1
|
Song W, Shi J, Du M, Liang M, Zhou B, Liang L, Gao Y. Causal relationship between gut microbiota and lung squamous cell carcinoma: a bidirectional two-sample Mendelian randomization study. Postgrad Med J 2024:qgae184. [PMID: 39690971 DOI: 10.1093/postmj/qgae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE This study aims to explore the potential causal relationship between gut microbiota and lung squamous cell carcinoma (LUSC). METHODS A bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide association study (GWAS) data from gut microbiota and LUSC. Gut microbiota served as the exposure factor, with instrumental variables selected from a GWAS involving 18 340 participants. LUSC data were drawn from a European cohort including 29 266 LUSC cases and 56 450 controls. Inverse-variance weighted (IVW) method was used as the primary method, with the Benjamini-Hochberg method applied to adjust for multiple comparisons. An independent dataset (ieu-a-967, containing 3275 LUSC cases and 15 038 controls) was used for replication analysis to ensure robustness. RESULTS IVW analysis found that Butyricicoccus (OR = 0.79, 95% CI: 0.63-0.99, P = .042) and Coprobacter (OR = 0.85, 95% CI: 0.74-0.97, P = .018) were significantly protective against LUSC. In contrast, Victivallis (OR = 1.11, 95% CI: 1.00-1.23, P = .045) and Ruminococcus (OR = 1.28, 95% CI: 1.03-1.60, P = .028) increased LUSC risk. Replication analysis in the independent dataset confirmed significant associations for Ruminococcus and Coprobacter. No reverse causality or pleiotropy was detected. CONCLUSION This study provides evidence of a causal relationship between specific gut microbiota and LUSC risk, highlighting new microbial targets for potential prevention and treatment strategies in lung cancer. Key messages What is already known on this topic? Previous studies have suggested potential links between gut microbiota composition and the development of various cancers, including lung cancer. However, the exact causal relationship between specific gut microbiota and lung squamous cell carcinoma (LUSC) has remained unclear. Traditional observational studies have struggled to determine the direction of causality due to confounding factors, making further investigation necessary through more robust methods such as Mendelian randomization (MR). What this study adds? This bidirectional MR study provides novel genetic evidence indicating that certain gut microbiotas are causally associated with LUSC risk. Specifically, Butyricicoccus appears to reduce the risk of LUSC, while Victivallis increases the risk. These findings highlight the role of the gut-lung axis in LUSC and open up new avenues for exploring gut microbiota as potential modulators of lung cancer risk. How this study might affect research, practice, or policy? The implications of this study may significantly influence future research into cancer prevention strategies by targeting gut microbiota. Additionally, it could inform clinical practices aimed at modulating gut microbiota to lower the risk of LUSC, potentially influencing dietary or probiotic interventions to reduce cancer susceptibility. Furthermore, these results might shape public health policies that focus on the gut-lung axis as a novel avenue for cancer prevention and management.
Collapse
Affiliation(s)
- Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Jianwei Shi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Linchuan Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| |
Collapse
|
2
|
Cao L, Wang X, Ma X, Xu M, Li J. Potential of natural products and gut microbiome in tumor immunotherapy. Chin Med 2024; 19:161. [PMID: 39567970 PMCID: PMC11580227 DOI: 10.1186/s13020-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Immunotherapy is a novel treatment approach for malignant tumors, which has opened a new journey of anti-tumor therapy. Although some patients will show a positive response to immunotherapy, unfortunately, most patients and cancer types do not achieve an ideal response to immunotherapy. Therefore, it is urgent to search for the pathogenesis of sensitized immunotherapy. This review indicates that Fusobacterium nucleatum, Coprobacillus cateniformis, Akkermansia muciniphila, Bifidobacterium, among others, as well as intestinal microbial metabolites are closely associated with resistance to anti-tumor immunotherapy. While natural products of pectin, inulin, jujube, anthocyanins, ginseng polysaccharides, diosgenin, camu-camu, and Inonotus hispidus (Bull).Fr. P. Karst, Icariside I, Safflower yellow, Ganoderma lucidum, and Ginsenoside Rk3, and other Chinese native medicinal compound prescriptions to boost their efficacy of anti-tumor immunotherapy through the regulation of microbiota and microbiota metabolites. However, current research mainly focuses on intestinal, liver, and lung cancer. In the future, natural products could be a viable option for treating malignant tumors, such as pancreatic, esophageal, and gastric malignancies, via sensitizing immunotherapy. Besides, the application characteristics of different types, sources and efficacy of natural products in different immune resistance scenarios also need to be further clarified through the development of future immunotherapy-related studies.
