1
|
Madrigal-Santillán E, Portillo-Reyes J, Morales-González JA, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega C, Álvarez-González I, Chamorro-Cevallos G, Morales-González Á, Garcia-Melo LF, Batina N, Paniagua-Pérez R, Madrigal-Bujaidar E. A review of Ficus L. genus (Moraceae): a source of bioactive compounds for health and disease. Part 1. Am J Transl Res 2024; 16:6236-6273. [PMID: 39678553 PMCID: PMC11645579 DOI: 10.62347/mvbz4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/10/2024] [Indexed: 12/17/2024]
Abstract
The Ficus L. genus, belonging to the Moraceae family, includes around 850 species that are widely distributed in tropical and subtropical regions around the world; including the Eastern Mediterranean, Asia, Africa, Australia, and a large territory of America. Among the most important species are F. deltoidea, F. exasperata, F. sycomorus, F. religiosa, F. microcarpa, F. hirta Vahl, F. benghalensis, F. racemosa, F. elástica, and F. carica. Different parts of Ficus plants (root, stem bark, latex, leaves, pulp and fruits) contain bioactive compounds [flavonoids (flavanols, flavones, flavonols, isoflavones, chalcones, anthocyanins), phenolic acids (hidroxylcinnamic acids, hidroxylbenzoic acids), phytosterols, terpenes (triterpenes, tetraterpenes, diterpenes, sesquiterpenes, monoterpenes), coumarins, hydroxybenzoates, phenylpropanoids, chlorins, pheophytins, megastigmanes, chitinases, organic acids, fatty acids, amino acids, alkaloids, glycosides] which together, are currently useful to more than 30 traditional ethnomedical uses. The present manuscript is the result of scientific search processed with the main electronic databases (PubMEd, SciELO, Latindex, Redalyc, BiologyBrowser, ScienceResearch, ScienceDirect, Academic Journals, Ethnobotany, and Scopus). This first review (Part 1), compiles information from published research (in vitro, in vivo and clinical studies) on its antimicrobial, antifungal, antiviral, anti-helminthic, hypoglycemic, hypolipidemic, hepatoprotective, anti-inflammatory, analgesic, and antipyretic properties; as well as its possible adverse and/or toxicological effects. Given the amount of evidence described in this review it aims to trigger a more detailed scientific research on the important pharmacological properties of all angiosperm plants of the genus Ficus L.
Collapse
Affiliation(s)
| | | | | | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Carmen Valadez-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de México, México
| | | | | | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Universidad Autónoma Metropolitana-IztapalapaCiudad de México, México
| | - Nikola Batina
- Laboratorio de Nanotecnología e Ingeniería Molecular, Universidad Autónoma Metropolitana-IztapalapaCiudad de México, México
| | | | | |
Collapse
|
2
|
Alasvand Zarasvand S, Ogawa S, Nestor B, Bridges W, Haley-Zitlin V. Effects of Herbal Tea (Non-Camellia sinensis) on Glucose Homeostasis and Serum Lipids in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutr Rev 2024:nuae068. [PMID: 38894639 DOI: 10.1093/nutrit/nuae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Hyperglycemia and hyperlipidemia increase the risk for diabetes and its complications, atherosclerosis, heart failure, and stroke. Identification of safe and cost-effective means to reduce risk factors is needed. Herbal teas may be a vehicle to deliver antioxidants and polyphenols for prevention of complications. OBJECTIVE This systematic review and meta-analysis were conducted to evaluate and summarize the impact of herbal tea (non-Camellia sinensis) on glucose homeostasis and serum lipids in individuals with type 2 diabetes (T2D). DATA SOURCES PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library databases were searched from inception through February 2023 using relevant keyword proxy terms for diabetes, serum lipids, and "non-Camellia sinensis" or "tea." DATA EXTRACTION Data from 14 randomized controlled trials, totaling 551 participants, were included in the meta-analysis of glycemic and serum lipid profile end points. RESULTS Meta-analysis suggested a significant association between drinking herbal tea (prepared with 2-20 g d-1 plant ingredients) and reduction in fasting blood glucose (FBG) (P = .0034) and glycated hemoglobin (HbA1c; P = .045). In subgroup analysis based on studies using water or placebo as the control, significant reductions were found in serum total cholesterol (TC; P = .024), low-density lipoprotein cholesterol (LDL-C; P = .037), and triglyceride (TG; P = .043) levels with a medium effect size. Meta-regression analysis suggested that study characteristics, including the ratio of male participants, trial duration, and region, were significant sources of FBG and HbA1c effect size heterogeneity; type of control intervention was a significant source of TC and LDL-C effect size heterogeneity. CONCLUSIONS Herbal tea consumption significantly affected glycemic profiles in individuals with T2D, lowering FBG levels and HbA1c. Significance was seen in improved lipid profiles (TC, TG, and LDL-C levels) through herbal tea treatments when water or placebo was the control. This suggests water or placebo may be a more suitable control when examining antidiabetic properties of beverages. Additional research is needed to corroborate these findings, given the limited number of studies.
