This study suggests that the hair growth-promoting effect of PAEs in AGA mice may be closely related to the stimulation of the AKT and Wnt pathways, which in turn activates the proliferation of HFSC.
Collapse
Affiliation(s)
- Fenglong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenxiao Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Xing H, Pan X, Hu Y, Yang Y, Zhao Z, Peng H, Wang J, Li S, Hu Y, Li G, Ma D. High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage. Acta Biomater 2024; 182:171-187. [PMID: 38759743 DOI: 10.1016/j.actbio.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Photodamage is one of the most common causes of skin injury. High molecular weight hyaluronic acid (HHA) has shown immense potential in the treatment of skin photodamage by virtue of its anti-inflammatory, reparative, and antioxidative properties. However, due to its large molecular structure of HHA, HHA solution could only form a protective film on the skin surface in conventional application, failing to effectively penetrate the skin, which necessitates the development of new delivery strategies. Liposomes, with a structure similar to biological membranes, have garnered extensive attention as transdermal drug delivery carriers because of their advantages in permeability, dermal compatibility, and biosafety. Herein, we have developed a HHA-liposome transdermal system (HHL) by embedding HHA into the liposome structure using reverse evaporation, high-speed homogenization, and micro-jet techniques. The effective penetration and long-term residence of HHA in skin tissue were multidimensionally verified, and the kinetics of HHA in the skin were extensively studied. Moreover, it was demonstrated that HHL significantly strengthened the activity of human keratinocytes and effectively inhibits photo-induced cellular aging in vitro. Furthermore, a murine model of acute skin injury induced by laser ablation was established, where the transdermal system showed significant anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair, thereby demonstrating immense potential in accelerating skin wound healing. Meanwhile, HHL significantly ameliorated skin barrier dysfunction caused by simulated sunlight exposure, inhibited skin erythema, inflammatory responses, and oxidative stress, and promoted collagen expression in a chronic photodamage skin model. Therefore, this transdermal delivery system with biocompatibility represents a promising new strategy for the non-invasive application of HHA in skin photodamage, revealing the significant potential for clinical translation and broad application prospects. STATEMENT OF SIGNIFICANCE: The transdermal system utilizing hyaluronic acid-based liposomes enhances skin permeability and retains high molecular weight hyaluronic acid (HHL). In vitro experiments with human keratinocytes demonstrate significant skin repair effects of HHL and its effective inhibition of cellular aging. In an acute photodamage model, HHL exhibits stronger anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair. In a chronic photodamage model, HHL significantly improves skin barrier dysfunction, reduces oxidative stress induced by simulated sunlight, and enhances collagen expression.
Collapse
Affiliation(s)
- Hui Xing
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangjun Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
| | - Yihan Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuhui Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ziyi Zhao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huanqi Peng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jianjin Wang
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Shanying Li
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Yunfeng Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Guowei Li
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Kim SR, Kim YJ, Kim JH, Kim SN, Park WS, Kim SH, Chung J, Choi MS, Kim M, Park BC. Comprehensive transcriptome profiling between balding and non-balding scalp of female pattern hair loss in Asian. Arch Dermatol Res 2024; 316:360. [PMID: 38850442 DOI: 10.1007/s00403-024-03114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
While many gene expression studies have focused on male pattern baldness (MPB), few studies have investigated the genetic differences between bald and non-bald hair follicles in female pattern hair loss (FPHL). This study aimed to identify molecular biomarkers associated with FPHL through genetic analysis of paired bald and non-bald hair follicles from 18 FPHL patients, using next-generation sequencing (NGS) techniques. RNA transcriptome analysis was performed to identify differentially expressed genes (DEGs) between bald and non-bald hair follicles in FPHL. The DEGs were validated using real-time PCR, and protein expression was confirmed through immunohistochemistry and western blot analysis. Our findings suggest that HOXB13, SFRP2, PTGDS, CXCR3, SFRP4, SOD3, and DCN are significantly upregulated in bald hair follicles compared to non-bald hair follicles in FPHL. SFRP2 and PTGDS were found to be consistently highly expressed in bald hair follicles in all 18 samples. Additionally, elevated protein levels of SFRP2 and PTGDS were confirmed through western blot and immunohistochemical analysis. Our study identified SFRP2 and PTGDS as potential biomarkers for FPHL and suggests that they may play a role in inducing hair loss in this condition. These findings provide a foundation for further research on the pathogenesis of FPHL and potential therapeutic targets.
Collapse
Affiliation(s)
- Soon Re Kim
- Basic and Clinical Hair institute, Dankook University, Cheonan, Republic of Korea
- Beckman Laser Institute Korea, DanKook University, Cheonan, Republic of Korea
| | - Yun Ji Kim
- Theragen Bio Institute, Seongnam, Republic of Korea
| | - Ju-Hee Kim
- Basic and Clinical Hair institute, Dankook University, Cheonan, Republic of Korea
| | - Su Na Kim
- AmorePacific R&D Center, Yongin, Republic of Korea
| | | | - Se Hwan Kim
- Beckman Laser Institute Korea, DanKook University, Cheonan, Republic of Korea
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Juhyun Chung
- Department of Dermatology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Mi Soo Choi
- Department of Dermatology, Dankook University Hospital, Cheonan, Republic of Korea
| | - MyungHwa Kim
- Department of Dermatology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Byung Cheol Park
- Basic and Clinical Hair institute, Dankook University, Cheonan, Republic of Korea.
- Department of Dermatology, Dankook University Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
19
|
Anjum MA, Zulfiqar S, Chaudhary AA, Rehman IU, Bullock AJ, Yar M, MacNeil S. Stimulation of hair regrowth in an animal model of androgenic alopecia using 2-deoxy-D-ribose. Front Pharmacol 2024; 15:1370833. [PMID: 38887556 PMCID: PMC11180715 DOI: 10.3389/fphar.2024.1370833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Androgenic alopecia (AGA) affects both men and women worldwide. New blood vessel formation can restore blood supply and stimulate the hair regrowth cycle. Recently, our group reported that 2-deoxy-D-ribose (2dDR) is 80%-90% as effective as VEGF in the stimulation of neovascularization in in vitro models and in a chick bioassay. In this study, we aimed to assess the effect of 2dDR on hair growth. We prepared an alginate gel containing 2dDR, polypropylene glycol, and phenoxyethanol. AGA was developed in C57BL6 mice by intraperitoneally injecting testosterone (TE). A dihydrotestosterone (DHT)-treated group was used as a negative control, a minoxidil group was used as a positive control, and we included groups treated with 2dDR gel and a combination of 2dDR and minoxidil. Each treatment was applied for 20 days. Both groups treated with 2dDR gel and minoxidil stimulated the morphogenesis of hair follicles. H&E-stained skin sections of C57BL/6 mice demonstrated an increase in length, diameter, hair follicle density, anagen/telogen ratio, diameter of hair follicles, area of the hair bulb covered in melanin, and an increase in the number of blood vessels. Masson's trichrome staining showed an increase in the area of the hair bulb covered in melanin. The effects of the FDA-approved drug (minoxidil) on hair growth were similar to those of 2dDR (80%-90%). No significant benefit were observed by applying a combination of minoxidil with 2dDR. We conclude that 2dDR gel has potential for the treatment of androgenic alopecia and possibly other alopecia conditions where stimulation of hair regrowth is desirable, such as after chemotherapy. The mechanism of activity of 2dDR remains to be established.