Collapse
Affiliation(s)
- Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinyi Ma
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China.
| |
Collapse
|
3
|
Lei L, Deng D, Xu W, Yue M, Wu D, Fu K, Shi Z. Increased intestinal permeability and lipopolysaccharide contribute to swainsonine-induced systemic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116912. [PMID: 39181073 DOI: 10.1016/j.ecoenv.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Long-term consumption of swainsonine could be poisonous to livestock, including facilitating apoptosis by impairing lysosomal function and inhibiting autophagic degradation, leading to liver inflammation and even death in livestock. However, the mechanism by swainsonine induced systemic inflammatory responses remained unclear, especially the effects of swainsonine on intestinal permeability, lipopolysaccharide (LPS) level and oxidative stress response were unknown. In this study, swainsonine increased intestinal permeability as evidenced by the significant down-regulation of colonic goblet cells, Akkermansia muciniphila and intestinal tight junction protein Occludin, Claudin 1 and ZO-1, and the significant up-regulation of mRNA expression level of the intestinal permeability indicator protein tyrosine phosphatase receptor type H (Ptprh) in the ileum of mice. Simultaneously, the elevated LPS biosynthetic genes in intestinal microbiota and increased intestinal permeability facilitated more bacterial endotoxin LPS to enter the blood. High concentration of free-form LPS induced high levels of proinflammatory cytokines and oxidative stress response, thereby causing the systemic inflammation. These findings provided a new perspective on swainsonine-induced systemic inflammation, suggesting that intestinal permeability and free-form LPS level may be the potential trigger factors.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Wenqian Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingyuan Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S. Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC. J Pharm Anal 2024; 14:100977. [PMID: 39493309 PMCID: PMC11531627 DOI: 10.1016/j.jpha.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 11/05/2024] Open
Abstract
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of "strengthening body and eliminating toxin", exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible Src homology 2 (SH2) containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Collapse
Affiliation(s)
- Feifei Li
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Youyang Shi
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Yang
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Sheng Liu
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
5
|
Li Z, Chen Z, Wang Y, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang W, Ou J, Lin L, Zhou J, Guo W, Li G, Lu YJ, Hu Y. Icariside I enhances the effects of immunotherapy in gastrointestinal cancer via targeting TRPV4 and upregulating the cGAS-STING-IFN-I pathway. Biomed Pharmacother 2024; 177:117134. [PMID: 39013225 DOI: 10.1016/j.biopha.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.
Collapse
Affiliation(s)
- Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Lin
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Hu J, Mei Y, Zhang H, Li J, Zhang M, Li Y, Yang W, Liu Y, Liang Y. Ameliorative effect of an acidic polysaccharide from Phellinus linteus on ulcerative colitis in a DSS-induced mouse model. Int J Biol Macromol 2024; 265:130959. [PMID: 38499127 DOI: 10.1016/j.ijbiomac.2024.130959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.
Collapse
Affiliation(s)
- Jutuan Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxia Mei
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Heng Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ji Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wendi Yang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangyang Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
7
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
8
|
Zhong J, Zhou D, Hu P, Cheng Y, Huang Y. Identification of the chemical composition of distiller's grain polyphenols and their effects on the fecal microbial community structure. Food Chem X 2023; 20:101001. [PMID: 38144726 PMCID: PMC10740074 DOI: 10.1016/j.fochx.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Distiller grains are the main by-products of Baijiu production and are usually discarded, ignoring their abundant functional phytochemicals. The free and bound polyphenols from distiller grains were extracted and their potential effect on modulating fecal microbiota was investigated using in vitro fecal fermentation. The results showed that 34 polyphenols were quantified from distiller grains. The antioxidant activity was positively correlated with quercetin, myricetin, epicatechin, and naringenin. The abundance of Bifidobacterium, Ruminobacterium, Lactobacillus, Akkermansia, and butyrate-producing bacteria was enhanced by distiller's grain polyphenols by approximately 10.66-, 6.39-, 7.83-, 2.59-, and 7.74-fold, respectively. Moreover, the production of short-chain fatty acids (SCFAs), especially acetic, butyric, and propionic acid, was promoted (increased 1.99-, 1.71-, and 1.34-fold, respectively). Correlated analysis revealed quercetin, daidzein, and kaempferol as the key polyphenols by analyzing the effects on gut microbiota and SCFAs. This study could provide a reference for converting distiller grains into high-nutrient functional food ingredients and feeds.