Collapse
Affiliation(s)
- Sepideh Alasvand Zarasvand
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| | - Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Bailey Nestor
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| | - William Bridges
- Department of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, United States
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| |
Collapse
|
3
|
Amani S, Mohebodini M, Khademvatan S, Jafari M, Kumar V. Modifications in gene expression and phenolic compounds content by methyl jasmonate and fungal elicitors in Ficus carica. Cv. Siah hairy root cultures. BMC PLANT BIOLOGY 2024; 24:520. [PMID: 38853268 PMCID: PMC11163756 DOI: 10.1186/s12870-024-05178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
4
|
Fazel MF, Abu IF, Mohamad MHN, Mat Daud NA, Hasan AN, Aboo Bakkar Z, Md Khir MAN, Juliana N, Das S, Mohd Razali MR, Zainal Baharin NH, Ismail AA. Physicochemistry, Nutritional, and Therapeutic Potential of Ficus carica - A Promising Nutraceutical. Drug Des Devel Ther 2024; 18:1947-1968. [PMID: 38831870 PMCID: PMC11146627 DOI: 10.2147/dddt.s436446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024] Open
Abstract
In an era where synthetic supplements have raised concerns regarding their effects on human health, Ficus carica has emerged as a natural alternative rich in polyphenolic compounds with potent therapeutic properties. Various studies on F. carica focusing on the analysis and validation of its pharmacological and nutritional properties are emerging. This paper summarizes present data and information on the phytochemical, nutritional values, therapeutic potential, as well as the toxicity profile of F. carica. An extensive search was conducted from various databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. A total of 126 studies and articles related to F. carica that were published between 1999 and 2023 were included in this review. Remarkably, F. carica exhibits a diverse array of advantageous effects, including, but not limited to, antioxidant, anti-neurodegenerative, antimicrobial, antiviral, anti-inflammatory, anti-arthritic, antiepileptic, anticonvulsant, anti-hyperlipidemic, anti-angiogenic, antidiabetic, anti-cancer, and antimutagenic properties. Among the highlights include that antioxidants from F. carica were demonstrated to inhibit cholinesterase, potentially protecting neurons in Alzheimer's disease and other neurodegenerative conditions. The antimicrobial activities of F. carica were attributed to its high flavonoids and terpenoids content, while its virucidal action through the inhibition of DNA and RNA replication was postulated due to its triterpenes content. Inflammatory and arthritic conditions may also benefit from its anti-inflammatory and anti-arthritic properties through the modulation of various signalling proteins. Studies have also shown that F. carica extracts were generally safe and exhibit low toxicity profile, although more research in this aspect is required, specifically its effects on the skin. In conclusion, this study highlights the potential of F. carica as a valuable natural therapeutic agent and dietary supplement. However, continued exploration on F. carica's safety and efficacy is still required prior to embarking on clinical trials, as its role in personalized nutrition and medication will open a new paradigm to improve health outcomes.