Collapse
Affiliation(s)
- Muhammad Awais Anjum
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Saima Zulfiqar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqif Anwar Chaudhary
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- School of Medicine, University of Central Lancashire, Preston, United Kingdom
| | - Anthony J. Bullock
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Almutairy BK, Khafagy ES, Aldawsari MF, Alshetaili A, Alotaibi HF, Lila ASA. Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia. Int J Pharm X 2024; 7:100240. [PMID: 38577618 PMCID: PMC10992714 DOI: 10.1016/j.ijpx.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 μg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 μg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
21
|
Hossain MM, Khalid A, Akhter Z, Parveen S, Ayaz MO, Bhat AQ, Badesra N, Showket F, Dar MS, Ahmed F, Dhiman S, Kumar M, Singh U, Hussain R, Keshari P, Mustafa G, Nargorta A, Taneja N, Gupta S, Mir RA, Kshatri AS, Nandi U, Khan N, Ramajayan P, Yadav G, Ahmed Z, Singh PP, Dar MJ. Discovery of a novel and highly selective JAK3 inhibitor as a potent hair growth promoter. J Transl Med 2024; 22:370. [PMID: 38637842 PMCID: PMC11025159 DOI: 10.1186/s12967-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024] Open
Abstract
JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.
Collapse
Affiliation(s)
- Md Mehedi Hossain
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arfan Khalid
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zaheen Akhter
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Sabra Parveen
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Neetu Badesra
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farheen Showket
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohmmad Saleem Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farhan Ahmed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Sumit Dhiman
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Mukesh Kumar
- Medicinal Product Chemistry, Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Umed Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Razak Hussain
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pankaj Keshari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ghulam Mustafa
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Amit Nargorta
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Neha Taneja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aravind Singh Kshatri
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Ramajayan
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Govind Yadav
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zabeer Ahmed
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Parvinder Pal Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
22
|
Liu X, Kong X, Xu L, Su Y, Xu S, Pang X, Wang R, Ma Y, Tian Q, Han L. Synergistic therapeutic effect of ginsenoside Rg3 modified minoxidil transfersomes (MXD-Rg3@TFs) on androgenic alopecia in C57BL/6 mice. Int J Pharm 2024; 654:123963. [PMID: 38430952 DOI: 10.1016/j.ijpharm.2024.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.
Collapse
Affiliation(s)
- Xiaxia Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xia Kong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yonghui Su
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shanshan Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Pang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruifen Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yihan Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Qingping Tian
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
23
|
Wei W, Zhao G, Li Q, Zhang J, Wei H, Shen C, Zhao B, Ji Z, Wang L, Guo Y, Jin P. Botulinum Toxin Type A Alleviates Androgenetic Alopecia by Inhibiting Apoptosis of Dermal Papilla Cells via Targeting circ_0135062/miR-506-3p/Bax Axis. Aesthetic Plast Surg 2024; 48:1473-1486. [PMID: 38286898 DOI: 10.1007/s00266-023-03834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024]
Abstract
Botulinum toxin type A (BTXA) has the potential to treat androgenetic alopecia (AGA); however, its impact on the apoptosis of dermal papillary cells (DPCs) is not yet fully understood. Noncoding RNAs play a crucial role in AGA. In this study, we investigated the potential mechanism by which BTXA alleviates apoptosis induced by dihydrotestosterone (DHT) in DPCs. We assessed the mRNA levels of circ_0135062, miR-506-3p, and Bax using qRT-PCR. Binding interactions were analyzed using RNA pulldown and dual-luciferase assays. Cell viability was determined using a cell counting kit-8 assay, and cell apoptosis was assessed using flow cytometry, TUNEL assays, and western blotting. Our findings revealed that BTXA inhibited the apoptosis of DPCs treated with DHT. Moreover, circ_0135062 overexpression counteracted the protective effect of BTXA on DHT-treated DPCs. MiR-506-3p was found to interact with Bax and inhibit apoptosis in DPCs by suppressing Bax expression in response to DHT-induced damage. Furthermore, circ_0135062 acted as a sponge for miR-506-3p, thereby inhibiting the targeting of Bax expression by miR-506-3p. In conclusion, BTXA exhibited an antiapoptotic effect on DHT-induced DPC injury via the circ_0135062/miR-506-3p/Bax axis.Level of Evidence II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wuhan Wei
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Guoxiang Zhao
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Qiang Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Hanxiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Caiqi Shen
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Zhe Ji
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Linna Wang
- Lanzhou Biotechnique Development Co., Ltd, Lanzhou, Gansu, China
| | - Yanping Guo
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
24
|
Heydari S, Barzegar-Jalali M, Heydari M, Radmehr A, Paiva-Santos AC, Kouhsoltani M, Hamishehkar H. The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration. BIOIMPACTS : BI 2024; 14:30243. [PMID: 39493898 PMCID: PMC11530971 DOI: 10.34172/bi.2024.30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 11/05/2024]
Abstract
Introduction Follicular delivery is one of the targeted drug delivery methods aiming to target the hair follicles. The accumulation and retention time of targeted drugs is enhanced when nanoparticles are used as drug carriers. Particle size is one of the important factors affecting the penetration and accumulation of particles in the hair follicles, and there is a controversy in different studies for the best particle size for follicular delivery. Mouse models are mostly used in clinical trials for dermal, transdermal, and follicular delivery studies. Also, it is essential to investigate the reliability of the results between human studies and mouse models. Methods Curcumin-loaded nanostructured lipid carriers (NLCs), as a fluorescent agent, with three different particle size ranges were prepared using the hot homogenization method and applied topically on the mouse and human study groups. Biopsies were taken from applied areas on different days after using the formulation. The histopathology studies were done on the skin biopsies of both groups using confocal laser scanning microscopy (CLSM). We compared the confocal laser scanning microscope pictures of different groups, in terms of penetration and retention time of nanoparticles in human and mouse hair follicles. Results The best particle size in both models was the 400 nm group but the penetration and accumulation of particles in human and mouse hair follicles were totally different even for the 400 nm group. In human studies, 400 nm particles showed good accumulation after seven days; this result can help to increase the formulation using intervals. Conclusion The best particle size for human and mouse follicular drug delivery is around 400 nm and although mouse models are not completely suitable for follicular delivery studies, they can be used in some conditions as experimental models.