Collapse
Affiliation(s)
- Jiang Zhong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Die Zhou
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Penggang Hu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
9
|
Ma Y, Zhao C, Hu H, Yin S. Liver protecting effects and molecular mechanisms of icariin and its metabolites. PHYTOCHEMISTRY 2023; 215:113841. [PMID: 37660725 DOI: 10.1016/j.phytochem.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
As a detoxification and metabolism organ, the liver plays a vital role in human health. However, an excessive consumption of drugs and toxins, exposure to pathogenic viruses, and unhealthy living habits can lead to liver damage, which may even develop into liver cirrhosis and liver cancer. Epimedium brevicornum Maxim. is a traditional Chinese medicine and dietary supplement in which the flavonoid icariin is a main functional component. Although the protective mechanisms of icariin and its metabolites against liver injury are not yet comprehensively understood, an increasing number of studies have confirmed their liver-protective and anticancer effects. Indeed, icaritin, one of the metabolites of icariin, is currently utilized as an active component of an anti-cancer drug. This paper presents a review of the molecular mechanisms through which icariin and its metabolites actively protect against the occurrence and development of liver injury, and, thus, provides a comprehensive reference for further research and their application in liver protection.
Collapse
Affiliation(s)
- Yurong Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
10
|
Wu M, Chen C, Lei H, Cao Z, Zhang C, Du R, Zhang C, Song Y, Qin M, Zhou J, Lu Y, Wang X, Zhang L. Dietary Isoquercetin Ameliorates Bone Loss via Restoration of the Gut Microbiota and Lipopolysaccharide-Triggered Inflammatory Status in Ovariectomy Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15981-15990. [PMID: 37852299 DOI: 10.1021/acs.jafc.3c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Osteoporosis is one of the skeletal degenerative diseases accompanied by bone loss and microstructure disruption. Given that the gut-bone signaling axis highly contributes to bone health, here, dietary isoquercetin (IQ) was shown to effectively improve postmenopausal osteoporosis (PMO) in an ovariectomy (OVX) mouse model through the modulation of the gut-bone cross-talk. An in vivo study showed that OVX induced striking disruption of the microbial community, subsequently causing gut leakage and gut barrier dysfunction. As a result, lipopolysaccharide (LPS)-triggered inflammatory cytokines released from the intestine to bone marrow were determined to be associated with bone loss in OVX mice. Long-term dietary IQ effectively improved microbial community and gut barrier function in the OVX mice and thus markedly improved bone loss and host inflammatory status by repressing the NF-κB signaling pathway. An in vitro study further revealed that IQ treatments dose-dependently inhibited LPS-induced inflammation and partly promoted the proliferation and differentiation of osteoblasts. These results provide new evidence that dietary IQ has the potential for osteoporosis treatment.