Collapse
Affiliation(s)
- Muhammad Fattah Fazel
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mohamad Haiqal Nizar Mohamad
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah, Malacca, Malaysia
| | - Noor Arniwati Mat Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ahmad Najib Hasan
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Zainie Aboo Bakkar
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muhammad Alif Naim Md Khir
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | | | | |
Collapse
|
5
|
Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tucci J, Morton DW. Evaluation of bioactive compounds from Ficus carica L. leaf extracts via high-performance thin-layer chromatography combined with effect-directed analysis. J Chromatogr A 2023; 1706:464241. [PMID: 37541060 DOI: 10.1016/j.chroma.2023.464241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Sheryn Wong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Heng Ku
- CSIRO Environment, Dutton Park, QLD, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
6
|
Barolo MI, Castelli MV, López SN. Antimicrobial properties and biotransforming ability of fungal endophytes from Ficus carica L. (Moraceae). Mycology 2023; 14:108-132. [PMID: 37152850 PMCID: PMC10161954 DOI: 10.1080/21501203.2023.2175500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The endophytic fungal community associated with leaves of Ficus carica L. (Moraceae) from Argentina was investigated. Fifteen fungal isolates were isolated and identified by molecular methods into the genera Alternaria, Cladosporium, Curvularia, Diaporthe, Epicoccum, Myrothecium, Neofusicoccum, Nigrospora, Preussia and Ustilago. Cladosporium cladosporioides and Curvularia lunata were the most frequently isolated species. The fungal metabolic profiles were obtained by automated TLC and NMR and analysed by PC Analysis. Antifungal and antibacterial activity was assessed by bioautographic assays. In addition, the biotransforming ability of the fungal isolates was tested on F. carica extracts. Five isolates (33.3%) exhibited inhibitory activity against at least one of the microorganisms tested. Most of the fungal endophytes were able to metabolise the flavonoid rutin 1, and the coumarin psoralen 3 present in F. carica extracts. Further investigations of the psoralen biotransforming ability performed by the selected endophyte Alternaria alternata F8 showed the accumulation of the 6,7-furan-hydrocoumaric acid derivative 4 as the main biotransformation product. Our results corroborate that F. carica can live symbiotically with rich and diverse endophytic communities adding insights about their ecological interactions.
Collapse
Affiliation(s)
- Melisa Isabel Barolo
- Farmacognosia, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Santa Fe, Argentina
| | - María Victoria Castelli
- Farmacognosia, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Santa Fe, Argentina
| | - Silvia Noelí López
- Farmacognosia, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Santa Fe, Argentina
| |
Collapse
|
7
|
Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods 2023; 12:foods12040759. [PMID: 36832834 PMCID: PMC9956282 DOI: 10.3390/foods12040759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The current work was designed to evaluate the antioxidant activity and antidiabetic effect of Ficus carica L. extracts. For that, the leaves and buds of Ficus carica L. were analyzed to determine their polyphenolic and flavonoid contents and antioxidant activity. Diabetes was induced by a single dose of alloxan monohydrate (65 mg/kg body weight), then diabetic rats were treated with a dose of 200 mg/kg body weight of the methanolic extracts of Ficus carica leaves or buds or their combination for 30 days. Throughout the experiment, blood sugar and body weight were measured every 5 and 7 days respectively. At the end of the experiment, serum and urine were collected for analysis of alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, creatinine, uric acid, urea, proteins, sodium, potassium, and chloride. Pancreas, liver, and kidney were removed to estimate catalase, glutathione peroxidase, and glutathione activities; lipid peroxidation products were also determined. The results obtained revealed that alloxan has induced hyperglycemia, increased liver and renal biomarkers levels, reduced antioxidative enzymes, and induced lipid peroxidation. However, the treatment with Ficus carica leaf and bud extracts, especially their combination, has attenuated all pharmacological perturbations induced by alloxan.
Collapse
|
8
|
Morovati MR, Ghanbari-Movahed M, Barton EM, Farzaei MH, Bishayee A. A systematic review on potential anticancer activities of Ficus carica L. with focus on cellular and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154333. [PMID: 35952577 DOI: 10.1016/j.phymed.2022.154333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many substances derived from nutritional or medicinal plants have been studied for their chemopreventive and antineoplastic properties. Among those studied, Ficus carica has shown to have a significant ability to inhibit tumor formation and development of cancer cells through modulating various signaling mechanisms and interaction including a large number of cell signaling molecules. PURPOSE The goal of this study is to provide a critical and complete evaluation of F. carica's anticancer capacity in various malignancies, as well as related molecular targets. METHODS Research was conducted electronically on scholarly scientific databases, including Science Direct, PubMed, and Scopus. Published papers were analyzed and investigated using the keywords, Ficus carica, figs, cancer, malignancies and tumor based on established selection criteria. In this systematic review, 27 individual studies were considered. RESULTS Treatment with F. carica alone or in combination with other medications was linked to anticancer activity with significant evidence. Furthermore, F. carica has been shown to use multitargeted pathways to prevent cancer initiation and development by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, apoptosis, autophagy inflammatory processes, metastasis, invasion, and angiogenesis. CONCLUSION Our findings suggest that F. carica and its phytochemicals have the potential for cancer prevention and therapy. Nonetheless, additional mechanistic studies with pure compounds derived from F. carica and well-designed clinical trials are needed to advance our knowledge to clinical application.
