1
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
2
|
Lin WS, Hwang SE, Koh YC, Ho PY, Pan MH. Modulatory Effects of Lactobacillus paracasei-Fermented Turmeric on Metabolic Dysregulation and Gut Microbiota in High-Fat Diet-Induced Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17924-17937. [PMID: 38965062 PMCID: PMC11328170 DOI: 10.1021/acs.jafc.4c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Turmeric, derived from Curcuma longa, and Lactobacillus paracasei, a lactic acid bacteria, have been studied for their potential antiobesity effects. To date, the antiobesity effects of turmeric fermented with L. paracasei have not been sufficiently investigated. This study was conducted via oral administration of 5% L. paracasei-fermented (FT) and unfermented turmeric (UT) in diet over 16 weeks using high-fat diet (HFD)-induced obese C57BL/6J mice. Results showed that the curcuminoid content of turmeric decreased following fermentation. Furthermore, FT significantly suppressed weight gain and liver and visceral adipose tissue weight and reduced plasma metabolic parameters in both the UT and FT experimental groups. The effects of FT were more noticeable than those of the unfermented form. Moreover, FT downregulated the expression of adipogenesis, lipogenesis, and inflammatory-related protein, but upregulated liver β-oxidation protein SIRT 1, PPARα, and PGC-1α in perigonadal adipose tissue. Additionally, FT ameliorated insulin resistance by activating insulin receptor pathway protein expressions in visceral adipose tissues. FT also modulated gut microbiota composition, particularly in two beneficial bacteria, Akkermansia muciniphila and Desulfovibrio, as well as two short-chain fatty acid-producing bacteria: Muribaculum intestinale and Deltaproteobacteria. Our findings indicate that the modulation effect of FT may be an important pathway for its antiobesity mechanisms.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Food Science, National Quemoy University, Quemoy 89250, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Siao-En Hwang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
3
|
Zhou Y, Zhang Y, Qian Y, Tang L, Zhou T, Xie Y, Hu L, Ma C, Dong Q, Sun P. Ziyuglycoside II attenuated OVX mice bone loss via inflammatory responses and regulation of gut microbiota and SCFAs. Int Immunopharmacol 2024; 132:112027. [PMID: 38603860 DOI: 10.1016/j.intimp.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yingtong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yafei Qian
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, Guangdong 527300, China.
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
4
|
Liu Y, Gong Y, Li M, Li J. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2-related factor 2 pathway. Nutr Res 2024; 122:55-67. [PMID: 38185061 DOI: 10.1016/j.nutres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Hyperglycemia-related retinopathy is a disease with a high blindness rate. Recent reports indicate that many flavonol compounds have the potential to prevent the occurrence of disease in the retina by regulating the gut-retina axis. Here, we hypothesized that quercetin could alleviate the symptoms of retinopathy. To clarify the mechanism, Sprague Dawley rats were fed a high-fat diet containing quercetin for 12 weeks and injected with streptozotocin in the ninth week. Additionally, neomycin and ampicillin were used to establish a pseudo-sterile rat model. Afterward, changes in the retina were investigated by using electroretinogram and optical coherence tomography. Blood and tissue samples were collected and biochemical components were analyzed. The extent of intestinal injury was determined via hematoxylin-eosin staining. Microbial community structure was analyzed by using 16S ribosomal RNA sequencing. Finally, the expression of genes was analyzed using real-time polymerase chain reaction. The results showed that quercetin reduced the decline in electroretinography amplitude and outer nuclear layer thickness, increased the activities of antioxidant enzymes, decreased the contents of proinflammatory factors and blood glucose, enhanced the concentration of insulin, and inhibited intestinal dysbiosis and improved gut morphology. Importantly, the underexpression of nuclear factor erythroid-2 related factor 2 in the retina was reversed by quercetin. However, trend changes were no longer significant in most of the indicators after antibiotic treatment. In summary, quercetin has therapeutic effects on retinopathy by regulating the gut-retina axis and nuclear factor erythroid-2 related factor 2 pathway, and the presence of gut microbiota helps quercetin exert its effects on the retina.