Collapse
Affiliation(s)
- Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Chen C, Lei H, Zhao Y, Hou Y, Zheng H, Zhang C, Cao Z, Wu F, Chen G, Song Y, Zhang C, Zhou J, Lu Y, Xie D, Zhang L. A novel small molecule effectively ameliorates estrogen deficiency-induced osteoporosis by targeting the gut-bone signaling axis. Eur J Pharmacol 2023; 954:175868. [PMID: 37369296 DOI: 10.1016/j.ejphar.2023.175868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Postmenopausal osteoporosis stems mainly from estrogen deficiency leading to a gut microbiome-dependent disruption of host systemic immunity. However, the underlying mechanisms of estrogen deficiency-induced bone loss remain elusive and novel pharmaceutical intervention strategies for osteoporosis are needed. Here we reveal that ovariectomy (ovx)-induced estrogen deficiency in C57BL/6 mice causes significant disruption of gut microbiota composition, consequently leading to marked destruction of intestinal barrier function and gut leakage. As a result, signals transportation between intestinal microbiota and T cells from the gut to bone marrow is identified to contribute to osteoclastogenesis in ovx mice. Notably, we show that icariside I (GH01), a novel small molecule naturally occurring in Herbal Epimedium, has potential to alleviate or prevent ovx-induced bone loss in mice through regulation of gut-bone signaling axis. We find that GH01 treatment can effectively restore the gut microbiota composition, intestinal barrier function and host immune status markedly altered in ovx mice, thus significantly ameliorating bone loss and osteoporosis. These findings not only provide systematic understanding of the gut-immunity-bone axis-associated pathophysiology of osteoporosis, but also demonstrate the high potential of GH01 for osteoporosis treatment by targeting the gut-bone signaling axis.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yitao Zhao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu Hou
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Hui Zheng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhang C, Cao Z, Lei H, Chen C, Du R, Song Y, Zhang C, Zhou J, Lu Y, Huang L, Shen P, Zhang L. Discovery of a novel small molecule with efficacy in protecting against inflammation in vitro and in vivo by enhancing macrophages activation. Biomed Pharmacother 2023; 165:115273. [PMID: 37536035 DOI: 10.1016/j.biopha.2023.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Immune response and inflammation highly contribute to many metabolic syndromes such as inflammatory bowel disease (IBD), ageing and cancer with disruption of host metabolic homeostasis and the gut microbiome. Icariin-1 (GH01), a small-molecule flavonoid derived from Epimedium, has been shown to protect against systemic inflammation. However, the molecular mechanisms by which GH01 ameliorates ulcerative colitis via regulation of microbiota-mediated macrophages polarization remain elusive. In this study, we found that GH01 effectively ameliorated dextran sulfate sodium (DSS)-induced colitis symptoms in mice. Disruption of intestinal barrier function, commensal microbiota and its metabolites were also significantly restored by GH01 in a dose-dependent manner. Of note, we also found that GH01 enhanced phagocytic ability of macrophages and switched macrophage phenotype from M1 to M2 both in vitro and in vivo. Such macrophage polarization was highly associated with intestinal barrier integrity and the gut microbial community. Consequently, GH01 exhibited strong anti-inflammatory capacity by inhibiting TLR4 and NF-κB pathways and proinflammatory factors (IL-6). These findings suggested that GH01 might be a potential nutritional intervention strategy for IBD treatment with the gut microbial community-meditated macrophage as the therapeutic targets.
Collapse
Affiliation(s)
- Cui Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Tong X, Wang Y, Dong B, Li Y, Lang S, Ma J, Ma X. Effects of genus Epimedium in the treatment of osteoarthritis and relevant signaling pathways. Chin Med 2023; 18:92. [PMID: 37525296 PMCID: PMC10388486 DOI: 10.1186/s13020-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease in clinical practice with a high prevalence, especially in the elderly. Traditional Chinese Medicine (TCM) believes that OA belongs to the category of "Bi syndrome" and the "bone Bi syndrome". The etiology and pathogenesis lie in the deficiency of the liver and kidney, the deficiency of Qi and blood, and external exposure to wind, cold, and dampness. Epimedium is a yang-reinforcing herb in TCM, which can tonify the liver and kidney, strengthen muscles and bones, dispel wind, cold and dampness, and can treat both the symptoms and the root cause of "bone Bi syndrome". In addition, Epimedium contains a large number of ingredients. Through modern science and technology, more than 270 compounds have been found in Epimedium, among which flavonoids are the main active ingredients. Therefore, our study will review the effects and mechanisms of genus Epimedium in treating OA from two aspects: (1) Introduction of Epimedium and its main active ingredients; (2) Effects of Epimedium and its active ingredients in treating OA and relevant signaling pathways, in order to provide more ideas for OA treatment.