Collapse
Affiliation(s)
- Saman Heydari
- Student Research Committee and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Radmehr
- Department of Dermatology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-Based therapies for skin diseases. Regen Ther 2024; 25:101-112. [PMID: 38178928 PMCID: PMC10765304 DOI: 10.1016/j.reth.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Based on engineered cell/exosome technology and various skin-related animal models, exosomal microRNA (miRNA)-based therapies derived from natural exosomes have shown good therapeutic effects on nine skin diseases, including full-thickness skin defects, diabetic ulcers, skin burns, hypertrophic scars, psoriasis, systemic sclerosis, atopic dermatitis, skin aging, and hair loss. Comparative experimental research showed that the therapeutic effect of miRNA-overexpressing exosomes was better than that of their natural exosomes. Using a dual-luciferase reporter assay, the targets of all therapeutic miRNAs in skin cells have been screened and confirmed. For these nine types of skin diseases, a total of 11 animal models and 21 exosomal miRNA-based therapies have been developed. This review provides a detailed description of the animal models, miRNA therapies, disease evaluation indicators, and treatment results of exosomal miRNA therapies, with the aim of providing a reference and guidance for future clinical trials. There is currently no literature on the merits or drawbacks of miRNA therapies compared with standard treatments.
Collapse
Affiliation(s)
| | | | | | - Feng Bingzheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Zhiran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
26
|
Wang S, Li M, Qin S, Wang R, Dong L, Wang S, Xiao F. Serum lipidomic changes and sex differences in androgenetic alopecia. Heliyon 2024; 10:e26204. [PMID: 38390155 PMCID: PMC10881354 DOI: 10.1016/j.heliyon.2024.e26204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background Androgenetic alopecia (AGA) is the most common form of hair loss. Studies have suggested a potential link to metabolic disorders, but with conflicting results. To elucidate the lipidomics profile and sex-specific variations in AGA, while exploring correlation between AGA and metabolic syndrome (MetS). Methods The AGA patients (n = 83) and healthy controls (n = 84) were collected in the study. The lipid profiles were analyzed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Serum levels of important factors associated with AGA, namely dihydrotestosterone (DHT), prostaglandin D2 (PGD2) and transforming growth factor-β1 (TGF-β1) were quantified using ELISA. Results Compared with controls, AGA patients had a higher probability of MetS (26.51% vs 11.9%, P < 0.05). Fifty-one differentially expressed lipids were identified in AGA. The kind of triglyceride (TG) were significantly increased, while phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) exhibited remarkable decrease. PC (16:2/21:6), PC (34:4p), PE (41:7), PE (44:12), PG (40:9), PI (32:2) and TG (15:0/18:1/18:1) were identified as potential biomarkers of AGA with the highest specificity. The levels of DHT, PGD2 and TGF-β1 were significantly elevated in AGA. All seven lipids showed significant correlations with DHT, PC (34:4p) and TG (15:0/18:1/18:1) were significantly associated with PGD2, TGF-β1 displayed exclusively correlation with TG (15:0/18:1/18:1) (all P < 0.05). Furthermore, these lipids were also significantly linked to systolic blood pressure and BMI, while some of them also showed significant associations with total cholesterol and HDL-C. In subgroups, forty-two differentially expressed lipids were identified in male AGA vs male control and eighty-one in female AGA vs female control. PC (16:2/21:6) was the only specific lipids common to both sexes. Conclusions Aberrant lipid metabolism was observed in AGA, with distinct lipidomic profiles between male and female AGA. The potential biomarkers were closely related to DHT, PGD2, TGF-β1 and MetS-related indicators. It provides the foundation for revealing the mechanisms of AGA.
Collapse
Affiliation(s)
- Shuqin Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Department of Dermatology, Anhui Public Health Clinical Center, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mei Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shichun Qin
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Liping Dong
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Sheng Wang
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China
- The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
27
|
Zhou L, Hu R, Sheng Y, Wang X, Qi S, Zhao J, Miao Y, Zhao Y, Xu F, Wu W, Lu Z, Yang Q. IGFBP-rP1 is a potential therapeutic target in androgenic alopecia. Exp Dermatol 2024; 33:e15024. [PMID: 38414091 DOI: 10.1111/exd.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The available interventions for androgenic alopecia (AGA), the most common type of hair loss worldwide, remain limited. The insulin growth factor (IGF) system may play an important role in the pathogenesis of AGA. However, the exact role of IGF binding protein-related protein 1 (IGFBP-rP1) in hair growth and AGA has not been reported. In this study, we first found periodic variation in IGFBP-rP1 during the hair cycle transition in murine hair follicles (HFs). We further demonstrated that IGFBP-rP1 levels were lower in the serum and scalp HFs of individuals with AGA than in those of healthy controls. Subsequently, we verified that IGFBP-rP1 had no cytotoxicity to human outer root sheath cells (HORSCs) and that IGFBP-rP1 reversed the inhibitory effects of DHT on the migration of HORSCs in vitro. Finally, a DHT-induced AGA mouse model was created. The results revealed that the expression of IGFBP-rP1 in murine HFs was downregulated after DHT treatment and that subcutaneous injection of IGFBP-rP1 delayed catagen occurrence and prolonged the anagen phase of HFs in mice with DHT-induced AGA. The present work shows that IGFBP-rP1 is involved in hair cycle transition and exhibits great therapeutic potential for AGA.