Collapse
Affiliation(s)
- Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Emily M Barton
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
9
|
Pucci M, Mandrone M, Chiocchio I, Sweeney EM, Tirelli E, Uberti D, Memo M, Poli F, Mastinu A, Abate G. Different Seasonal Collections of Ficus carica L. Leaves Diversely Modulate Lipid Metabolism and Adipogenesis in 3T3-L1 Adipocytes. Nutrients 2022; 14:nu14142833. [PMID: 35889791 PMCID: PMC9323846 DOI: 10.3390/nu14142833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the high prevalence of obesity and type 2 diabetes, adipogenesis dysfunction and metabolic disorders are common features in the elderly population. Thus, the identification of novel compounds with anti-adipogenic and lipolytic effects is highly desirable to reduce diabetes complications. Plants represent an important source of bioactive compounds. To date, the antidiabetic potential of several traditional plants has been reported, among which Ficus carica L. is one of the most promising. Considering that plant metabolome changes in response to a number of factors including seasonality, the aim of this study was to evaluate whether Ficus carica leaves extracts collected in autumn (FCa) and spring (FCs) differently modulate lipid metabolism and adipogenesis in 3T3-L1 adipocytes. The 1H-NMR profile of the extracts showed that FCs have a higher content of caffeic acid derivatives, glucose, and sucrose than FCa. In contrast, FCa showed a higher concentration of malic acid and furanocoumarins, identified as psoralen and bergapten. In vitro testing showed that only FCa treatments were able to significantly decrease the lipid content (Ctrl vs. FCa 25 μg/mL, 50 μg/mL and 80 μg/mL; p < 0.05, p < 0.01 and p < 0.001, respectively). Furthermore, FCa treatments were able to downregulate the transcriptional pathway of adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. In more detail, FCa 80 μg/mL significantly decreased the gene expression of PPARγ (p < 0.05), C/EBPα (p < 0.05), Leptin (p < 0.0001), adiponectin (p < 0.05) and GLUT4 (p < 0.01). In conclusion, this study further supports an in-depth investigation of F. carica leaves extracts as a promising source of active compounds useful for targeting obesity and diabetes.
Collapse
Affiliation(s)
- Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.M.); (I.C.); (F.P.)
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.M.); (I.C.); (F.P.)
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| | - Emanuela Tirelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.M.); (I.C.); (F.P.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
- Correspondence: ; Tel.: +39-030-371-7509
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (M.P.); (E.M.S.); (E.T.); (D.U.); (M.M.); (G.A.)
| |
Collapse
|
10
|
Zhou J, Liu X, Sun R, Sun L. Rapid Nondestructive Detection of the Pulp Firmness and Peel Color of Figs by NIR Spectroscopy. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Lozanova E, Savova E, Lateva V, Teneva-Angelova T. Endophytic microflora from Ficus carica L. leaves – isolation, characterization and potential for application. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fig leaves (Ficus carica L.) are widely used in traditional medicine as a remedy or for prevention of many health problems (lowering blood sugar and triglyceride levels, cardiovascular diseases, etc.). The aim of the research was isolation of endophytic microflora, its characterization and proving its potential for future application. Two endophytic bacteria Streptococcus sp. Fcl1 and Kocuria rhizophila Fcl20 were isolated from the fig leaves and characterized. Using HPLC method was also determined the polyphenolic profile of aqueous-alcoholic extract (70% (v/v) ethanol) and microwave-assisted aqueous extract of fig leaves, for the purpose of phytochemical characterization of the plant, for subsequent study of the endophyte-plant relationship. The main found phenolic acids and flavonoids in extracts were: (+)-catechin, vanillic acid, syringic acid, (-)-epicatechin, ferulic acid, salicylic acid, rosmarinic acid, rutin.
Collapse
|
13
|
Casciaro B, Ghirga F, Cappiello F, Vergine V, Loffredo MR, Cammarone S, Puglisi E, Tortora C, Quaglio D, Mori M, Botta B, Mangoni ML. The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics (Basel) 2022; 11:84. [PMID: 35052961 PMCID: PMC8773144 DOI: 10.3390/antibiotics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
In today's post-antibiotic era, the search for new antimicrobial compounds is of major importance and nature represents one of the primary sources of bioactive molecules. In this work, through a cheminformatics approach, we clustered an in-house library of natural products and their derivatives based on a combination of fingerprints and substructure search. We identified the prenylated emodine-type anthranoid ferruginin A as a novel antimicrobial compound. We tested its ability to inhibit and kill a panel of Gram-positive and Gram-negative bacteria, and compared its activity with that of two analogues, vismione B and ferruanthrone. Furthermore, the capability of these three anthranoids to disrupt staphylococcal biofilm was investigated, as well as their effect on the viability of human keratinocytes. Ferruginin A showed a potent activity against both the planktonic and biofilm forms of Gram-positive bacteria (i.e., Staphylococcus aureus and S. epidermidis) and had the best therapeutic index compared to vismione B and ferruanthrone. In conclusion, ferruginin A represents a promising scaffold for the further development of valuable antimicrobial agents.