Collapse
Affiliation(s)
- Xue Tong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Wang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Benchao Dong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Li
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Shuang Lang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Xinlong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
14
|
Wang B, Wang Y, Chen Y, Sun X, Xu J, Zhu J, Zhang Y. Red-Fleshed Apple Flavonoids Extract Alleviates Male Reproductive Injury Caused by Busulfan in Mice. Nutrients 2023; 15:3288. [PMID: 37571225 PMCID: PMC10420934 DOI: 10.3390/nu15153288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, we analyzed the protective effects of red-fleshed apple flavonoid extracts (RAFEs) on male reproductive injury induced by busulfan, using both in vitro and in vivo models. In the cell-based experiments, RAFEs significantly improved cell viability and proliferation rates compared to control groups. Similarly, in vivo testing with male mice showed that RAFEs and whole apple flavonoid extracts (WAFEs) enhanced various biochemical and liver function-related indicators in the testes; however, RAFEs demonstrated superior efficacy in mitigating testicular damage. Through immunohistochemistry, qRT-PCR, and Western blotting, we found that RAFEs notably enhanced the expression of spermatogenesis-related genes. Moreover, RAFEs increased the expression of oxidative stress- and apoptosis-related genes, thereby effectively reducing oxidative damage in the testes. These findings highlight the potential of RAFEs as natural agents for the prevention and treatment of male reproductive injury, paving the way for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
15
|
Wang W, Pang W, Yan S, Zheng X, Han Q, Yao Y, Jin L, Zhang C. Zanthoxylum bungeanum seed oil inhibits tumorigenesis of human melanoma A375 by regulating CDC25A/CyclinB1/CDK1 signaling pathways in vitro and in vivo. Front Pharmacol 2023; 14:1165584. [PMID: 37081962 PMCID: PMC10110958 DOI: 10.3389/fphar.2023.1165584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Background:Zanthoxylum bungeanum seed oil (ZBSO) is extracted from the seeds of the traditional Chinese medicine Z. bungeanum Maxim, which has been shown to have anti-melanoma effects. However, the specific mechanisms are not illustrated adequately.Aims: To further investigate the mechanism by which ZBSO inhibits melanoma and to provide scientific evidence to support ZBSO as a potential melanoma therapeutic candidate.Methods: CCK-8 assays were used to detect the function of ZBSO on A375 cells. Based on transcriptomics analyses, Western blot analysis was applied to determine whether an association existed in ZBSO with the CDC25A/CyclinB1/CDK1 signaling pathway. In addition, RT-qPCR and immunohistochemistry analysis validated that ZBSO has the anti-melanoma effect in a nude mouse xenograft model of human melanoma. Then, 16S rRNA sequencing was used to detect the regulation of gut microbes.Results: Cellular assays revealed that ZBSO could inhibit A375 cell viability by regulating the cell cycle pathway. Further studies presented that ZBSO could constrain CDC25A/CyclinB1/CDK1 signaling pathway in vitro and in vivo models of melanoma. ZBSO did not produce toxicity in mice, and significantly reduced tumor volume in xenotransplants of A375 cells. Genome analysis indicated that ZBSO successfully altered specific gut microbes.Conclusion: ZBSO inhibited the growth of A375 cells by regulating CDC25A/cyclinB1/CDK1 signaling pathway both in vitro and in vivo, suggesting that ZBSO may be a novel potential therapeutic agent.
Collapse
Affiliation(s)
- Wanting Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Wenwen Pang
- Department of Clinical Laboratory, Tianjin Union Medical Center, Tianjin, China
| | - Suying Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xiaoli Zheng
- Department of Clinical Laboratory, Tianjin Union Medical Center, Tianjin, China
| | - Qiurong Han
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yao Yao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Leixin Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- *Correspondence: Chunze Zhang,
| |
Collapse
|
16
|
Chen C, Wu M, Lei H, Cao Z, Wu F, Song Y, Zhang C, Qin M, Zhang C, Du R, Zhou J, Lu Y, Xie D, Zhang L. A Novel Prenylflavonoid Icariside I Ameliorates Estrogen Deficiency-Induced Osteoporosis via Simultaneous Regulation of Osteoblast and Osteoclast Differentiation. ACS Pharmacol Transl Sci 2023; 6:270-280. [PMID: 36798476 PMCID: PMC9926523 DOI: 10.1021/acsptsci.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 01/15/2023]
Abstract
Regulation of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is crucial for bone health. Currently, most clinical drugs for osteoporosis treatment such as bisphosphonates are commonly used to inhibit bone resorption but unable to promote bone formation. In this study, we discovered for the first time that icariside I (GH01), a novel prenylflavonoid isolated from Epimedium, can effectively ameliorate estrogen deficiency-induced osteoporosis with enhancement of trabecular and cortical bone in an ovariectomy (OVX) mouse model. Mechanistically, our in vitro results showed that GH01 repressed osteoclast differentiation and resorption through inhibition of RANKL-induced TRAF6-MAPK-p38-NFATc1 cascade. Simultaneously, we also found that GH01 dose-dependently promoted osteoblast differentiation and formation by inhibiting adipogenesis and accelerating energy metabolism of osteoblasts. In addition, both in vitro and in vivo studies also suggested that GH01 is not only a non-toxic natural small molecule but also beneficial for restoration of liver injury in OVX mice. These results demonstrated that GH01 has great potential for osteoporosis treatment by simultaneous regulation of osteoblast and osteoclast differentiation.