Collapse
Affiliation(s)
- Lijuan Zhou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Youyu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuchao Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhongfa Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Zheng M, Kim MH, Park SG, Kim WS, Oh SH, Sung JH. CXCL12 Neutralizing Antibody Promotes Hair Growth in Androgenic Alopecia and Alopecia Areata. Int J Mol Sci 2024; 25:1705. [PMID: 38338982 PMCID: PMC10855715 DOI: 10.3390/ijms25031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Min-Ho Kim
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Sang-Gyu Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| | - Won-Serk Kim
- Department of Dermatology, School of Medicine, Sungkyunkwan University, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea;
| | - Sang-Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| |
Collapse
|
29
|
Hu X, Li X, Wu S, Jiang X, Chen G, Hu Y, Sun J, Bai W. Cyanidin-3-O-glucoside and its derivative vitisin A alleviate androgenetic alopecia by exerting anti-androgen effect and inhibiting dermal papilla cell apoptosis. Eur J Pharmacol 2024; 963:176237. [PMID: 38048982 DOI: 10.1016/j.ejphar.2023.176237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Androgenetic alopecia (AGA), one of the most common forms of hair loss, lacks satisfactory treatment methods in modern society. This study employed an experimental design combining in vitro and in vivo approaches to explore the effects of Cyanidin-3-O-glucoside (C3G) and Carboxypyranocyanidin-3-O-glucoside (Vitisin A) on AGA. In human dermal papilla cells (HDPCs), both anthocyanins demonstrated inhibitory effects on androgen receptors, significantly reduced dihydrotestosterone (DHT) induced apoptosis of HDPCs, and regulated the secretion of Fibroblast growth factor 7 and Transforming growth factor beta 1. In vitro transdermal experiment revealed that both C3G and Vitisin A could penetrate mice skin, aided by the application of cream. Furthermore, in vivo experiments with mice indicated that application of C3G or Vitisin A cream effectively improved hair follicles miniaturization, regression, and apoptosis caused by DHT. The repression of Wnt10b and β-catenin expression induced by DHT was prevented by C3G and Vitisin A in both cell and mouse model. Consequently, these findings suggest that C3G and Vitisin A could be considered as alternative methods for alleviating AGA.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Shi Wu
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
30
|
Xiao T, Li B, Lai R, Liu Z, Xiong S, Li X, Zeng Y, Jiao S, Tang Y, Lu Y, Xu Y. Active pharmaceutical ingredient-ionic liquids assisted follicular co-delivery of ferulic acid and finasteride for enhancing targeted anti-alopecia. Int J Pharm 2023; 648:123624. [PMID: 37984619 DOI: 10.1016/j.ijpharm.2023.123624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Androgenetic alopecia (AGA) is the primary hair loss with impairing patients' quality of life. Finasteride (FIN) is an SRD5A2 inhibitor for AGA treatment, but oral FIN causes systemic adverse effects. Topical FIN delivery is anticipated to overcome this problem. Ferulic acid (FA) is a natural phenolic acid with vascular remodeling and anti-inflammatory effects. Herein, an active pharmaceutical ingredient ionic liquid (API IL) based on choline and FA (CF-IL) is for the first time constructed to load FIN for fabricating FIN CF-IL. CF-IL aims to act as carriers and cargos and enhance hair follicle (HF) co-delivery of FA and FIN for synergistic anti-alopecia. Thermal and spectroscopic analysis combined with quantum chemistry calculations and molecular dynamics confirm the formation of CF-IL. The CF-IL simultaneously increases the solubility of FA (∼648-fold) and FIN (∼686-fold), enhances the permeation and retention of FIN and FA through the follicular pathway, and promotes cellular uptake. FIN CFIL regulates the abnormal mRNA expressions in dihydrotestosterone-irritated hDPCs, and promotes hair regrowth in AGA mice in a combined manner with FIN and FA. These findings suggest that FA-based API IL is a promising approach for percutaneously co-delivering FA and FIN to HF, providing an enhanced targeting treatment for AGA.
Collapse
Affiliation(s)
- Ting Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sha Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Siwen Jiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujia Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Woo MJ, Kang HY, Paik SJ, Choi HJ, Uddin S, Lee S, Kim SY, Choi S, Jung SK. The In Vivo and In Vitro Effects of Terminalia bellirica (Gaertn.) Roxb. Fruit Extract on Testosterone-Induced Hair Loss. J Microbiol Biotechnol 2023; 33:1467-1474. [PMID: 37482816 DOI: 10.4014/jmb.2306.06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Due to the continuous increase in patients with androgenetic alopecia (AGA) and psychological disorders such as depression and anxiety, the demand for hair loss treatment and effective hair growth materials has increased. Terminalia bellirica (Gaertn.) Roxb. (TBE) reportedly exerts anti-inflammatory, hepatoprotective, and antidiabetic effects, among others, but its effects on testosterone (TS)-inhibited hair growth remains unclear. In this study, we evaluated the effects of TBE on TS-induced hair growth regression in human follicle dermal papilla cells (HFDPCs) and C57BL/6 mice. Oral administration of TBE increased TS-induced hair growth retardation. Interestingly, effects were greater when compared with finasteride, a commercial hair loss treatment product. Histological analyses revealed that oral TBE administration increased hair follicles in the dorsal skin of C57BL/6 mice. Additionally, western blotting and immunofluorescence showed that oral TBE administration recovered the TS-induced inhibition of cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki67 expression in vivo. Using in vitro proliferation assays, TBE promoted HFDPC growth, which was suppressed by TS treatment. Thus, TBE may be a promising nutraceutical for hair health as it promoted hair growth in AGA-like in vitro and in vivo models.
Collapse
Affiliation(s)
- Min Jeong Woo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee Jung Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salah Uddin
- Ethnobotanical Database of Bangladesh (EDB), 7/I, B.F.D.C Road, Tejgaon, Dhaka-1208, Bangladesh
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
32
|
Kamishima T, Hirabe C, Ohnishi T, Taguchi J, Myint KZY, Koga S. Trichoscopic evaluation of dental pulp stem cell conditioned media for androgenic alopecia. J Cosmet Dermatol 2023; 22:3107-3117. [PMID: 37154468 DOI: 10.1111/jocd.15799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Conditioned media (CM) derived from mesenchymal stem cells (MSC) is known to induce hair regrowth in androgenic alopecia. OBJECTIVES The objectives of the study were to assess the efficacy and safety of one type of MSC-CM, the CM derived from dental pulp stem cells obtained from human exfoliated deciduous teeth (SHED-CM) and to compare the efficacy of SHED-CM with and without dihydrotestosterone synthesis inhibitor (DHT-inhibitor). METHODS Eighty-eight male androgenic alopecia subjects with Hamilton-Norwood Classification (H-N C) I-VII were evaluated by trichoscopy to explore which trichoscopic factors statistically correlated with H-N C. After being screened, 33 subjects received six SHED-CM treatments at 1-month intervals. Clinical severity was assessed through global and trichoscopic images from baseline to 9th month. RESULTS SHED-CM was effective for 75% of subjects regardless of disease severity, concomitant DHT-inhibitor use, and age. Adverse effects including pain and small hemorrhages were transient and mild. We also found that clinical hair status evaluated by absolute values of three quantitative trichoscopic factors (maximum hair diameter, vellus hair rate, and multi-hair follicular unit rate) showed a good correlation with H-N C stages, and what is more-a scoring system of these three factors can be a possible predictor of SHED-CM efficacy. CONCLUSIONS We have shown that SHED-CM provides global and trichoscopic image improvement for androgenic alopecia, regardless of concomitant DHT-inhibitor use.