Collapse
Affiliation(s)
- Yaojie Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yibo Gong
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Mengting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
6
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Huang HS, Lin YE, Panyod S, Chen RA, Lin YC, Chai LMX, Hsu CC, Wu WK, Lu KH, Huang YJ, Sheen LY. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE -/- mice exposed to unpredictable chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115872. [PMID: 36343797 DOI: 10.1016/j.jep.2022.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aβ-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aβ-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Collapse
Affiliation(s)
- Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ying-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Shen YW, Cheng YA, Li Y, Li Z, Yang BY, Li X. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154607. [PMID: 36610352 DOI: 10.1016/j.phymed.2022.154607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China; Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yang-Ang Cheng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China
| | - Yi Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zuo Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bing-You Yang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Li
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
9
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
10
|
Xiao HH, Zhu YX, Lu L, Zhou LP, Poon CCW, Chan CO, Wang LJ, Cao S, Yu WX, Wong KY, Mok DKW, Wong MS. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients 2022; 14:nu14224718. [PMID: 36432403 PMCID: PMC9692752 DOI: 10.3390/nu14224718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Our previous study revealed that the bone anabolic effects of the lignan-rich fraction (SWCA) from Sambucus williamsii Hance was involved in modulating the metabolism of tryptophan in vivo and inhibiting serotonin (5-HT) synthesis in vitro. This study aimed to determine how SWCA modulates bone metabolism via serotonin in vivo. The effects of SWCA were evaluated by using 4-month-old Sprague-Dawley (SD) ovariectomized rats. The serum levels of 5-HT and kynurenine, the protein expressions of tryptophan hydroxylase 1 (TPH-1) and TPH-2, the genes and proteins related to the 5-HT signaling pathway as well as gut microbiota composition were determined. SWCA treatment alleviated bone loss and decreased serum levels of serotonin, which was negatively related to bone mineral density (BMD) in rats. It suppressed the protein expression of TPH-1 in the colon, and reversed the gene and protein expressions of FOXO1 and ATF4 in the femur in OVX rats, while it did not affect the TPH-2 protein expression in the cortex. SWCA treatment escalated the relative abundance of Antinobacteria and modulated several genera relating to BMD. These findings verified that the bone protective effects of lignans were mediated by serotonin, and provided evidence that lignans might be a good source of TPH-1 inhibitors.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Xin Zhu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Lu Lu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christina Chui-Wa Poon
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li-Jing Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Ying Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-34008665
| |
Collapse
|
11
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|
12
|
Zhao Z, Cai Z, Chen A, Cai M, Yang K. Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne) 2022; 13:993253. [PMID: 36452325 PMCID: PMC9702081 DOI: 10.3389/fendo.2022.993253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease characterized by bone metabolism imbalance and bone microstructure destruction, which causes serious social and economic burden. At present, the diagnosis and treatment of OP mainly rely on imaging combined with drugs. However, the existing pathogenic mechanisms, diagnosis and treatment strategies for OP are not clear and effective enough, and the disease progression that cannot reflect OP further restricts its effective treatment. The application of metabolomics has facilitated the study of OP, further exploring the mechanism and behavior of bone cells, prevention, and treatment of the disease from various metabolic perspectives, finally realizing the possibility of a holistic approach. In this review, we focus on the application of metabolomics in OP research, especially the newer systematic application of metabolomics and treatment with herbal medicine and their extracts. In addition, the prospects of clinical transformation in related fields are also discussed. The aim of this study is to highlight the use of metabolomics in OP research, especially in exploring the pathogenesis of OP and the therapeutic mechanisms of natural herbal medicine, for the benefit of interdisciplinary researchers including clinicians, biologists, and materials engineers.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
13
|
Prenylated Isoflavonoids-Rich Extract of Erythrinae Cortex Exerted Bone Protective Effects by Modulating Gut Microbial Compositions and Metabolites in Ovariectomized Rats. Nutrients 2021; 13:nu13092943. [PMID: 34578822 PMCID: PMC8471919 DOI: 10.3390/nu13092943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, found in a wide variety of foods and plants, are considered to play an important role in the prevention and treatment of osteoporosis. Our previous studies demonstrated that Erythrina cortex extract (EC) rich in prenylated isoflavonoids exerted bone protective effects in ovariectomized (OVX) rats. The present study aimed to investigate the interactions of gut microbiota with the EC extract to explore the underlying mechanisms involved in its beneficial effects on bone. Sprague-Dawley female rats of 3-months-old were ovariectomized and treated with EC extract for 12 weeks. EC extract reversed ovariectomy-induced deterioration of bone mineral density and bone microarchitecture as well as downregulated cathepsin K (Ctsk) and upregulated runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) in the tibia of OVX rats. Its protective effects on bone were correlated with changes in microbial richness and the restorations of several genera. EC increased the serum circulating levels of acetate and propionate in OVX rats. We conclude that the bone protective effects of EC extract were associated with the changes in microbial compositions and serum short chain fatty acids (SCFAs) in OVX rats.
Collapse
|