Collapse
Affiliation(s)
- Chuan Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Hehua Lei
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Zheng Cao
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Cui Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- School
of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department
of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Limin Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| |
Collapse
|
17
|
Pan L, Ye H, Pi X, Liu W, Wang Z, Zhang Y, Zheng J. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Front Microbiol 2023; 14:1092729. [PMID: 36819019 PMCID: PMC9932666 DOI: 10.3389/fmicb.2023.1092729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Flavonoids have antiviral, antitumor, anti-inflammatory, and other biological activities. They have high market value and are widely used in food and medicine fields. They also can regulate gut microbiota and promote human health. However, only a few flavonoids have been reported for their regulatory effects on human gut microbiota. Methods The effects of hesperidin, hesperetin-7-O-glucoside, hesperetin, naringin, prunin, naringenin, rutin, isoquercitrin, and quercetin on gut microbiota structural and metabolic differences in healthy subjects were studied by means of in vitro simulated fermentation technology. Results Results showed that the nine kinds of flavonoids mentioned above, especially hesperetin-7-O-glucoside, prunin, and isoquercitrin, were found to have more effect on the structure of human gut microbiota, and they could significantly enhance Bifidobacterium (p < 0.05). After 24 h of in vitro simulated fermentation, the relative abundance of intestinal probiotics (e.g., Lactobacillus) was increased by the three flavonoids and rutin. Furthermore, the relative abundance of potential pathogenic bacteria was decreased by the addition of hesperetin-7-O-glucoside, naringin, prunin, rutin, and isoquercitrin (e.g., Lachnoclostridium and Bilophila). Notably, prunin could also markedly decrease the content of H2S, NH3, and short-chain fatty acids. This performance fully demonstrated its broad-spectrum antibacterial activity. Discussion This study demonstrates that flavonoids can regulate the imbalance of gut microbiota, and some differences in the regulatory effect are observed due to different structures. This work provides a theoretical basis for the wide application of flavonoids for food and medicine.
Collapse
Affiliation(s)
- Lixia Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hangyu Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yinjun Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianyong Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Jianyong Zheng, ✉
| |
Collapse
|
18
|
Yu C, Zhou Z, Liu B, Yao D, Huang Y, Wang P, Li Y. Investigation of trends in gut microbiome associated with colorectal cancer using machine learning. Front Oncol 2023; 13:1077922. [PMID: 36937384 PMCID: PMC10015000 DOI: 10.3389/fonc.2023.1077922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background The rapid growth of publications on the gut microbiome and colorectal cancer (CRC) makes it feasible for text mining and bibliometric analysis. Methods Publications were retrieved from the Web of Science. Bioinformatics analysis was performed, and a machine learning-based Latent Dirichlet Allocation (LDA) model was used to identify the subfield research topics. Results A total of 5,696 publications related to the gut microbiome and CRC were retrieved from the Web of Science Core Collection from 2000 to 2022. China and the USA were the most productive countries. The top 25 references, institutions, and authors with the strongest citation bursts were identified. Abstracts from all 5,696 publications were extracted for a text mining analysis that identified the top 50 topics in this field with increasing interest. The colitis animal model, expression of cytokines, microbiome sequencing and 16s, microbiome composition and dysbiosis, and cell growth inhibition were increasingly noticed during the last two years. The 50 most intensively investigated topics were identified and further categorized into four clusters, including "microbiome sequencing and tumor," "microbiome compositions, interactions, and treatment," "microbiome molecular features and mechanisms," and "microbiome and metabolism." Conclusion This bibliometric analysis explores the historical research tendencies in the gut microbiome and CRC and identifies specific topics of increasing interest. The developmental trajectory, along with the noticeable research topics characterized by this analysis, will contribute to the future direction of research in CRC and its clinical translation.