Collapse
Affiliation(s)
- Tomoko Kamishima
- Department of Dermatology, Tokyo Midtown Skin/Aesthetic Clinic Noage, Tokyo, Japan
| | - Chie Hirabe
- Department of Dermatology, Tokyo Midtown Skin/Aesthetic Clinic Noage, Tokyo, Japan
| | | | | | - Khin Zay Yar Myint
- Tokyo Midtown Center for Advanced Medical Science and Technology, Tokyo, Japan
| | - Shoji Koga
- Ginza Solaria Clinic, Tokyo, Japan
- Panagy Co., Ltd., Tokyo, Japan
| |
Collapse
|
33
|
He G, Liu M, Wang F, Sun S, Cao Y, Sun Y, Ma S, Wang Y. Non-invasive assessment of hair regeneration in androgenetic alopecia mice in vivo using two-photon and second harmonic generation imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5870-5885. [PMID: 38021124 PMCID: PMC10659803 DOI: 10.1364/boe.503312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
The identification of crucial targets for hair regrowth in androgenetic alopecia (AGA) involves determining important characteristics and different stages during the process of hair follicle regeneration. Traditional methods for assessing key features and different stages of hair follicle primarily involve taking skin tissue samples and determining them through various staining or other methods. However, non-invasive assessment methods have been long sought. Therefore, in this study, endogenous fluorescence signals from skin keratin and second harmonic signals from skin collagen fibers were utilized as probes, two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging techniques were employed to non-invasively assess hair shafts and collagen fibers in AGA mice in vivo. The TPEF imaging technique revealed that the alternation of new and old hair shafts and the different stages of the growth period in AGA mice were delayed. In addition, SHG imaging found testosterone reduced hair follicle area and miniaturized hair follicles. The non-invasive TPEF and SHG imaging techniques provided important methodologies for determining significant characteristics and different stages of the growth cycle in AGA mice, which will facilitate future non-invasive assessments on human scalps in vivo and reduce the use of animal testing.
Collapse
Affiliation(s)
- Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Menghua Liu
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fenglong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuqing Sun
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
34
|
Gilhar A, Keren A, Paus R. Vellus-to-terminal Hair Follicle Reconversion Occurs in Male Pattern Balding and is Promoted by Minoxidil and Platelet-rich Plasma: In Vivo Evidence from a New Humanized Mouse Model of Androgenetic Alopecia. Acta Derm Venereol 2023; 103:adv12320. [PMID: 37853650 PMCID: PMC10599155 DOI: 10.2340/actadv.v103.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
35
|
Li P, Sun Y, Nie L, Shavandi A, Yunusov KE, Hua Y, Jiang G. Fabrication of carboxymethyl cellulose/hyaluronic acid/polyvinylpyrrolidone composite pastes incorporation of minoxidil-loaded ferulic acid-derived lignin nanoparticles and valproic acid for treatment of androgenetic alopecia. Int J Biol Macromol 2023; 249:126013. [PMID: 37517761 DOI: 10.1016/j.ijbiomac.2023.126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a higher prevalence among young individuals. Traditional oral or subcutaneous injections are often used to treat AGA, however, they may cause severe side-effects and therefore effective treatments for AGA are currently lacking. In this work, to treat AGA, we developed a composite paste system based on minoxidil (MXD)-loaded nanoparticles and valproic acid (VPA) with the assistance of roller-microneedles (roller-MNs). The matrix of composite paste systems is carboxymethyl cellulose (CMC), hyaluronic acid (HA) and polyvinylpyrrolidone (PVP). The roller-MNs can create microchannels in the skin to enhance drug transdermal efficiency. With the combined effects of the stimulation hair follicle (HF) regrowth by upregulating Wnt/beta-catenin of VPA and the mechanical microchannels induced by roller-MNs, the as-prepared composite paste systems successfully boost perifollicular vascularization, and activate hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. This approach offers several benefits, including the avoidance of efficacy loss due to the liver's first-pass effect associated with oral drug, reduction in the risk of infection from subcutaneous injection, and significant decrease in the side effects of lower-dose MXD.
Collapse
Affiliation(s)
- Peixin Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Yinjian Hua
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, 310018, China.
| |
Collapse
|
36
|
Zhang W, Jin M, Li T, Lu Z, Wang H, Yuan Z, Wei C. Whole-Genome Resequencing Reveals Selection Signal Related to Sheep Wool Fineness. Animals (Basel) 2023; 13:2944. [PMID: 37760343 PMCID: PMC10526036 DOI: 10.3390/ani13182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
37
|
Papukashvili D, Liu C, Rcheulishvili N, Xie F, Wang X, Feng S, Sun X, Zhang C, Li Y, He Y, Wang PG. DKK1-targeting cholesterol-modified siRNA implication in hair growth regulation. Biochem Biophys Res Commun 2023; 668:55-61. [PMID: 37244035 DOI: 10.1016/j.bbrc.2023.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
Despite advancements in medical research, androgenetic alopecia (AGA) remains a humankind problem that still needs to be overcome. To date, clinical practice lacks an ideal treatment for AGA. The Wnt/β-catenin signaling pathway is evidenced to play a key role in hair regrowth, hence, modulating this signaling pathway for AGA therapy appears to be rational. One of the major inhibitors of the canonical Wnt/β-catenin signaling pathway is dickkopf-related protein 1 (DKK1). In this report, we have selected a small interfering RNA (siRNA) targeting DKK1 in vitro via qPCR and then tested its efficacy in vivo on the depilated dorsal skin of the mice. The changes in hair growth in different groups were observed over time. Moreover, the visual observation of the hair growth and hematoxylin and eosin (HE) staining showed that DKK1-targeting siRNA reveals non-inferior results compared with the mice treated with the Food and Drug Administration (FDA)-approved, commercially available minoxidil (5%) topical solution that was used as a positive control. Both- positive control and DKK1-targeting siRNA groups demonstrated significantly superior results compared with the control group that received negative control siRNA. Consequently, siRNAs targeting DKK1 may promote hair growth regulation in the AGA population via potentially activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Fengfei Xie
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xingyun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xiu Sun
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yingyu Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
38
|
Palakkal S, Cortial A, Frušić-Zlotkin M, Soroka Y, Tzur T, Nassar T, Benita S. Effect of cyclosporine A - Tempol topical gel for the treatment of alopecia and anti-inflammatory disorders. Int J Pharm 2023:123121. [PMID: 37307961 DOI: 10.1016/j.ijpharm.2023.123121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Over the years, extensive research has been carried out to develop new chemical entities for hair loss treatment. Despite these efforts, the newly developed topical and oral treatments have not proven to be curative. Hair loss can result from underlying mechanisms, such as inflammation and apoptosis around hair follicles. We have developed a nanoemulsion based on Pemulen gel for topical application, tentatively addressing both mechanisms. The novel formulation contains two well-known molecules: Cyclosporin A (CsA), an immunosuppressant calcineurin inhibitor, and Tempol, a potent antioxidant. The in vitro permeation study on human skin revealed that the CsA-Tempol gel formulation effectively delivered CsA into the skin's inner target layer, the dermis. The effects of the CsA-Tempol gel on hair regrowth were further demonstrated in the in vivo well-established androgenetic model induced in female C57BL/6 mice. The beneficial outcome was statistically confirmed by quantitative analysis of hair regrowth, weasured by color density. The results were further supported by histology analysis. Our findings revealed a topical synergy effect, resulting in lower therapeutic concentrations of both actives unlikely to cause systemic side effects. Overall, our research suggests that the CsA-Tempol gel is a highly promising platform for treating alopecia.