Collapse
Affiliation(s)
- Bruno Casciaro
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Valeria Vergine
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Elena Puglisi
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018–2022”, University of Siena, 53100 Siena, Italy;
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| |
Collapse
|
14
|
Khademvatan S, Amani S, Mohebodini M, Jafari M, Kumar V. Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
15
|
Li C, Yu M, Li S, Yang X, Qiao B, Shi S, Zhao C, Fu Y. Valorization of Fig ( Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112532. [PMID: 34834895 PMCID: PMC8625020 DOI: 10.3390/plants10112532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Fig (Ficus carica L.) leaves are produced each year and often disposed, resulting in a waste of resources. Fig waste leaves are rich in flavonoids, which have strong antioxidant activity; however, the variety and chemical structure of antioxidants in fig leaves have not been reported in detail. To take full advantage of fig waste leaves, antioxidant capacity of different extracts (petroleum ether, ethyl acetate, and water) was evaluated by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), and ferric-ion-reducing antioxidant power (FRAP) methods. The results showed that flavonoids in ethyl acetate extraction had the highest content (83.92 ± 0.01 mg/g), maximum DPPH scavenging activity (IC50 0.54 mg/mL), highest ABTS scavenging rate (80.28%), and FRAP (3.46 mmol/g). Furthermore, an HPLC-QTOF-MS/MS-DPPH method was developed to identify 11 flavonoids in fig waste leaves. This rapid and efficient method can not only be used for screening the antioxidant components in fig waste leaves, but also can be combined with mass spectrometry to identify the compounds with antioxidant capacity. There are three flavonoids with significant antioxidant capacity, which are 3-O-(rhamnopyranosyl-glucopyranosyl)-7-O-(glucopyranosyl)-quercetin, isoschaftoside, and rutin. The results confirmed that fig waste leaves contain a variety of antioxidant components, which contributed to increase the value of fig waste leaves as antioxidants.
Collapse
Affiliation(s)
- Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Meiting Yu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shen Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xue Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Bin Qiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Sen Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (C.L.); (M.Y.); (S.L.); (X.Y.); (B.Q.); (S.S.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
| |
Collapse
|
16
|
Assessment the Effect of Ficus carica Leaf Extract on B16F10 Melanoma Cancer Cells: The Roles of p53, Caspase-3 & Caspase-9 on Induction of Intrinsic Apoptosis Cascade. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Melanoma is the most serious kind of skin cancer which has significantly increased in recent decades, and the importance of its primary treatment is increased widely. Ficus carica leaves have various therapeutic impact such as anti-inflammatory, anti-proliferative and apoptotic activity. Objectives: Hence, regarding the F. carica effect on the treatment of various diseases, the present research was conducted to identify the effect of methanolic extract of F. carica leaf on apoptosis induction in B16F10 melanoma cancer cells. Methods: Cell survival was estimated by MTT assay after treatment of B16F10 cells in various concentrations of F. carica leaf extract (150, 250, 350, 450, 550, 650, 750 and 850 μg /mL) for 24 and 48 h. Cell apoptosis was analysed by AO/PI and DAPI staining, Annexin V/Propidium Iodide flow cytometry. Moreover, Real-time PCR was utilized to evaluate the expression of apoptotic genes including p53, Bax, caspase-3 and caspase-9 genes. Results: MTT assay results indicated that methanolic extract of F. carica leaf prevented the proliferation of B16F10 cells in a dose and time dependent manner. AO/PI staining results showed an elevation in apoptotic cells in treated groups and DAPI indicated that F. carica extract resulted in chromatin condensation and fragmentation. Annexin V revealed the increasing percentage of apoptotic cells after treatment. In addition, the up-regulation of apoptotic genes confirmed the apoptosis inducing potential of F. carica leaves in B16F10 cells by Real-time PCR. Conclusions: Thus, methanolic extract of F. carica leaves could be suggested as an effective anti-cancer agent for further studies on melanoma cancer.
Collapse
|