Collapse
|
19
|
Neospora caninum inhibits tumor development by activating the immune response and destroying tumor cells in a B16F10 melanoma model. Parasit Vectors 2022; 15:332. [PMID: 36138417 PMCID: PMC9503190 DOI: 10.1186/s13071-022-05456-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background Melanoma is a malignant tumor with a high mortality rate. Some microorganisms have been shown to activate the immune system and limit cancer progression. The objective of this study is to evaluate the anti-melanoma effect of Neospora caninum, a livestock pathogen with no pathogenic activity in humans. Methods Neospora caninum tachyzoites were inoculated into a C57BL/6 mouse melanoma model by intratumoral and distal subcutaneous injections. Tumor volumes were measured, and cell death areas were visualized by hematoxylin and eosin staining and quantified. Apoptosis in cell cultures and whole tumors was detected by propidium iodide (PI) and TUNEL staining, respectively. Cytokine and tumor-associated factor levels in tumors and spleens were detected by real-time quantitative polymerase chain reaction. Infiltration of macrophages and CD8+ T cells in the tumor microenvironment (TME) were detected by immunohistochemistry with anti-CD68 and anti-CD8 antibodies, respectively. Finally, 16S rRNA sequencing of mice cecal contents was performed to evaluate the effect of N. caninum on gut microbial diversity. Results Intratumoral and distal subcutaneous injections of N. caninum resulted in significant inhibition of tumor growth (P < 0.001), and more than 50% of tumor cells were dead without signs of apoptosis. Neospora caninum treatment significantly increased the mRNA expression levels of IL-12, IFN-γ, IL-2, IL-10, TNF-α, and PD-L1 in the TME, and IL-12 and IFN-γ in the spleen of tumor-bearing mice (P < 0.05). An increase in the infiltration of CD8+ T cells and macrophages in the TME was observed with these cytokine changes. Neospora caninum also restored the abundance of gut microbiota Lactobacillus, Lachnospiraceae, Adlercreutzia, and Prevotellaceae associated with tumor growth, but the changes were not significant. Conclusion Neospora caninum inhibits B16F10 melanoma by activating potent immune responses and directly destroying the cancer cells. The stable, non-toxic, and efficacious properties of N. caninum demonstrate the potential for its use as a cancer treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05456-8.
Collapse
|
20
|
Chen W, Yu L, Zhu B, Qin L. Dendrobium officinale Endophytes May Colonize the Intestinal Tract and Regulate Gut Microbiota in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2607506. [PMID: 35990847 PMCID: PMC9388241 DOI: 10.1155/2022/2607506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Dendrobium officinale is a traditional Chinese medicine for treating gastrointestinal diseases by nourishing "Yin" and thickening the stomach lining. To study whether D. officinale endophytes can colonize the intestinal tract and regulate gut microbiota in mice, we used autoclave steam sterilizing and 60Co-γ radiation to eliminate D. officinale endophytes from its juice. Then, high-throughput ITS1-ITS2 rDNA and 16S rRNA gene amplicons were sequenced to analyze the microbial community of D. officinale endophytes and fecal samples of mice after administration of fresh D. officinale juice. Sterilization of D. officinale juice by autoclaving for 40 min (ASDO40) could more effectively eliminate the D. officinale endophytes and decrease their interference on the gut microbiota. D. officinale juice could increase beneficial gut microbiota and metabolites including short-chain fatty acids. D. officinale endophytes Pseudomonas mosselii, Trichocladium asperum, Titata maxilliformis, Clonostachys epichloe, and Rhodotorula babjevae could colonize the intestinal tract of mice and modulate gut microbiota after oral administration of the juice for 28 days. Thus, the regulatory effect of D. officinale juice on gut microbiota was observed, which provides a basis for inferring that D. officinale endophytes might colonize the intestinal tract and participate in regulating gut microbiota to treat diseases. Thus, this study further provides a new approach for the treatment of diseases by colonizing plant endophytes in the intestinal tract and regulating gut microbiota.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lilong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