Collapse
Affiliation(s)
- Sarin Palakkal
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Angèle Cortial
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marina Frušić-Zlotkin
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Soroka
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Tzur
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taher Nassar
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Simon Benita
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
39
|
Mao Y, Liu P, Wei J, Xie Y, Zheng Q, Li R, Yao J. Cell Therapy for Androgenetic Alopecia: Elixir or Trick? Stem Cell Rev Rep 2023:10.1007/s12015-023-10532-2. [PMID: 37277541 PMCID: PMC10390634 DOI: 10.1007/s12015-023-10532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/07/2023]
Abstract
Androgenetic alopecia is the most common cause of hair loss aggravated by increased life pressure, tension, and anxiety. Although androgenetic alopecia (AGA) does not significantly effect physical health, it can have serious negative impact on the mental health and quality of life of the patient. Currently, the effect of medical treatment for AGA is not idealistic, stem cell-based regenerative medicine has shown potential for hair regrowth and follicle repair, but the long-term effect and mechanism of stem cell therapy is not quite explicit. In this review, we summarize the methods, efficacy, mechanism, and clinical progress of stem cell therapies for AGA by now, hope it will present a more comprehensive view in this topic.
Collapse
Affiliation(s)
- Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qiuxia Zheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rui Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
40
|
Gao R, Yu Z, Lv C, Geng X, Ren Y, Ren J, Wang H, Ai F, Zhang B, Yue B, Wang Z, Dou W. Medicinal and edible plant Allium macrostemon Bunge for the treatment of testosterone-induced androgenetic alopecia in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023:116657. [PMID: 37244409 DOI: 10.1016/j.jep.2023.116657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium macrostemon Bunge (AMB), a widely distributed wild garlic plant, possesses a variety of health-promoting properties. Androgenetic alopecia (AGA) is a common disorder that affects quality of life. AIM OF THE STUDY We sought to investigate whether AMB stimulates hair regrowth in AGA mouse model, and clarify the underlying molecular mechanisms. MATERIALS AND METHODS The chemical constituents of AMB water extract were identified by ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q/TOF-MS) analysis. Cell viability assay and Ki-67 immunostaining were undertaken to evaluate the impacts of AMB on human hair dermal papilla cell (HDPC) proliferation. Wound-healing assay was undertaken to assess cell migration. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were performed to examine cell apoptosis. Western blotting, real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays were undertaken to determine the impacts of AMB on Wnt/β-catenin signaling and growth factors expression in HDPC cells. AGA mouse model was induced by testosterone treatment. The effects of AMB on hair regeneration in AGA mice were demonstrated by hair growth measuring and histological scoring. The levels of β-catenin, p-GSK-3β, and Cyclin D1 in dorsal skin were measured. RESULTS AMB promoted proliferation and migration, as well as the expression of growth factors in cultured HDPC cells. Meanwhile, AMB restrained apoptosis of HDPC cells by increasing the ratio of anti-apoptotic Bcl-2/pro-apoptotic Bax. Besides, AMB activated Wnt/β-catenin signaling and thereby enhancing growth factors expression as well as proliferation of HDPC cells, which was abolished by Wnt signaling inhibitor ICG-001. In addition, an increase of hair shaft elongation was observed in mice suffering from testosterone-induced AGA upon the treatment of AMB extract (1% and 3%). Consistent with the in vitro assays, AMB upregulated the Wnt/β-catenin signaling molecules in dorsal skin of AGA mice. CONCLUSION This study demonstrated that AMB promoted HDPC cell proliferation and stimulated hair regrowth in AGA mice. Wnt/β-catenin signaling activation, which induced production of growth factors in hair follicles and, eventually, contributed to the influence of AMB on the hair regrowth. Our findings may contribute to effective utilization of AMB in alopecia treatment.
Collapse
Affiliation(s)
- Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Cheng Lv
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Yijing Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Junyu Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Fangbin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, And the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.
| |
Collapse
|
41
|
Park S, Han N, Lee JM, Lee JH, Bae S. Effects of Allium hookeri Extracts on Hair-Inductive and Anti-Oxidative Properties in Human Dermal Papilla Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091919. [PMID: 37176977 PMCID: PMC10181221 DOI: 10.3390/plants12091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and cellular senescence in dermal papilla cells (DPCs) are major etiological factors causing hair loss. In this study, the effect of the Allium hookeri extract (AHE) on hair-inductive and anti-oxidative properties was investigated in human DPCs. As a result, it was found that a non-cytotoxic concentration of the extracts increased the viability and size of the human DPC spheroid, which was associated with the increased expression of hair-growth-related genes in cells. To determine whether or not these effects could be attributed to intracellular anti-oxidative effects, liquid chromatography-mass spectrometry alongside various biochemical analyses are conducted herein. An ingredient called alliin was identified as one of the main components. Furthermore, AHE treatment induced a significant decrease in H2O2-mediated cytotoxicities, cell death, and cellular senescence in human DPCs. Upon analyzing these results with a molecular mechanism approach, it was shown that AHE treatment increased β-Catenin and NRF2 translocation into the nucleus while inhibiting the translocation of NF-κB (p50) through p38 and PKA-mediated phosphorylations of GSK3β, an upstream regulator of those proteins. These results overall indicate the possibility that AHE can regulate GSK3β-mediated β-Catenin, NRF2, and NF-κB signaling to enhance hair-inductive properties and ultimately protect against oxidative stress-induced cellular damage in human DPCs.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jung-Min Lee
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jae-Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
42
|
Prabahar K, Uthumansha U, Elsherbiny N, Qushawy M. Enhanced Skin Permeation and Controlled Release of β-Sitosterol Using Cubosomes Encrusted with Dissolving Microneedles for the Management of Alopecia. Pharmaceuticals (Basel) 2023; 16:ph16040563. [PMID: 37111320 PMCID: PMC10142597 DOI: 10.3390/ph16040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The use of synthetic medication for treating alopecia is restricted because of systemic exposure and related negative effects. Beta-sitosterol (β-ST), a natural chemical, has lately been studied for its potential to promote hair development. The cubosomes with dissolving microneedles (CUBs-MND) created in this study may be a useful starting point for the creation of a sophisticated dermal delivery system for β-ST. Cubosomes (CUBs) were prepared by the emulsification method, using glyceryl monooleate (GMO) as a lipid polymer. CUBs were loaded with dissolving microneedles (MND) fabricated with HA and a PVP-K90 matrix. An ex vivo skin permeation study and an in vivo hair growth efficacy test of β-ST were performed with both CUB and CUB-MND. The average particle size of the CUBs was determined to be 173.67 ± 0.52 nm, with a low polydispersity index (0.3) and a high zeta potential value that prevents the aggregate formation of dispersed particles. When compared to CUBs alone, CUBs-MND displayed higher permeating levels of β-ST at all-time points. In the animals from the CUB-MND group, significant hair development was observed. According to the results of the current investigation, CUBs that integrate dissolving microneedles of β-ST are superior in terms of transdermal skin penetration and activity for the treatment of alopecia.