21
|
Chen G, Huang J, Lei H, Wu F, Chen C, Song Y, Cao Z, Zhang C, Zhang C, Ma Y, Huang M, Zhou J, Lu Y, Zhao Y, Zhang L. Icariside I - A novel inhibitor of the kynurenine-AhR pathway with potential for cancer therapy by blocking tumor immune escape. Biomed Pharmacother 2022; 153:113387. [PMID: 35834991 DOI: 10.1016/j.biopha.2022.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although therapeutic antibodies against immune checkpoints such as PD-1/PD-L1 have achieved unprecedented success in clinical tumor patients, there are still many patients who are ineffective or have limited responses to immune checkpoint blockade (ICB). Discovery of novel strategies for cancer immunotherapy including natural small molecules is needed. METHODS Owing to its extremely low content in Epimedium genus, we firstly constructed a microbial cell factory to enzymatically biosynthesize icariside I, a natural flavonoid monosaccharide from Herbal Epimedium. Using a combination of targeted MS-based metabolomics, flow cytometric analysis, and biological assays, the therapeutic potentials of icariside I were subsequently investigated in vivo and in vitro. RESULTS We find that icariside I markedly downregulates a series of intermediate metabolites such as kynurenine, kynurenic acid and xanthurenic acid and corresponding key enzymes involved in kynurenine-AhR pathway in both tumor cells and tumor-bearing mice. In vivo, oral administration of icariside I downregulates SLC7A8 and PAT4 transporters and AhR, thus inhibiting nuclear PD-1 in CTLs. Moreover, icariside I significantly upregulates CD8 + T cells in both peripheral blood and tumor tissues of tumor-bearing mice. Consequently, interferon-γ (IFN-γ) secreted by CD8 + T cells suppresses tumor growth through activation of JAK1-STAT1 signaling, thus inducing tumor cell apoptosis. CONCLUSIONS These results suggest that icariside I could be an effective small molecule drug for tumor immunotherapy by blocking kynurenine-AhR pathway and tumor immune escape.
Collapse
Affiliation(s)
- Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Huang
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Huang JJ, Hu HX, Lu YJ, Bao YD, Zhou JL, Huang M. Computer-Aided Design of α-L-Rhamnosidase to Increase the Synthesis Efficiency of Icariside I. Front Bioeng Biotechnol 2022; 10:926829. [PMID: 35800333 PMCID: PMC9253678 DOI: 10.3389/fbioe.2022.926829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Icariside I, the glycosylation product of icaritin, is a novel effective anti-cancer agent with immunological anti-tumor activity. However, very limited natural icariside I content hinders its direct extraction from plants. Therefore, we employed a computer-aided protein design strategy to improve the catalytic efficiency and substrate specificity of the α-L-rhamnosidase from Thermotoga petrophila DSM 13995, to provide a highly-efficient preparation method. Several beneficial mutants were obtained by expanding the active cavity. The catalytic efficiencies of all mutants were improved 16-200-fold compared with the wild-type TpeRha. The double-point mutant DH was the best mutant and showed the highest catalytic efficiency (k cat /K M : 193.52 s-1 M-1) against icariin, which was a 209.76-fold increase compared with the wild-type TpeRha. Besides, the single-point mutant H570A showed higher substrate specificity than that of the wild-type TpeRha in hydrolysis of different substrates. This study provides enzyme design strategies and principles for the hydrolysis of rhamnosyl natural products.
Collapse
Affiliation(s)
- Jia-Jun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Hao-Xuan Hu
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Yu-Jing Lu
- Golden Health Biotechnology Co., Ltd., Foshan, China
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ya-Dan Bao
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Jin-Lin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
The Role of Gut Microbiota in Tumor Immunotherapy. J Immunol Res 2021; 2021:5061570. [PMID: 34485534 PMCID: PMC8413023 DOI: 10.1155/2021/5061570] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.
Collapse
|