Collapse
Affiliation(s)
- Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ubaidulla Uthumansha
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt
| |
Collapse
|
43
|
Adipose Mesenchymal Stromal Cell-Derived Exosomes Carrying MiR-122-5p Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicles by Targeting the TGF-β1/SMAD3 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24065703. [PMID: 36982775 PMCID: PMC10059832 DOI: 10.3390/ijms24065703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Androgenic alopecia (AGA) is the most common type of hair loss, where local high concentrations of dihydrotestosterone (DHT) in the scalp cause progressive shrinkage of the hair follicles, eventually contributing to hair loss. Due to the limitations of existing methods to treat AGA, the use of multi-origin mesenchymal stromal cell-derived exosomes has been proposed. However, the functions and mechanisms of action of exosomes secreted by adipose mesenchymal stromal cells (ADSCs-Exos) in AGA are still unclear. Using Cell Counting Kit-8 (CCK8) analysis, immunofluorescence staining, scratch assays, and Western blotting, it was found that ADSC-Exos contributed to the proliferation, migration, and differentiation of dermal papilla cells (DPCs) and up-regulated the expression of cyclin, β-catenin, versican, and BMP2. ADSC-Exos also mitigated the inhibitory effects of DHT on DPCs and down-regulated transforming growth factor-beta1 (TGF-β1) and its downstream genes. Moreover, high-throughput miRNA sequencing and bioinformatics analysis identified 225 genes that were co-expressed in ADSC-Exos; of these, miR-122-5p was highly enriched and was found by luciferase assays to target SMAD3. ADSC-Exos carrying miR-122-5p antagonized DHT inhibition of hair follicles, up-regulated the expression of β-catenin and versican in vivo and in vitro, restored hair bulb size and dermal thickness, and promoted the normal growth of hair follicles. So, ADSC-Exos enhanced the regeneration of hair follicles in AGA through the action of miR-122-5p and the inhibition of the TGF-β/SMAD3 axis. These results suggest a novel treatment option for the treatment of AGA.
Collapse
|
44
|
Ryu YC, Park J, Kim YR, Choi S, Kim GU, Kim E, Hwang Y, Kim H, Han G, Lee SH, Choi KY. CXXC5 Mediates DHT-Induced Androgenetic Alopecia via PGD 2. Cells 2023; 12:cells12040555. [PMID: 36831222 PMCID: PMC9954685 DOI: 10.3390/cells12040555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The number of people suffering from hair loss is increasing, and hair loss occurs not only in older men but also in women and young people. Prostaglandin D2 (PGD2) is a well-known alopecia inducer. However, the mechanism by which PGD2 induces alopecia is poorly understood. In this study, we characterized CXXC5, a negative regulator of the Wnt/β-catenin pathway, as a mediator for hair loss by PGD2. The hair loss by PGD2 was restored by Cxxc5 knock-out or treatment of protein transduction domain-Dishevelled binding motif (PTD-DBM), a peptide activating the Wnt/β-catenin pathway via interference with the Dishevelled (Dvl) binding function of CXXC5. In addition, suppression of neogenic hair growth by PGD2 was also overcome by PTD-DBM treatment or Cxxc5 knock-out as shown by the wound-induced hair neogenesis (WIHN) model. Moreover, we found that CXXC5 also mediates DHT-induced hair loss via PGD2. DHT-induced hair loss was alleviated by inhibition of both GSK-3β and CXXC5 functions. Overall, CXXC5 mediates the hair loss by the DHT-PGD2 axis through suppression of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiyeon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - You-Rin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sehee Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Geon-Uk Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yumi Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Heejene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soung-Hoon Lee
- CK Regeon Inc., B137 Engineering Research Park, 50 Yonsei Ro, Seoul 03722, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- CK Regeon Inc., B137 Engineering Research Park, 50 Yonsei Ro, Seoul 03722, Republic of Korea
- Correspondence:
| |
Collapse
|
45
|
Wei H, Yang S, Yi T, Xu X, Liu C, Shen C, Guo Y, Li Q, Jin P. CircAGK regulates high dihydrotestosterone-induced apoptosis in DPCs through the miR-3180-5p/BAX axis. FASEB J 2023; 37:e22728. [PMID: 36607259 DOI: 10.1096/fj.202200849r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The incidence of androgen alopecia (AGA), also known as seborrheic alopecia, has surged in recent years, and onset is occurring at younger ages. Dermal papilla cells (DPCs) are key to maintaining hair cycling, and apoptosis-driven processes in DPCs are closely related to hair follicle regeneration. Circular RNAs (circRNAs) are widely present in the human body and are closely related to the occurrence and development of many diseases. Currently, the biological functions of circRNAs in AGA are largely unknown. Whole-transcriptome sequencing was used to screen differential circRNA expression profiles between AGA patients and non-AGA patients. We found that hsa_circ_0002980 (circAGK) was significantly highly expressed in the AGA group. CircAGK promoted DPC apoptosis in the presence of high dihydrotestosterone (DHT) (15 nmol/L). By regulating the miR-3180-5p/BAX axis, circAGK promotes DPC apoptosis in a high DHT environment in vitro and inhibits hair growth in AGA mice in vivo, indicating that circAGK is a potential target for the clinical treatment of AGA.
Collapse
Affiliation(s)
- Hanxiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Yang
- The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tian Yi
- The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Xu
- The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Chang Liu
- The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Caiqi Shen
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanping Guo
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
46
|
Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J Clin Med 2023; 12:jcm12030893. [PMID: 36769541 PMCID: PMC9917549 DOI: 10.3390/jcm12030893] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The hair cycle is composed of four primary phases: anagen, catagen, telogen, and exogen. Anagen is a highly mitotic phase characterized by the production of a hair shaft from the hair follicle, whereas catagen and telogen describe regression and the resting phase of the follicle, respectively, ultimately resulting in hair shedding. While 9% of hair follicles reside in telogen at any time, a variety of factors promote anagen to telogen transition, including inflammation, hormones, stress, nutritional deficiency, poor sleep quality, and cellular division inhibiting medication. Conversely, increased blood flow, direct stimulation of the hair follicle, and growth factors promote telogen to anagen transition and subsequent hair growth. This review seeks to comprehensively describe the hair cycle, anagen and telogen balance, factors that promote anagen to telogen transition and vice versa, and the clinical utility of a variety of lab testing and evaluations. Ultimately, a variety of factors impact the hair cycle, necessitating a holistic approach to hair loss.
Collapse
|
47
|
Wang R, Zhong T, Bian Q, Zhang S, Ma X, Li L, Xu Y, Gu Y, Yuan A, Hu W, Qin C, Gao J. PROTAC Degraders of Androgen Receptor-Integrated Dissolving Microneedles for Androgenetic Alopecia and Recrudescence Treatment via Single Topical Administration. SMALL METHODS 2023; 7:e2201293. [PMID: 36538748 DOI: 10.1002/smtd.202201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a youth-oriented tendency, but it lacks effective treatment. The binding of androgen receptor (AR) and androgen plays an essential role in the occurrence and progression of AGA. Herein, novel proteolysis targeting chimera degrader of AR (AR-PROTAC) is synthesized and integrated with dissolving microneedles (PROTAC-MNs) to achieve AR destruction in hair follicles for AGA treatment. The PROTAC-MNs possess adequate mechanical capabilities for precise AR-PROTAC delivery into the hair follicle-residing regions for AR degradation. After applying only once topically, the PROTAC-MNs achieve an accelerated onset of hair regeneration as compared to the daily application of the first-line topical drug minoxidil. Intriguingly, PROTAC-MNs via single administration still realize superior hair regeneration in AGA recrudescence, which is the major drawback of minoxidil in clinical practice. With the degradation of AR, the PROTAC-MNs successfully regulate the signaling cascade related to hair growth and activate hair follicle stem cells. Furthermore, the PROTAC-MNs do not cause systemic toxicity or androgen deficiency-related chaos in vivo. Collectively, these AR-degrading dissolving microneedles with long-lasting efficacy, one-step administration, and high biocompatibility provide a great therapeutic potential for AGA treatment.
Collapse
Affiliation(s)
- Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengjiang Zhong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
48
|
Ketchem JM, Bowman EJ, Isales CM. Male sex hormones, aging, and inflammation. Biogerontology 2023; 24:1-25. [PMID: 36596999 PMCID: PMC9810526 DOI: 10.1007/s10522-022-10002-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
Adequate levels of androgens (eugonadism), and specifically testosterone, are vital compounds for male quality of life, longevity, and positive health outcomes. Testosterone exerts its effects by binding to the androgen receptor, which is expressed in numerous tissues throughout the body. Significant research has been conducted on the impact of this steroid hormone on skeletal, muscle and adipose tissues and on the cardiovascular, immune, and nervous systems. Testosterone levels have also been studied in relation to the impact of diseases, aging, nutrition and the environment on its circulating levels. Conversely, the impact of testosterone on health has also been evaluated with respect to its cardiac and vascular protective effects, body composition, autoimmunity and all-cause mortality. The male aging process results in decreasing testosterone levels over time. The exact mechanisms and impact of these changes in testosterone levels with age on health- and life-span are still not completely clear. Further research is needed to determine the optimal testosterone and androgen levels to protect from chronic age-related conditions such as frailty and osteoporosis.
Collapse
Affiliation(s)
- Justin M. Ketchem
- grid.410427.40000 0001 2284 9329Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | | | - Carlos M. Isales
- grid.410427.40000 0001 2284 9329Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
49
|
Ruksiriwanich W, Khantham C, Muangsanguan A, Phimolsiripol Y, Barba FJ, Sringarm K, Rachtanapun P, Jantanasakulwong K, Jantrawut P, Chittasupho C, Chutoprapat R, Boonpisuttinant K, Sommano SR. Guava ( Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243514. [PMID: 36559626 PMCID: PMC9784754 DOI: 10.3390/plants11243514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/12/2023]
Abstract
Leaves of guava (Psidium guajava L.) have been used in Thai folk medicine without any supporting evidence as a traditional herbal remedy for hair loss. Androgenetic alopecia (AGA) is chronic hair loss caused by effects of androgens in those with a genetic predisposition, resulting in hair follicle miniaturization. Our objectives were to provide the mechanistic assessment of guava leaf extract on gene expressions related to the androgen pathway in well-known in vitro models, hair follicle dermal papilla cells (HFDPC), and human prostate cancer cells (DU-145), and to determine its bioactive constituents and antioxidant activities. LC-MS analysis demonstrated that the main components of the ethanolic extract of guava leaves are phenolic substances, specifically catechin, gallic acid, and quercetin, which contribute to its scavenging and metal chelating abilities. The guava leaf extract substantially downregulated SRD5A1, SRD5A2, and SRD5A3 genes in the DU-145 model, suggesting that the extract could minimize hair loss by inhibiting the synthesis of a potent androgen (dihydrotestosterone). SRD5A suppression by gallic acid and quercetin was verified. Our study reveals new perspectives on guava leaf extract's anti-androgen properties. This extract could be developed as alternative products or therapeutic adjuvants for the treatment of AGA and other androgen-related disorders.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
50
|
Subongkot T, Charernsriwilaiwat N, Chanasongkram R, Rittem K, Ngawhirunpat T, Opanasopit P. Development and Skin Penetration Pathway Evaluation Using Confocal Laser Scanning Microscopy of Microemulsions for Dermal Delivery Enhancement of Finasteride. Pharmaceutics 2022; 14:pharmaceutics14122784. [PMID: 36559277 PMCID: PMC9787414 DOI: 10.3390/pharmaceutics14122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to develop microemulsions using poloxamer 124 as a surfactant to improve the skin penetration of finasteride and to investigate the skin penetration pathways of these microemulsions by colocalization techniques using confocal laser scanning microscopy (CLSM). The prepared finasteride-loaded microemulsions had average particle sizes ranging from 80.09 to 136.97 nm with particle size distributions within acceptable ranges and exhibited negative surface charges. The obtained microemulsions could significantly increase the skin penetration of finasteride compared to a finasteride solution. According to the skin penetration pathway evaluation conducted with CLSM, the microemulsions were hair follicle-targeted formulations due to penetration via the transfollicular pathway as a major skin penetration pathway. Additionally, this study found that the microemulsions also penetrated via the intercluster pathway more than via the intercellular pathway and transcellular pathway. The intercluster pathway, intercellular pathway, and transcellular pathway were considered only minor pathways.
Collapse
Affiliation(s)
- Thirapit Subongkot
- Research Unit of Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
- Correspondence: ; Tel./Fax: +66-38-102610
| | - Natthan Charernsriwilaiwat
- Research Unit of Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
| | | | - Kantawat Rittem
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
| | - Tanasait Ngawhirunpat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|